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A gas of ultracold 6Li atoms (effective spin 1/2) confined to an elongated trap with one-
dimensional properties is a candidate to display three different phases: (i) fermions bound in
Cooper-pair-like states, (ii) unbound spin-polarized particles, and (iii) a mixed phase in which
Cooper bound states and unpaired particles coexist. It is of great interest to extend these studies
to fermionic atoms with higher spin, e.g., for neutral 40K, 43Ca, 87Sr or 173Yb atoms. Within the
grand-canonical ensemble we investigated the µ vs. H phase diagram (µ is the chemical potential
and H the external magnetic field) for S = 3/2, · · · , 9/2 for the ground state using the exact Bethe
ansatz solution of the one-dimensional Fermi gas with an attractive δ-function interaction potential.
There are N = 2S+1 fundamental states: The particles can be either unpaired or clustered in bound
states of two, three, · · ·, 2S and 2S +1 fermions. The rich phase diagram consists of these N states
and various mixed phases in which combinations of the fundamental states coexist. Bound states
of N fermions are not favorable in high magnetic fields, but always present if the field is low. For
S = 3/2 possible scenarios for phase separation are explored within the local density approximation.
For S = 3/2 the phase diagram for the superposition of a Zeeman and a quadrupolar splitting is
also discussed.

PACS numbers: 71.10.Pm, 36.40.Ei, 51.30.+i

I. INTRODUCTION

Spin-imbalanced ultracold 6Li atoms confined to dif-
ferent geometries are spin-1/2 fermion systems display-
ing the interplay of Cooper pairing and spin-polarization
and have been the subject of several recent studies.1–3

Confinement to nearly one-dimensional tubes can be
achieved if the ultracold cloud of atoms is subjected to
a two-dimensional optical lattice, which defines a two-
dimensional array of tubes.4 The tubes can be regarded
as isolated if the confinement by the laser beams is strong
enough to suppress tunneling between tubes. The scat-
tering between atoms under transverse harmonic con-
finement is subject to a confinement-induced resonance.5

Fine-tuning this Feshbach-type resonance, the interac-
tion between the fermions can be made attractive and
its strength can be varied.6 The interaction is local and
can be approximated by a δ-function potential in space.
The confinement along the tube is roughly harmonic and
weak; it can be locally incorporated into the chemical
potential. Consequently, these systems of fermions are
only locally homogeneous and within the local density
approximation display phase separation with the varia-
tion of the chemical potential along the tube.7,8

One-dimensional spin-1/2 gases have been extensively
studied theoretically. M. Gaudin9 and C.N. Yang10 ex-
tended Bethe’s ansatz for the Heisenberg chain11 and
Lieb and Liniger’s results for the locally interacting gas
of bosons12 to obtain the exact solution for a gas of spin-
1/2 fermions interacting via a δ-function potential. It
was shown by Gaudin9 and later by Takahashi13 and
Lai14 that for an attractive interaction in the ground

state there are two classes of solutions of the discrete
Bethe ansatz equations, namely, real charge rapidities
and paired complex conjugated rapidities. The former
represent spin polarized particles and the latter corre-
spond to bound states of the Cooper type. There are
then three possible homogeneous phases at very low T ,
the (1) fully spin-polarized state (only real charge ra-
pidities), (2) a phase without polarization, where all par-
ticles are bound in Cooper-pairs, (only complex conju-
gated rapidities), and (3) a mixed phase in which un-
paired spin-polarized particles coexist with Cooper pairs.
The Cooper pairs are gapped (i.e. it requires a criti-
cal field to break-up the bound states) and display no
long-range order. Similar results were obtained for the
Hubbard model with attractive U .15,16 The mixed phase
has been interpreted17 as the one-dimensional analogue
of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.18

