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We investigate theoretically the equilibrium transverse charge and spin currents flowing in a
hybrid Josephson junction composed of two triplet p-wave superconductors and a Rashba spin-orbit
coupling (RSOC) layer in between. Through a symmetry analysis, we show that the transverse
currents originate from the breaking of mirror symmetries due to the misalignment of d-vectors
in the two triplet superconductor leads. Besides, the mirror symmetries strongly constrain the
dependence of the transverse currents on both the absolute and relative angles of the d-vectors.
The symmetry analysis is confirmed by the numerical calculations based on the lattice Matsubara
Green’s function method. The dependence of the transverse currents on the RSOC strength as
well as the middle layer length is also addressed. These findings shed new light on the equilibrium
spintronics device design and are useful for identifying the order parameter symmetries of p-wave
superconductors.
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I. INTRODUCTION

Transverse transports, such as charge and spin Hall
currents, have been intensively studied in the multiple
terminal semiconductors and metals. When a Zeeman
field is applied on a cross section, a transverse charge
voltage/current can be induced by a longitudinal current,
which is the famous Hall effect (HE)1. Another remark-
able phenomenon, either intrinsic or extrinsic spin Hall
effect (SHE)2–6, has been discussed extensively in litera-
tures. A spin Hall effect is referred to as a transverse pure
spin current generated by a longitudinal charge current
in a spin-orbit coupling media. To realize HE or SHE,
however, a longitudinal voltage bias or spin injection is
needed, i.e., both HE and SHE work at a nonequilibrium
state. Naturally, a question rises: can we observe equilib-
rium transverse currents in some systems driven by other
than the electric field or spin injection?

Among the equilibrium systems, stationary Joseph-
son junction7,8 is a promising choice. Actually, Joseph-
son junctions with Zeeman field and/or SOC have been
intensively investigated and many novel phenomena9–16

have been reported, such as Josephson π-junction9–11 and
anomalous Josephson effect12,13. However, those stud-
ies had only concentrated on the longitudinal transport
properties. Recently, some efforts were dedicated to the
transverse transport behaviors. Mal’shukov el at17 pre-
dicted a out-of-plane spin Hall polarization at the lat-
eral edges of Josephson junction with a SOC in between.
In their later study18, an inverse SHE was further pre-
dicted when an inhomogeneous Zeeman field is applied
on the system in addition to the SOC. However, no ex-
plicit transverse charge/spin current was found in their
system where only the singlet s-wave superconductor was
considered in the superconducting leads.

Compared with the singlet s-wave superconductor, the

triplet superconductor (TS), demonstrated in numer-
ous experiments19,20, has attracted increasing interest in
the field of superconducting junctions and many pecu-
liar transport properties have been predicted in the TS
junctions21–29. Those novel properties, such as the spin
current24–27 and accumulation27–29, are due to the subtle
spin structure of the TS pair potential, characterized by
the d-vector, along which the spin projection of triplet
pair is zero30. Therefore, the TS junction with RSOC
ignites the new possibility of generating the transverse
currents in the equilibrium systems.
In this work, we study a px -wave TS Josephson junc-

tion with a Rashba SOC (RSOC) layer in between and
focus on the transverse charge and spin currents. Based
on a symmetry analysis, it is found that both equilib-
rium transverse charge and spin currents are forbidden
by some mirror symmetries existing at certain special
orientations of two d-vectors in the TS leads. Apart
from those special orientations, the transverse currents
are possible. The symmetry analysis are numerically con-
firmed with the help of lattice Green’s function method.
The effects of the RSOC strength and the length of RSOC
layer are also numerically studied.
This paper is organized in the following way. In Sec.

II, we introduce the model and present the formulae to
calculate transverse charge current and spin current. In
Sec. III, we employ several mirror transformations to
illustrate the origin of transverse currents. In Sec. IV, we
discuss the numerical results of the paper. A conclusion
is drawn in the last section.

II. MODEL AND FORMALISM

Let us consider a schematic px-wave TS/RSOC/px-
wave TS (px/RSOC/px) junction in a square lattice, as
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shown in Fig. 1. The length of the RSOC layer is set
as La and the width of junction is Wa, where a is the
lattice constant. A lattice site is denoted by a vector
r = lax + way, where ax and ay are the basis vectors
in the x and y directions, respectively. The RSOC layer
bridges two TS leads from l = −L/2 to l = L/2. Both
d-vectors in the left and right TS lead, dL and dR, are
in the yz plane, parameterized by an azimuthal angle θL
and θR with respect to the z axis. θL,R varies from 0 to
2π and −θL,R is equivalent to 2π − θL,R. Throughout
this paper, we assume the periodic boundary condition
in the y direction and thus the transverse momentum ky
is a good quantum number.

