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Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics
calculations and Landauer theory. The phonons transmit thermal energy across the vacuum gap via
atomic interactions between the leads. Because the incident phonons do not encounter a classically
impenetrable potential barrier, this mechanism is not a tunneling phenomenon. While some incident
phonons transmit across the vacuum-gap and remain in their original mode, many are annihilated
and excite different modes. We show that the heat flux due to phonon transport can be four orders
of magnitude larger than that due to photon transport predicted from near-field radiation theory.

PACS numbers: 44.10.+i, 63.22.Np, 68.35.Ja, 68.37.Ef

I. INTRODUCTION

Although phonons require matter to exist and cannot propagate in bulk vacuum, recent experimentall and
theoretical®3 reports have shown that phonons can transport across vacuum-gaps a few angstroms wide. Vacuum
phonon transport is a parallel heat-transfer process to near-field radiation, although the length scales over which
the two phenomena dominate are different. Accounting for it is important in atomic force microscopy (AFM) and
scanning tunneling microscopy (STM) measurements, where an angstrom-sized gap is present between the microscope
tip and the sample. Studying phonon transport across small gaps is also relevant to predicting the thermal resistance
of rough interfaces® and in accounting for thermal resistance due to the presence of nanovoids©

Using ultrahigh-vacuum inelastic STM, Altfeder et al ¥ studied the thermal coupling between a Pt/Ir STM-tip and
a Au(111) film separated by 3 A of vacuum. They found that the local electric field of the STM tip couples the
thermal vibrations of the tip and the film. The resulting heat flux was six orders of magnitude larger than predictions
of near-field radiation theory. Using piezoelectric leads, Prunnila and Meltaus? theoretically showed that thermal
energy can transport across a vacuum-gap via an electric field induced by acoustic phonons. Making the Debye
approximation for the material properties (i.e., isotropic and linear dispersion, no optical phonons), they report the
angle-of-incidence- and wave vector magnitude-dependence of the phonon transmission coefficients and the vacuum
thermal conductance for a ZnO/vacuum-gap/ZnO system. No information is provided about what phonon modes are
excited on the other side of the gap. Mahan® also showed that phonons can transport across vacuum-gaps up to a
few nanometers wide as a result of polar effects. The mechanism described by Prunnila and Meltaus? and Mahan®
does not exist in non-polar materials (e.g., silicon), where the lattice strain induced by phonons does not induce a
macroscopic electric field.

In this work, we use lattice dynamics calculations to show that phonons can transport across a vacuum gap via
atomic interactions between the leads. This mechanism will exist in all materials. Because phonons cannot propagate
in bulk vacuum, it may seem reasonable to call vacuum phonon transport a tunneling phenomenon. The mechanism
we identify, however, is not a tunneling phenomenon because the phonons that transmit across the vacuum-gap do
not encounter a classically impenetrable potential barrier. Instead, phonons classically transmit through channels of
allowed vibrational states that only exist for small enough vacuum-gap widths.

This mechanism is supported by lattice dynamics modeling work by Landry and McGaughey” on germanium thin
films bounded by silicon. They report that phonons with frequencies that are not permitted in bulk germanium can
pass through germanium films thinner than 2 nm. Tian et al® reported similar results for mass-mismatched Lennard-
Jones thin film systems using the classical molecular dynamics-based phonon wave-packet technique. Landry and
McGaughey explained their result by showing that the density of states of sub-2 nm germanium thin films are not
bulk-like and take on vibrational qualities of silicon. Specifically, the maximum permitted frequency in the film

(W i) 1s greater than the maximum permitted frequency in the bulk (w¢ie'®,,;;). Phonons that pass through
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FIG. 1: (color online) Schematic diagram of the three-dimensional Si/vacuum-gap/Si structure for Lo = 1.72 A. The shaded
region between the dark silicon atoms is the volume associated with the perfect silicon crystal. Vacuum space, shown in white,
is added to form the vacuum-gap. What we call vacuum space is in fact a region of finite electron density. The structure is
periodic in the = and y directions and semi-infinite in the negative and positive z directions.

the germanium thin film with frequencies between w@d®, ;.. and Weie titm thus do not tunnel but are classically
transmitted because the phonon density of states of the film permits them to exist. In other words, the transmitted
phonons never encounter a classically impenetrable potential barrier.

Using a similar approach to that of Landry and McGaughey, we herein examine phonon transport through a
Si/vacuum-gap/Si structure, which is described in Sec. [[Il We first use lattice dynamics calculations to predict mode-
dependent phonon transport properties (frequencies, group velocities, and transmission coefficients) in Secs. [lljand
These phonon properties and Landauer theory are then used in Sec. [[V]to predict the vacuum-gap thermal resistance.
We compare these resistances to phonon resistances of a Si/Si grain boundary and a Si/Ge interface as well as the
resistance to photon energy transport for a Si/vacuum-gap/Si structure predicted by near-field radiation theory.