Tubes with ultracold gases of atoms provide the unique
possibility to study fermion systems with a spin larger
than 1/2, e.g., 40K (spin 9/2), 43Ca (spin 7/2), 87Sr (spin
9/2) or 173Yb (spin 5/2) atoms. With an attractive in-
teraction atoms with spin S can form bound states of
up to (2S + 1) particles, extending this way the concept
of Cooper pairs to larger clusters.19 Consequently, the
phase diagram will have more possible pure and mixed
phases. In this paper we investigate the phases that can
arise in the ground state using the Bethe ansatz solution
of the one-dimensional fermion gas with δ-function po-
tential. Sutherland20 generalized M. Gaudin’s9 and C.N.
Yang’s10 Bethe ansatz solution (for spin 1/2) to an arbi-
trary number of colors N = 2S + 1 [SU(N)-symmetry].
For an attractive interaction, Takahashi21 derived the in-
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tegral equations for the ground state density functions
for bound states of up to N = 2S + 1 particles. The
space extension of these bound states was further stud-
ied by C.H. Gu and C.N. Yang.22 The classification of
states, the thermodynamics, the ground state properties
and elementary excitations of the gas have been derived
by Schlottmann in Refs. [23,24] for both attractive and
repulsive potential and arbitrary number of colors. Intro-
ducing different chemical potentials for each of the colors,
these results are valid for an arbitrary level splitting of
the N -fold multiplet.23–25 The results for the δ-function
potential model, as well as other integrable models, have
been extensively reviewed in Ref. [25]. In this paper we
use this solution to study the phase diagram for a gas
of fermionic atoms with effective spins of S = 3/2, 5/2,
7/2 and 9/2 constrained to a tube. The numerical effort
and the complexity of the phase diagram rapidly increase
with S. As a consequence of Pauli’s exclusion principle,
the bound states must involve particles all with different
spin-components (otherwise the δ-potential is not active
due to nodes in the wave function). There are N ba-
sic states, namely, bound states of N , N − 1, · · ·, and
two particles, and unbound particles. The phase diagram
will have many mixed phases, which can have up to N
coexisting basic states. Some results of Ref. [24] were
rederived in Ref. [26] for S = 3/2 and used to discuss
the phase diagram for fixed density of particles, strong
attractive coupling (Tonks-Girardeau gas limit) and Zee-
man as well as quadrupolar splittings.

A two-body interaction for spin larger than 1/2 does
not necessarily have to have SU(N) symmetry. Spin-3/2
fermion models with contact interactions in any dimen-
sion display a generic SO(5) symmetry without tuning
parameters.27 The Hubbard variant for S = 3/2 has
been studied via Monte Carlo algorithms in Ref. 28
and was applied to investigate the competing orders in
one-dimensional optical traps in Ref. 29. Several in-
tegrable one-dimensional continuum models for the low-
density limit displaying pairing have been constructed for
bosonic and fermionic systems. In Ref. [30] a model for
spin-1 bosons with exchange interaction is proposed and
solved exactly via nested Bethe ansätze for the ground
state and thermodynamics. An extension of this model
to SO(5) symmetry for spin-3/2 fermions has been pro-
posed and solved in Ref. [31]; the authors obtain the
thermodynamic equations and discuss the spectrum of el-
ementary excitations. Further extensions to models with
hidden Sp(2s + 1) and SO(2s + 1) symmetries for high
spin-s fermions and bosons, respectively, can be found in
Ref. [32]. The influence of a pure quadratic Zeeman ef-
fect (quadrupolar splitting) on the Mott-insulator phases
of hard-core one-dimensional spin-3/2 fermions has been
studied via DMRG, leading to a rich phase diagram.33

There are several other theoretical studies of ultracold
spin-1/2 atoms in one-dimension. The direct imaging of
the density profiles of the spatially modulated superfluid
phases in atomic fermion systems were obtained by solv-
ing the Bogoliubov-de Gennes equation.34 The pairing

states were investigated on a lattice by means of the den-
sity matrix renormalization group method in Ref. [35];
this study leads to a fourth possible phase (in addition
to the paired, unpaired polarized and the mixed phases)
consisting of a metallic shell with free spin-down (i.e.
reversed spins) fermions moving in a fully filled back-
ground of spin-up fermions. The crossover from three-
dimensional (FFLO phase) to one-dimensional (mixed
phase) behavior is addressed in [36], where the phase
diagram for a weakly interacting array of tubes is calcu-
lated. A quantum Monte Carlo study of one-dimensional
trapped fermions with attractive contact interactions was
presented in [37]. Finally, using the Bethe ansatz the
low temperature thermodynamics was calculated in Refs.
[38] and [39].
The rest of the paper is organized as follows. In

Sect. II we present the model and the discrete Bethe
ansatz equations for perodic and open boundary condi-
tions for fermions of arbitrary S. In Sect. III we present
the numerical solution of the Bethe ansatz equations for
S = 3/2, the phase diagram for a Zeeman splitting and
the local density profile along the trap. In Sect. IV we
present the numerical solution of the Bethe ansatz equa-
tions for spins S = 5/2, 7/2 and 9/2 for a pure Zeeman
splitting and the corresponding phase diagrams. In Sect.
V we investigate for S = 3/2 the case where in addition
to the Zeeman effect there is a quadrupolar splitting. Al-
though it is not clear if nonlinear Zeeman splittings are
of relevance to ultacold atoms in one dimension, it is an
instructive situation to study which has been considered
in Refs. [26,30,33]. Conclusions are presented in Sect.
VI.

II. MODEL AND BETHE ANSATZ

The Hamiltonian for a gas of nonrelativistic particles
with (2S+1) colors (spin S) interacting via an attractive
δ-function potential is

H = −

Np
∑

i=1

∂2

∂x2
i

− 2|c|
∑

i<j

δ(xi − xj) , (1)

where xi are the coordinates, Np is the total number of
particles and c is the interaction strength. By fine-tuning
the confinement-induced resonance5 the interaction can
become attractive and its strength can be varied. Here
h̄2/2m, where m is the mass of the particles, has been
equated to 1, or alternatively it has been scaled into H
and c.