FIG. 1: Schematic of the px/RSOC/px junction. The lattice
is in the xy plane. The two TS are connected through a RSOC
layer residing from l = −L/2 to l = L/2. dL,R in the yz plane
has an angle θL,R with the z axis. The absolute(relative) angle
is defined as θa(θb)= (θL ± θR) /2.

The following mean-field Hamiltonian in a lattice ver-
sion is employed to describe the system

H = −t
∑

lσ,ky

c†lσ,ky

cl±1σ,ky
+

∑

lσ,ky

[

εl,ky
− µ

]

c†lσ,ky

clσ,ky

+
∑

lσ,ky

∑

l′σ′

hlσ,l′σ′c†lσ,ky
cl′σ′,ky

−
∑

lσ,ky

∑

l′σ′

[

∆lσ,l′σ′c†lσ,ky
c†l′σ′,ky

+ h.c.
]

, (1)

where c†lσ,ky
(clσ,ky

) is the creation (annihilation) operator

of an electron in column l with spin σ (= ↑ or ↓) and
transverse momentum ky. The on-site energy εl,ky

has
the form 4t − 2t cos (kya) + Vl, where Vl is the on-site
potential. Vl except at interface is set to be zero (i.e.
Vl = 0, for l 6= −L/2 − 1 or L/2 + 1), while Vl at the
interface (i.e. l = −L/2 − 1 and L/2 + 1) is set to be
VB to simulate a barrier. The Fermi energy µ and the
nearest-neighbor hopping integral t are assumed to be the
same in the TS leads and the RSOC layer. Throughout
this paper, we fix µ = 2t. The Rashba spin-orbit coupling
hlσ,l′σ′ and the pair potential ∆lσ,l′σ′ in the spin space

respectively reads

h̆ll′ = tsoσx sin (kya) δl,l′ ± itsoσyδl±1,l′/2, (2)

∆̆ll′ = ∆(T ) eiϕ × (±d · σ̂σyδl±1,l′/2) , (3)

where tso denotes the RSOC strength, ϕ is the supercon-
ducting phase, and ∆ (T ) is the BCS gap function. d is
a unit vector. σi with i = x, y, z are the Pauli matrices.
For simplicity, the pair potentials in the two TS leads are
set to be equal in amplitude ∆ (T = 0) = ∆.
In the RSOC region, the charge operator in column l

with transverse momentum ky is defined as

ρ̂l,ky
= ec̃†l,ky

σ0c̃l,ky
, (4)

where c̃l,ky
=

[

cl↑,ky
(t̄) , cl↓,ky

(t̄)
]T

, and σ0 is the unit
matrix, and t̄ is the time. By using the Heisenberg equa-
tion i~∂t̄ρ̂ = [ρ̂, H ], the operator of transverse charge
current is found. Then we can construct the the Matsub-
ara Green’s function for calculating the transverse charge
current iy in column l as follows

iy (l) =
vf
W

∑

ky

[sin (kya) ρ (l, ky) + cos (kya) ρx (l, ky)] ,

(5)

ρ (l, ky) =
e

β

∑

n

Tr

[

σ0 0
0 σ0

]

Ǧωn
(l, l; ky) , (6)

ρx (l, ky) =
etso
2βt

∑

n

Tr

[

σx 0
0 σ∗

x

]

Ǧωn
(l, l; ky) . (7)

where ρ (l, ky) is the charge originating only from the
hopping energy t while ρx (l, ky) is due to the nonzero
RSOC tso and sharing the similar form as the x-polarized
spin32; vf = 2at/~ is the Fermi velocity in the y direction
at µ = 2t, 1/β = kBT , and ωn = (2n+ 1)kBT with kB
the Boltzmanm constant; Ǧωn

(l, l; ky) is the Matsubara
Green’s function for mode ky in the Nambu and spin
spaces. The Matsubara Green’s function is worked out

by the Dyson equation Ǧωn
=

[

iωn −Hc − ΣL − ΣR
]−1

,
where Hc is the interaction matrix of the lattice sites in
the same column. ΣL and ΣR are the self-energies of
the left and right TS leads, respectively, which can be
obtained by the recursive Green’s function method31.
By defining the spin operator as

ŝl,ky
= (~/2) c̃†l,ky

σ̂c̃l,ky
(8)

and following the same procedure as deriving iy, we can
also obtain the out-of-plane transverse spin current jzy ,
which is given by

jzy (l) =
vf
W

∑

ky

sin (kya) sz (l, ky) , (9)

sz (l, ky) =
~tso
4βt

∑

n

Tr

[

σz 0
0 σ∗

z

]