A. Bethe equations for periodic boundary

conditions

The states of the coordinate Bethe ansatz are plane
waves constructed from the two-particle scattering ma-
trix. This scattering matrix satisfies the so-called Yang-
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Baxter triangular relation, which is a necessary condition
for integrability. As a consequence of the triangular rela-
tion many-particle scattering processes can be factorized
into two-particle processes and the order in which the
individual scattering processes take place can be inter-
changed (the order becomes arbitrary).
The generalization of the Gaudin-Yang9,10 solution to

more than two colors20 consists of an iterative application
of the Bethe-Yang hypothesis (generalized Bethe ansatz),
such that one color is eliminated at each step, leading to
N = 2S + 1 nested Bethe ansätze. Each Bethe ansatz

gives rise to a new set of rapidities, {kj}, j = 1, · · · , Np

for the charges (coordinate Bethe ansatz) and {Λ
(l)
α }, l =

1, · · · , N−1, with α = 1, · · · ,M (l) for the internal degrees
of freedom (spin). Here M (l) is the number of rapidities
in the lth set and α is the running index within each set.
All rapidities within a given set have to be different to
ensure linearly independent solutions. Consider fermions
of spin S with Zeeman splitting and let us denote by
NS−m the number of particles with spin component m.
We have then NS−m1 ≥ NS−m2 if m1 > m2 and define

M (i) =

S
∑

m=−S+i

NS+m , M (0) = Np , M
(2S+1) = 0 , (2)

such that Np ≥ M (1) ≥ · · · ≥ M (2S) ≥ 0. As a conse-
quence of the SU(N) invariance of the model the nested
Bethe ansätze for periodic boundary conditions yield
the following sets of coupled equations20,23,25

exp
(

ikjL
)

=
M(1)
∏

β=1

e
(

kj − Λ
(1)
β

)

, j = 1, ..., Np (3)

M(l−1)
∏

β=1

e
(

Λ(l)
α − Λ

(l−1)
β

)

M(l+1)
∏

β=1

e
(

Λ(l)
α − Λ

(l+1)
β

)

= −
M(l)
∏

β=1

e
[(

Λ(l)
α − Λ

(l)
β

)

/2
]

, α = 1, ...,M (l)

l = 1, · · · , 2S (4)

where

e(x) =
x− i 12 |c|

x+ i 12 |c|
, (5)

Λ
(0)
j ≡ kj and L is the length of the box. The energy and

the momentum of the state are given by

E =

Np
∑

j=1

k2j , P =

Np
∑

j=1

kj . (6)

B. Bethe equations for open boundary conditions

Eqs. (4) are derived for the standard periodic bound-
ary conditions. Tubes, however, are not periodic and

better represented by open or reflecting boundary con-
ditions. A particle reaching the boundary is then re-
flected undergoing kj → −kj but without changing its
energy. The corresponding reflection matrix satisfies re-
flection equations with the two-particle scattering matrix,
extending the Yang-Baxter equations. All matrices can
be diagonalized simultaneously.40,41 The total length of
a period is now 2L, where L is the length of the trap. It
is convenient to write the Bethe equations in a form sim-
ilar to Eqs. (4) by letting the indices j and α run from
−Np to Np and −M (l) to M (l), respectively.42,43 The
Bethe Ansatz equations for open boundary conditions
are then

exp
(

i2kjL
)

e
(

kj
)

=

M(1)
∏

β=−M(1)

e
(

kj − Λ
(1)
β

)

,

j = −Np, ..., Np (7)

e
[(

Λ(l)
α /2

)]

M(l−1)
∏

β=−M(l−1)

e
(

Λ(l)
α − Λ

(l−1)
β

)

×

M(l+1)
∏

β=−M(l+1)

e
(

Λ(l)
α − Λ

(l+1)
β

)

= −
[

e
(

Λ(l)
α

)

]2

M(l)
∏

β=−M(l)

e
[(

Λ(l)
α − Λ

(l)
β

)

/2
]

, α = −M (l), ...,M (l) ,

l = 1, · · · , 2S . (8)

Hence, there are twice as many rapidities and the box is
also twice as large, leaving the density of rapidities un-
changed. The main difference between open and periodic
boundary conditions are then the independent factors in
Eqs. (7) and (8), which contribute with 1/L terms to
the rapidity densities. This is very similar to the effect of
magnetic impurities in a chain. Also, for periodic bound-
ary conditions the Bethe states are plane waves, while for
open boundary conditions they are standing waves. The
energy and momentum are still given by Eq. (6). The
open boundary Bethe equations for the present model
were derived previously by Oelkers et al.44

C. Classification of states and energy potentials

For an attractive interaction and large L, the solutions
of the discrete Bethe equations can be classified accord-
ing to (i) real charge rapidities, belonging to the set {kj},
associated with unpaired propagating spin-polarized par-
ticles, (ii) complex spin and charge rapidities, which cor-
respond to bound states of particles with different spin
components, and (iii) strings of complex spin rapidities,
which represent bound spin states.23,25 States in class
(iii) are not represented in the ground state; these states
correspond to excited states and are not considered here.
This classification of states is completely analogous to
that of the Anderson impurity of arbitrary spin in the
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U → ∞ limit45 (see also Refs. 46–49) and the one-
dimensional degenerate supersymmetric t− J model.50

Since only particles with different spin components are
scattered, i.e. experience an effective attractive interac-
tion, we may build bound states of up to (2S + 1) parti-
cles. A bound state of n (n ≤ N = 2S + 1) is character-
ized by one real ξ(n−1) rapidity and in general complex
Λ(l) rapidities, l < n− 1, given by

Λ(l)
p = ξ(n−1) + ip|c|/2 , l ≤ n− 1 ≤ 2S ,

p = −(n− l − 1),−(n− l− 3), · · · , (n− l − 1) . (9)

These spin and charge strings form classes (i) and (ii),
which are present in the ground state.23 The real rapidi-
ties ξ(n−1) have all to be different and satisfy the Fermi-
Dirac statistics, i.e. the states are either occupied or
empty. (For S = 1/2 the bound states are frequently
called Cooper pairs, although this analogy is not rig-
orous.) In the ground state the rapidities are densely
distributed in the interval [−Bl, Bl] and we denote with
ε(l)(ξ), l = 0, 1, · · · , 2S, the dressed energy potentials (en-
tering the Fermi-Dirac distribution). The N = 2S + 1
energy potentials satisfy the following coupled linear in-
tegral equations24,25

ε(l)(ξ) = Dl(ξ)−
2S
∑

q=0

∫ Bq

−Bq

dξ′Klq(ξ − ξ′)ε(q)(ξ′), (10)

where the Dl(ξ) are the driving terms and Klq(ξ) the in-
tegration kernel. The kernel can be written in a compact
form24

Klq(ξ) =

∫

dω

2π
exp

[

iξω − (l + q − pl,q)|ωc|/2
]

× sinh
[

(pl,q + 1)ωc/2
] /

sinh(ωc/2), (11)

where pl,q = min(l, q)− δl,q. Note that Klq(ξ) = Kql(ξ).
The driving terms are given by24,25

Dl(ξ) = (l + 1)
[

ξ2 −
l(l+ 2)

12
c2 − µl

]

, (12)

where µl is the chemical potential for the bound states
involving (l+1) particles. The µl determine the integra-
tion limits Bl through the condition that ε(l)(±Bl) = 0,
since occupied states correspond to ε(l)(ξ) < 0 and for
empty states the quantity is positive. For a pure Zeeman
splitting we obtain

µl = µ+
2S − l

2
H . (13)

Here µ and H are the chemical potential and the Zeeman
splitting, playing the role of the Lagrange parameters for
the conservation of the total number of particles and the
magnetization.
In terms of

an(x) =
1

π

n|c|/2

x2 + n2c2/4
(14)

the kernel for S = 3/2 reduces to

K00 = 0 , K01 = a1 , K02 = a2 , K03 = a3 ,

K11 = a2 , K12 = a1 + a3 , K13 = a2 + a4 ,

K22 = a2 + a4 , K23 = a1 + a3 + a5 ,

K33 = a2 + a4 + a6 . (15)

Note that if all the ε(l) in Eq. (10) are rescaled to
ε(l)/c2, µ to µ/c2, H to H/c2, all Bl to Bl/|c| and ξ to
ξ/|c|, the equations are universal, i.e., independent of
the magnitude of |c|. Hence, within the framework of the
grand canonical ensemble, without loss of generality, it is
sufficient to present the results for |c| = 1. The problem
has then only two independent parameters, namely, H
and µ.
An ultra-cold atom system is inherently inhomoge-

neous since the diameter of the tube gradually changes
with position from the center of the trap to its bound-
aries. As a consequence of the changing diameter of the
tube, the quantization in the plane transversal to the
tube gradually changes the zero of energy. This change
can be represented by a harmonic potential, so that the
actual local chemical potential µ is a function of x given
by

µ(x) + 1
2mω2

hox
2 = const . (16)

Within the local density approximation, it is µ(x) that
enters the Bethe equations, (10)-(13). The solution is
then exact for the one-dimensional system, but approx-
imate for the trap. This approximation4,7,8 is expected
to be good since the variation of µ with x is slow. The
approximation neglects the quantization of the harmonic
confinement, which is treated classically and locally in-
corporated into the chemical potential.
Fluctuations in the particle density arise due to the

x-dependence of µ and due to possible weak Josephson
tunneling between tubes. It is then necessary to solve the
Bethe equations in the grand canonical ensemble rather
than for the canonical ensemble, i.e. at constant number
of particles. The results within the canonical ensemble
are not universal, because the constraint of fixed num-
ber of particles invalidates the scaling with |c| discussed
above. The above integral equations for S = 3/2 where
solved within the canonical ensemble in Ref. [26].