Ǧωn
(l, l; ky) , (10)
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where sz (l, ky) denotes the z-polarized spin in column l
with mode ky.
The notation of the transverse current Iy(J

z
y ) used in

Sec. IV is the average of iy(j
z
y ) from column l = −L/2−1

to L/2 + 1. Note that the transverse currents should
decay into the two TS leads and the contribution there
is not considered. In numerical calculations, all currents
have been divided by the lattice constant a, thus they
actually have the unit of ‘current density’. However, we
still use the term ‘current’ for simplicity. Moreover, a
large W is chosen to ensure the results independent of
the width.

III. SYMMETRY ANALYSIS

Before presenting the numerical results of the trans-
verse currents, it is instructive to analyze our junction
based on certain symmetry arguments, because any cur-
rent flowing in the system is coming from some broken
symmetry, e.g., the supercurrent originates from the bro-
ken longitudinal mirror symmetry. Similarly, the trans-
verse currents should also stem from certain broken sym-
metries, and the symmetry analysis can thus offer a deep
insight into their origins. In what follows, the mirror
symmetries are found to exist at some special θL,R, where
the transverse currents are forbidden.
Let us start with the mirror transformation perpen-

dicular to the xz plane, denoted by the operator My. It

transforms the creation operator as Myc
†
lα,ky

= c†lβ,−ky
,

where α and β label the spin orientations and these
spin indices should fulfil the condition that My conserves
(flips) the y- (x- and z-) component spin32,33. When dL

and dR are collinear with the z-axis, that is, θL,R = nπ
(n integer), the junction owns the My symmetry

MyH (φ, θL, θR)M
†
y = H (φ, θL, θR) , (11)

where H (φ, θL, θR) is the Hamiltonian described in Eq. 1
and φ is the superconducting phase difference. As theMy

transformation reverses the quantities: ky and sx,z, the
My symmetry leads to the following relations

ρ (l, ky) = ρ
(

l, k̄y
)

, sx (l, ky) = s̄x
(

l, k̄y
)

sy (l, ky) = sy
(

l, k̄y
)

, sz (l, ky) = s̄z
(

l, k̄y
)

, (12)

where ‘
−
· · ·’ denotes negative for compactness. Based on

the current-density equations in Eq. 5 and Eq. 9, it
follows that the ±ky modes contribute oppositely and
equally to iy and jzy , respectively. Therefore, iy is forbid-
den but jzy is allowed.
We can also perform another mirror transformation

over the yz plane, which is denoted by the operator Mx.

Under this transformation, one can obtain Mxc
†
lγ,ky

=

c†−lλ,ky
. Here γ and λ are parallel (anti-parallel) when

they denote the x- (y- and z-) component spins. When

dL and dR are collinear, that is, θL = θR + nπ, Mx

transforms the junction as follows

MxH (φ, θL, θR)M
†
x = H

(

φ̄, θL, θR
)

. (13)

Considering that the time-reversal symmetry exists in the
junction except for an opposite φ

T H
(

φ̄, θL, θR
)

T † = H (φ, θL, θR) , (14)

the junction has the quasi-Mx symmetry

T MxH (φ, θL, θR)M
†
xT

† = H (φ, θL, θR) , (15)

where the ‘quasi ’ means the system possessing aMx sym-
metry requiring a time-reversal transformation T . For
the Mx transformation changes the signs of l and sy,z,
and the T transformation reverses ky and sx,y,z

29, the
quasi-Mx symmetry gives rise to

ρ (l, ky) = ρ
(

l̄, k̄y
)

, sx (l, ky) = s̄x
(

l̄, k̄y
)

sy (l, ky) = sy
(

l̄, k̄y
)

, sz (l, ky) = sz
(

l̄, k̄y
)

. (16)

Through Eq. 5 and Eq. 9, it is under the quasi-Mx sym-
metry that both iy and jzy are odd functions of l and their
average values, Iy and Jz

y , are forbidden.
Then we consider the combined transformation of Mx

and My, denoted by Ixy, which is actually the space in-
version in the xy plane. When dL and dR are symmetric
about the y- or z-axis, that is, θL+θR = nπ, the junction
possesses the quasi-Ixy symmetry

T IxyH (φ, θL, θR) I
†
xyT

† = H (φ, θL, θR) . (17)

As the Ixy transformation alters the signs of l, ky and
sx,y, and the T transformation reverses ky and sx,y,z,
the quasi-Ixy symmetry results in