III. PHASE DIAGRAM FOR S = 3/2 FOR

ZEEMAN SPLITTING

In this section we discuss the phase diagram for a pure
Zeeman splitting of the levels for the case S = 3/2. The
set of equations (10)-(13) is solved numerically by itera-
tion. In this case, the energy potential ε(0) corresponds
to unpaired particles with spin-component Sz = 3/2;
the energy ε(1) to bound pairs with spin-components
Sz = 3/2 and Sz = 1/2; the potential ε(2) to bound
states of three particles of spin components Sz = 3/2,
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I
I+II

I+II+III

I+II+III+IV
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I+II+IV

FIG. 1: Ground state phase diagram µ vs. H for a homoge-
neous fermion gas of spin S = 3/2 with |c| = 1. The shaded
area corresponds to the empty system (no particles). The
Roman numbers denote the number of particles involved in
a bound state. Regions with more than one Roman number
are mixed phases with coexisting bound states. Note that in
the vertical axis µ is a function of x as given by Eq. (16).

Sz = 1/2 and Sz = −1/2, respectively; and finally ε(3)

to bound states of four particles all with different spin-
components. We denote these states with Roman num-
bers, I, II, III, and IV, respectively. These states can co-
exist in mixed phases, for example we denote with I+IV
the coexistence of unpaired and bound states of four par-
ticles and with I+II+III a phase where all states except
four-particle bound states are present.
The phase diagram of µ(x) vs. H for |c| = 1 and

S = 3/2 is shown in Fig. 1. Other values of |c| can
be reduced to this phase diagram by adequately scaling
µ and H . Note that all phase boundaries are given by
the zero of some energy potential. The phase bound-
aries are then crossover lines, which are accompanied
by a square-root singularity of one of the densities of
states (one-dimensional van Hove singularity) in analogy
to a Prokovskii-Talapov transition.51 For small magnetic
fields all particles are bound in four-particle bound states
(generalized Cooper pairs). The shaded area is the re-
gion where all bands are empty (system without parti-
cles). With increasing field other phases become realized.
At very large magnetic fields and/or for low values of µ
(small number of particles) the phase IV is not favor-
able. For large µ and intermediate magnetic fields all
four bands are populated and hence spin-polarized un-
bound particles coexist with all possible bound states.
This phase diagram can be compared to the one obtained
in Ref. [26] (Figs. 3 and 4) for fixed number of particles
(canonical ensemble). For a pure Zeeman splitting and
as a function of field these authors obtain crossovers from
phase IV to I+IV to I. A constant number of particles
corresponds to a curve µ(H) in Fig. 1. The strong inter-
action limit considered in Ref. [26] corresponds to a low
particle density. The sequence of phases we then expect

from Fig. 1 is also IV to I+IV to I, in agreement with
Ref. [26].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
H

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

IV

I I+II

I+II+III

I+II+III+IV

I+IV
I+II+IV

I+III+IV

FIG. 2: Expanded view of the ground state phase diagram
µ vs. H of Fig. 1 for a homogeneous fermion gas of spin
S = 3/2 with |c| = 1 to show the multiple phases for the low-
density region. The shaded area corresponds to the empty
system (no particles).

Fig. 2 shows the expanded view of the region for small
µ and H , which displays multiple crossovers. For larger
µ there is a small region where the phase I+III+IV is
stable. As mentioned above, the harmonic confinement
of the trap can be treated quasi-classically and can be
absorbed into the chemical potential via Eq. (16).52 The
chemical potential then decreases as we move from the
center of the trap towards the boundaries. Hence, we
move downward along a vertical line on the phase dia-
gram. This can give rise to phase separation along the
length of the trap. For instance, for H = 2 for a suffi-
ciently high density of atoms, at the center of the trap
the phase with all bound states coexisting (I+II+III+IV)
would be favored, then moving towards the end-points (in
either direction) of the trap first the four-particle bound
states disappear (phase I+II+III), then the bound states
of three particles (phase III) are depopulated and polar-
ized unbound particles coexist with bound pairs (phase
I+II), and finally a fully polarized gas phase (I) is possi-
ble. For H = 1, on the other hand, we again could have
the I+II+III+IV phase at the center of the trap and by
moving to the boundaries we would observe the I+II+IV
mixed phase, then the I+IV phase and finally unbound
fully polarized atoms (I).
The local density profile as a function of x for the dif-

ferent phases for H = 1.5 is displayed in Fig. 3, where
Eq. (16) was used to parametrize the chemical poten-
tial in a trap of length L. Given µ(0) and µ(L/2), i.e.
the chemical potential at the center and boundary of the
trap, the position along the trap is given by (from Eq.
(16))

x/(L/2) =
√

[µ(x)− µ(0)]/[µ(L/2)− µ(0)] . (17)
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x/(L/2)
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I