ρ (l, ky) = ρ
(

l̄, ky
)

, sx (l, ky) = sx
(

l̄, ky
)

sy (l, ky) = sy
(

l̄, ky
)

, sz (l, ky) = s̄z
(

l̄, ky
)

. (18)

Again, based on Eq. 5 and Eq. 9, it is under the quasi-Ixy
symmetry that iy should be an even function of l while
jzy the odd function. Therefore, Jz

y is forbidden but Iy is
allowed.
The mirror symmetries can be seen clearly by plotting

iy and jzy versus l for several θL,R, as shown in Fig. 2
and Fig. 3, respectively. As a result of the My symme-
try, iy is zero in the whole RSOC layer at (θL = 0, θR =
0). The quasi-Mx symmetry is manifested by the anti-
symmetric distribution of iy at (0.3π, 0.3π) and jzy at
(0, 0), (0.3π, 0.3π). Due to the quasi-Ixy symmetry, iy
and jzy distribute symmetrically and anti-symmetrically
at (0.3π,−0.3π), respectively. At (0.3π, 0), no symme-
try holds and both Iy and Jz

y are non-zero. For the s-
wave/RSOC/s-wave (s/RSOC/s) junction, those three
symmetries, due to the isotropic s-wave pair potential,
always hold and there is no iy, Iy or Jz

y but jzy .
Apart from those special θL,R, the mirror symmetries

are broken and thus the transverse currents appear. How-
ever, the dependence of Iy(θL,R) and Jz

y (θL,R) on θL,R
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FIG. 2: Transverse charge current iy versus column index l
for several θL,R in the px/RSOC/px junction. Here L = 20,
T = 0.1Tc, ∆ = 0.01t , tso = 0.05t and φ = 0.3π. The line
θL = 0.3π, θR = −0.3π(0) is shift upward along the vertical
axis by 338.6(131.9) units.
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FIG. 3: Out-of-plane transverse spin current jzy versus column
index l for several θL,R in the px/RSOC/px junction. Here
L = 20, T = 0.1Tc, ∆ = 0.01t , tso = 0.05t and φ = 0.1π.
The line (θL = 0, θR = 0) is multiplied by 10.

is strongly constrained by the mirror symmetries. It is
easy to verify

T MxH [φ, θa, θb]M
†
xT

† = H
[

φ, θa, θ̄b
]

, (19)

where the Hamiltonian is reparameterized by the new
angles θa = (θL + θR) /2 and θb = (θL − θR) /2. It shows
that the junction with [θa, θb] is the quasi-mirror image of
the one with

[

θa, θ̄b
]

and thus they should have opposite
Iy and Jz

y . In other words, Iy and Jz
y are odd functions

of θb. It is also found

T IxyH [φ, θa, θb] I
†
xyT

† = H
[

φ, θ̄a + nπ, θb
]

, (20)

from which it follows that the two junctions with [θa, θb]
and

[

θ̄a + nπ, θb
]

should have the equal(opposite) Iy(J
z
y ),

that is, Iy(J
z
y ) is symmetric (anti-symmetric) about θa =

nπ/2.

IV. RESULTS AND DISCUSSION

In the numerical calculations, we only focus on the av-
erage transverse currents. As Iy and Jz

y originate from the
broken mirror symmetries, care must be taken to avoid
those special θL,R when plotting current-phase relations
such as Iy(φ) and Jz

y (φ), as shown in Fig. 4. Here L = 20,
T = 0.1Tc, ∆ = 0.01t, tso = 0.05t, and θL = 0.3π are
set. It shows that both Iy and Jz

y oscillate with φ with
a period of 2π and vanish at θR = 0.3π = θL, where
the junction has the quasi-Mx symmetry. These results
are very different from the vanishing Iy and Jz

y in the

s/RSOC/s junction17, which possesses the My, quasi-
Mx, and quasi-Ixy symmetries simultaneously. There-
fore, the non-special orientation of dL,R in the TS leads
is a crucial ingredient to break the mirror symmetries
and induce the transverse currents. Moreover, due to
the constraint of the time-reversal symmetry29, Iy and
Jz
y are odd and even functions of φ, respectively.
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FIG. 4: The average transverse currents versus phase differ-
ence φ for several θR of the px/RSOC/px junction. (a) charge
current Iy; (b) out-of-plane spin current Jz

y . Here L = 20,
T = 0.1Tc, ∆ = 0.01t , tso = 0.05t and θL = 0.3π.