+III

n
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n
0

n
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n
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N
t
/5

M/2
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N/5

FIG. 3: (color online) Density profile within the local density
approximation for H = 1.5, µ(0) = −0.7, µ(L/2) = −2.0
and S = 3/2. The position along the trap is given by Eq.
(17). The three crossovers between phases are shown by the
thin vertical lines. The densities nq of bound states of q + 1
particles (or polarized unbound particles if q = 0) are given
by the solid (n3), dashed (n2), dotted (n1) and dash-dotted
(n0) curves. The density of the total number of particles Nt

(red curve) and the magnetization density M (blue curve) as
a function of x are also shown. Note that the scales of Nt and
M are reduced by a factor of 5 and 2, respectively.

The density function of the rapidities is obtained from
the dressed energies ε(q)(ξ) by differentiation with respect
to µ, i.e.,24,25

ρ
(q)
h (ξ) + ρ(q)(ξ) = −

1

2π

∂ε(q)(ξ)

∂µ
, (18)

where ρ(q)(ξ) is the particle density and ρ
(q)
h (ξ) the cor-

responding hole density for bound states involving q + 1
particles. The integral equations satisfied by the den-
sity functions are similar to the ones for the dressed en-
ergy potentials, i.e. the integration kernel and the in-
tegration limits are the same, but the driving terms are
Dl = (l+1)/(2π).21 After solving these equations numer-
ically, the number of bound states (or polarized unbound
particles if q = 0) per unit length are obtained from

nq =

∫ Bq

−Bq

dξρ(q)(ξ) , (19)

Note that as a function of µ the densities vanish with
a square-root singularity that is characteristic of one-
dimensional van Hove singularities as can be seen in Fig.
3. The density of the total number of particles is given by

Nt =
∑2S

q=0(q + 1)nq and the magnetization density by

M = (1/2)
∑2S

q=0(q + 1)(2S − q)nq. Both quantities are

displayed in Fig. 3 (red and blue curves, respectively) for
the phase separation along the trap. They also show the
square root singularities, consequences of the van Hove
singularities in the densities, as a function of µ each time
there is a level crossing.
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FIG. 4: (color online) Density of total number of particles Nt

(dashed) and the magnetization density M (solid) for S = 3/2
as a function of magnetic field for three values of µ: µ =
−0.5 (black), µ = −1.0 (red) and µ = −1.5 (blue). At the
crossovers from one phase to another a van Hove singularity
is seen in both Nt and M . The onset of the magnetization is
proportional to (H−HC)

1/2 with the critical field depending
on µ. This is seen in the inset whereM2 is plotted vs. H−HC ,
yielding a straight line in all three cases.

The density of the total number of particles Nt and
the magnetization density M as a function of magnetic
field for S = 3/2 and three values of µ is shown in Fig.
4. Every level crossing is accompanied by a square root
dependence due to the one-dimensional van Hove singu-
larity in the density of states. The onset of the magne-
tization is at a critical field HC that depends on µ. In
the inset of Fig. 4 we plot M2 vs. H −HC , which fol-
lows a straight line, proving the square root dependence
of the magnetization. We can then conclude that the
transitions are level crossings, consequence of a band be-
ing emptied, and independent on how the transition is
crossed (along µ or H or any straight line µ = aH + b)
it will give rise to a square root singularity in the den-
sity of states. These transitions are level crossings of the
Prokovskii-Talapov type.51 These conclusions are valid
within the grand canonical ensemble and a consequence
that the dressed energy potentials are all quadratic in the
rapidity.

IV. PHASE DIAGRAM FOR SPIN S = 5/2, 7/2
AND 9/2

In this section we extend the solution of Eqs. (10)-(13)
to spins larger than 3/2. The procedure is quite similar
to that of S = 3/2, but the numerical effort grows rapidly
with N , since there are now N dressed energy potentials
coupled by the system of integral equations. The number
of possible phases, especially the mixed phases, also in-
creases rapidly with N . The phases are again denoted by
Roman letters and the empty phases (no particles) is de-
noted by 0. The results are shown in Figs. 5 (S = 5/2),
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FIG. 5: Ground state phase diagram µ vs. H for a homoge-
neous fermion gas of spin S = 5/2 with |c| = 1. The empty
system (no particles) in the lower left corner is denoted with
0. The Roman numbers denote the number of particles in-
volved in a bound state. Regions with more than one Roman
number are mixed phases with coexisting bound states. Note
that in the vertical axis µ is a function of x as given by Eq.
(16).

6 (S = 7/2) and 7 (S = 9/2).

Several common trends emerge by comparing Figs. 2
and 5-7. There are 2S nearly parallel boundary lines
starting almost vertically at the top of the phase dia-
gram, which then have a curvature to the right and leave
the panels either at the bottom right or the right side.
These curves correspond to the zeroes of the dressed en-
ergy potentials ε(l) for l = 0, · · · , 2S − 1, i.e. the states
that are magnetic field dependent. The zero of ε(2S),
which corresponds to bound states of N particles and is
nonmagnetic, is the almost horizontal curve starting at
the left and leaving the panel at the right. This curve di-
vides the phase diagrams into two parts, namely, below
that curve there are no clusters of N particles and above
these clusters are always present.

At small fields, the system either has no particles (be-
low the ε(2S) = 0 line) or only bound states of N parti-
cles (above that line). With increasing field then first
unpaired particles (spin-component Sz = S) emerge,
then paired particles (spin-components Sz = S and
Sz = S− 1) coexisting with unpaired particles (and clus-
ters of N particles if above the ε(2S) = 0 line), this is fol-
lowed by the addition of bound states of three particles,
etc. This pattern is only changed above the ε(2S) = 0
line when many bound states coexist, due to several line
crossings. In the upper right corner of the phase dia-
grams a phase with all bound states coexisting is stable.
This pattern of the phase diagrams found for S ≤ 9/2 is
not expected to change for spins larger than 9/2.
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FIG. 6: Ground state phase diagram µ vs. H for a homoge-
neous fermion gas of spin S = 7/2 with |c| = 1. The empty
system (no particles) in the lower left corner is denoted with
0. The Roman numbers denote the number of particles in-
volved in a bound state. Regions with more than one Ro-
man number are mixed phases with coexisting bound states.
For instance, the notation I-VI is a short-hand notation for
I+II+III+IV+V+VI, in which the phases from I to VI coex-
ist. Note that in the vertical axis µ is a function of x as given
by Eq. (16).

V. PHASE DIAGRAM FOR S = 3/2 WITH

ZEEMAN AND QUADRUPOLAR SPLITTING

For S > 1/2 level splittings other than the Zeeman
effect are possible. Here we consider a quadrupolar split-
ting superimposed with the Zeeman effect. Nonlinear
Zeeman splittings have been considered previously26,33 in
similar contexts. In particular, in Ref. [26] Bethe ansatz

equations for the same model but a fixed number of par-
ticles (canonical ensemble) were employed, while in the
present paper we consider the grand canonical ensemble
(variable number of particles). For S = 3/2 the Zeeman
and quadrupolar splittings are not the most general case,
since also octupolar splittings are possible. It is not clear
if such a situation (quadrupolar and octupolar splittings)
can be realized experimentally for ultracold atoms in 1D,
but the problem is theoretically sufficiently interesting to
be addressed.
The Hamiltonian for the level splitting is given by

Hspl = −HSz +D[3S2
z − S(S + 1)] , (20)

where D can be either positive or negative. To be spe-
cific we consider again the case S = 3/2. Note that the
Hamiltonian (1) commutes with Hspl, so that the Bethe
states also diagonalize H+Hspl. Keeping D fixed and as
a function of H , Hspl displays two level crossings; hence,
we need to consider three regions, namely, Region (i)
(H ≤ 3|D|), Region (ii) (3|D| ≤ H ≤ 6|D|) and Region
(iii) (6|D| ≤ H). For D > 0 the bound states I, II, III
and IV are then composed by particles with the following
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FIG. 7: Ground state phase diagram µ vs. H for a homoge-
neous fermion gas of spin S = 9/2 with |c| = 1. The empty
system (no particles) in the lower left corner is denoted with
0. The Roman numbers denote the number of particles in-
volved in a bound state. Regions with more than one Ro-
man number are mixed phases with coexisting bound states.
For instance, the notation I-VI is a short-hand notation for
I+II+III+IV+V+VI, in which the phases from I to VI coex-
ist. Note that in the vertical axis µ is a function of x as given
by Eq. (16).

Sz components: In Region (i), (1/2), (1/2,-1/2), (1/2,-
1/2,3/2), and (1/2,-1/2,3/2,-3/2), respectively; in Region
(ii), (1/2), (1/2,3/2), (1/2,3/2,-1/2), and (1/2,3/2,-1/2,-
3/2), respectively; and in Region (iii), (3/2), (3/2,1/2),
(3/2,1/2,-1/2), and (3/2,1/2,-1/2,-3/2), respectively. Re-
gion (iii) is then similar to the case of a pure Zeeman
splitting. Hence, at the crossovers the character of the
bound states changes. The corresponding chemical po-
tentials µi in Eqs. (10)-(13) are then

Region (i) (H ≤ 3D)
µ0 = µ+ 3D + 3H/2, µ1 = µ+ 3D
µ2 = µ+D +H/6, µ3 = µ

Region (ii) (3D ≤ H ≤ 6D)
µ0 = µ+ 3D + 3H/2, µ1 = µ+H
µ2 = µ+D +H/6, µ3 = µ

Region (iii) (6D ≤ H)
µ0 = µ+ 3D + 3H/2, µ1 = µ+H
µ2 = µ−D +H/2, µ3 = µ .