Next we show the dependence of Iy and Jz
y on the ori-

entation of dL,R, the RSOC strength, and the length of
the RSOC layer. Due to the constraint of the quasi-Mx

symmetry, both Iy and Jz
y are odd functions of θb, as

shown in Fig. 5. Meanwhile, because of the constraint of
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the quasi-Ixy symmetry, Iy and Jz
y are respectively sym-

metric and anti-symmetric about θa = nπ/2, as shown
in Fig. 6. Note that the nodal points of Jz

y at θa = nπ/2
in Fig. 6(b) are manifestations of the quasi-Ixy symme-
try. As shown, the above numerical results are exactly
consistent with the symmetry analysis in the last section.

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0
-4

-2

0

2

I Y
[e
v f

f
]

 a

 a

 a

 a

(a)

JZ Y
[v

f
f

]

b

(b)

FIG. 5: The avarage transverse currents versus relative an-
gle θb(2θb) for several absolute angles θa of the px/RSOC/px
junction. (a) Iy, φ = 0.3π; (b) Jz

y , φ = 0.1π. Here L = 20,
T = 0.1Tc, ∆ = 0.01t and tso = 0.05t. θa(θb) = (θL ± θR) /2.
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FIG. 6: The avarage transverse currents versus absolute angle
θa for several relative angles θb of the px/RSOC/px junction.
(a) Iy, φ = 0.3π; (b) Jz

y , φ = 0.1π. Here L = 20, T = 0.1Tc,
∆ = 0.01t and tso = 0.05t. θa(θb) = (θL ± θR) /2.

In Fig. 7 and Fig. 8, we present Iy and Jz
y with the

variations of the RSOC strength tso and the length L of
the RSOC layer, respectively. It is found that both Iy and
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FIG. 7: The average transverse currents versus RSOC
strength tso for several phase differences φ of the px/RSOC/px
junction. (a) Iy and (b) Jz

y . Here L = 20, T = 0.1Tc,
∆ = 0.01t , θL = 0.3π and θR = 0.
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FIG. 8: The average transverse currents versus the length
L of the RSOC layer for several phase differences φ of the
px/RSOC/px junction. (a) Iy and (b) Jz

y . Here T = 0.1Tc,
∆ = 0.01t , tso = 0.05t, θL = 0.3π and θR = 0.

Jz
y oscillate and change their signs as tso and L increase,

and at larger tso and L, the transverse currents tend to
vanish. When tso and L increase, the correlation between
the two TS leads is weakened and the transverse currents
decrease. Meanwhile, it is also seen that the directions
of Iy and Jz

y can be reversed by either L or tso, which is
coming from the fact that TS Cooper pairs traveling in
the RSOC layer obtain a spin precession phase34 tso ∗La.
Therefore, the transverse currents should oscillate and
damp with L or tso.
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Although we have focused on the TS/RSOC/TS junc-
tion with only px symmetry considered, our symmetry
analysis is also applicable to other types of TS/RSOC/TS
junctions with time reversal symmetry. One example is
the py/RSOC/py junction, where both dL and dR are
in the xz plane. The My symmetry is spontaneously
conserved and thus iy (also Iy) is forbidden. Mean-
while, the quasi-Ixy symmetry only holds at θL,R = nπ
where Jz

y is forbidden. Moreover, Jz
y is also forbid-

den at θL + θR = nπ, where the junction owns the
quasi-Mx symmetry. Another example is with dL,R ∼
kxy − kyx, which possesses those three mirror symme-
tries simultaneously. Therefore, there is no iy but the
anti-symmetrically distributed jzy . These qualitative re-
sults are also numerically confirmed but not shown here.
For dL,R ∼ (kx + iky)z

20, the time-reversal symmetry
is broken and the symmetry analysis above is invalid,
but the numerical results show the anti-symmetrically
distributed iy and jzy . Moreover, through out this paper,
the electric field affecting the RSOC, tso (k × σ) ·e, is as-
sumed normal to the xy plane and the electron motions
are also confined in the xy plane. For other orientation
of e, our symmetry analysis is also applicable.

V. CONCLUSION

In summary, we have investigated the possible charge
and spin Hall currents flowing in a px/RSOC/px hybrid
junction. It is shown that the breaking of mirror symme-
tries of the junction due to some non-special orientations
of two d-vectors can induce transverse currents, which
are sensitive to both the absolute and relative angles of
the d-vectors. Moreover, the symmetry analysis here is
also applicable to other types of Josephson junction, such
as the s/RSOC/s junction and TS/RSOC/TS junction
with time-reversal symmetry. These findings shed new
light on the equilibrium spintronic device design and are
useful for identifying p-wave superconductor.
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