Similarly one can obtain the chemical potentials for D <
0. The procedure is completely analogous to that used
for magnetic impurities (degenerate Anderson model in
the U → ∞ limit with Zeeman and crystalline field
splittings).49

The phase diagram for D = 1/3 and D = −1/3 is
shown in Figs. 8 and 9, respectively. For these pa-
rameters the level crossings are at H = 1 and H = 2.
The level crossings stabilize the I+III+IV and I+II+IV
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FIG. 8: Ground state phase diagram µ vs. H for a homo-
geneous fermion gas of spin S = 3/2 with |c| = 1 and a
quadrupolar splitting D[3S2

z − S(S + 1)] for D = 1/3. The
shaded area corresponds to the empty system (no particles).
Level crossings of the Zeeman and quadrupolar terms occur
at H = 3D and H = 6D.
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FIG. 9: Ground state phase diagram µ vs. H for a homo-
geneous fermion gas of spin S = 3/2 with |c| = 1 and a
quadrupolar splitting D[3S2

z − S(S + 1)] for D = −1/3. The
shaded area corresponds to the empty system (no particles).
Level crossings of the Zeeman and quadrupolar terms occur
at H = 3|D| and H = 6|D|.

(II+III+IV) mixed phases over the I+II+III+IV mixed
phase. As discussed above, the phase I+III+IV for
H ≥ 1 involves different condensates than for H ≤ 1.
All phase boundaries are the consequence of one of the
four rapidity bands getting empty and, hence, a tran-
sition involves a one-dimensional van Hove singularity
with the corresponding consequences on the density of
states and low-T specific heat. For small magnetic fields
the phase is a mixture of two-particle and four-particle
bound states. For larger fields H , the four-particle bound
states are only favorable if the density of particles is high
enough. Also for intermediate magnetic fields the phase
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diagram for D > 0 is very different from that of D < 0.

VI. CONCLUSIONS

We studied an ultracold gas of fermionic atoms with an
attractive contact potential by solving the corresponding
Bethe ansatz equations. We obtained the phase diagram
for S = 3/2, 5/2, 7/2 and 9/2 in a magnetic field (µ vs.
H) within the grand canonical ensemble. For S = 3/2
four elementary states can occur: (i) polarized unbound
atoms with spin-component Sz = 3/2, (ii) bound pairs
of atoms with spin-components Sz = 3/2 and Sz = 1/2,
(iii) bound states of three particles with spin-components
Sz = 3/2, Sz = 1/2 and Sz = −1/2, and (iv) bound
states of four particles, one with each spin-component.
For a general S there are N = 2S + 1 such elemen-
tary states. Mixed phases of different classes of bound
states dominate the phase diagram. For a given chem-
ical potential the phases are homogeneous and display
no long-range order. The transitions between phases are
crossovers of the Prokovskii-Talapov type.51

There are several advantages of working in the grand-
canonical ensemble vs. the canonical ensemble,26 where
the number of particles is kept fixed. (1) By rescaling all
quantities in the integral equations for the dressed energy
potentials, ε(q), with the interaction strength |c|, one ob-
tains universal equations for the phase diagram µ vs. H .
Our phase diagram shown in Figs. 1, 2 and 5-7 is then
valid for all attractive |c|. This is not the case if the total
number of particles is kept fixed. (2) From the general
trends for S ≤ 9/2 we can draw conclusions of the µ vs.
H phase diagram valid for all spins. (3) Since the diame-
ter of the tube gradually changes with position from the
center of the trap to its boundaries, the effective local
chemical potential varies along the tube. Within the lo-
cal density approximation this change can be represented
by a harmonic potential and as a consequence of the x-
dependence of µ there is an inherent tendency of phase
separation,4 i.e. the trap is inhomogeneous. At different
positions of the trap then different phases may be realized
and a sequence of transitions should be observed along
the trap. (4) Josephson tunneling between tubes and in-
teractions between particles in different tubes,17,36 may
give rise to a dimensional crossover from one-dimension
to a higher dimension. This gives rise to long-range or-
der of quantities that are generalizations of Cooper pairs
for S = 1/2 to higher spin. The system remains strongly
anisotropic and pure (there are almost no impurities) and
is hence favorable for inhomogeneities like modulations of
the order parameter of the FFLO type in the presence of
an external magnetic field.
For S = 3/2 we also investigated the interesting situ-

ation of a quadrupolar splitting superimposed with the
Zeeman field. In this case, the spin energy levels dis-
play two crossovers as a function of the magnetic field.
Hence, the character of the bound states before and af-
ter the crossover changes. In general bound states of four

particles are not favorable for low particle density or high
magnetic fields.
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