II. VACUUM-GAP STRUCTURE

To build the Si/vacuum-gap/Si structures, we begin with a perfect silicon crystal with a lattice constant of 5.430 A
(Ref.[@)). Vacuum space is added between two atomic layers to form the vacuum-gap, as shown in Fig.[l} Note that L¢,
the vacuum-gap width, is defined as the z component of vacuum space, shown in white, and is the distance added to
the perfect silicon structure. For small enough vacuum-gap widths, the vacuum-gap is in fact a region of finite electron
density that results in atomic interactions between the leads. Using the Stillinger-Weber potential to describe the
atomic interactions* we perform harmonic lattice dynamics calculations to predict bulk phonon frequencies, w(k, v)
and group velocity vectors, v, (k, )2 for 10000 randomly sampled phonon modes in the first Brillouin zone. Each
phonon mode is identified by its wave vector, k, and dispersion branch, ». We find that evaluating 10000 modes is
sufficient to provide converged values of the phonon resistances predicted in Sec. [V}

III. PHONON TRANSMISSION COEFFICIENTS

With the bulk phonon properties we next predict mode-dependent phonon transmission coefficients, ay,—, g (&, v, Lg),
defined as the fraction of incident phonon energy that is transmitted from the left silicon lead (L) to the right silicon
lead (R) [similar for a1 (k,v, Lg), which is identical to ar_r(k,v, Lg) for our symmetrical structure]. Phonon
transmission coefficients are often calculated using the acoustic mismatch model (AMM) or the diffuse mismatch model
(DMM) 4 Our Si/vacuum-gap/Si structures have the same bulk material on either side of the vacuum-gap. Since both
the AMM and DMM rely only on bulk phonon properties and do not include details of the atomic structure at the
interface, they cannot be used to describe phonon transport across the vacuum-gap. Instead, we use the scattering
boundary method P31 which considers the atomic-level detail.

The scattering boundary method is based on harmonic lattice dynamics theory and assumes that phonon scattering
at the Si/vacuum-gap boundaries is elastic and specular. The assumption of elastic scattering [i.e., the reflected and
transmitted phonons have the same frequency as the incident phonon and ay,—, gr(k, v, L) is temperature independent]
is valid at low temperatures. Landry and McGaughey'* report that this condition is met for Stillinger-Weber Si/Ge



interface systems with temperatures less than 7" = 500 K. This temperature-independence of thermal boundary
resistance at low temperatures is also observed experimentally !t The assumption of specular scattering is valid for
the vacuum-gap structures investigated here because they contain no defects or roughness that would promote diffuse
scattering. In a real system, however, reconstruction of the free silicon surfaces may occur, leading to a probability
that incident phonons will scatter diffusely.

For the Si/vacuum-gap/Si structures, the atomic interactions between the leads are truncated at the Stillinger-Weber
cutoff radius, which corresponds to an absolute atom-atom distance of 3.77 A / vacuum-gap width of ﬁcumf F =189
A. For systems with L& > 1.89 A, there is no communication between the left and right leads i.e., aLHR(n, v, La)
= 0 for all phonon modes] and the vacuum-gap is a bulk vacuum where phonons cannot propagate. The gap is thus a
classically impenetrable potential barrier. For structures with vacuum-gaps less than 1.89 A, however, the left and right
leads exchange vibrational energy via atomic interactions. The smaller the gap, the stronger the interaction between
the leads, and the more channels of allowed vibrational states that are available within the gap for incident phonons
to transmit energy. This trend is illustrated in the mode-dependent phonon transmission coefficients presented in
Fig. (a) for Lo = 0.02 and 1.72 A. For the Lo = 0.02 A structure, the left and right leads strongly interact and
many incident phonon modes transport all of their vibrational energy across the vacuum-gap [i.e., arg(k, v, Lg) =1
for many phonon modes]. Because silicon is a non-polar material, the lattice strain induced by phonons does not
induce a macroscopic electric field. The electric-field /lattice-deformation coupling mechanism proposed by Prunnila
and Meltaus? is therefore not present. Thus, we find that even very small vacuum-gaps block some phonon transport.
For L& = 1.72 A, the leads weakly interact and ap_, r(K,v,Lg) > 0 for only a few low-frequency phonon modes.
If materials with Coulombic interactions are investigated [e.g., oxides, DNA (Ref. [I7)], communication via atomic
interactions (in addition to electric-field /lattice-deformation coupling effects) can be expected for larger vacuum-gaps.

We find that the magnitude of af,—, r(k, v, L) generally depends on (i) the polarization and direction-of-travel of the
incident phonon mode with respect to the vacuum-gap and (ii) the magnitude of k,L¢, where £, is the z component
of the wave vector. Prunilla and Meltaus® report similar dependencies for ZnO/vacuum-gap/ZnO structures. For
the Lo = 1.72 A structure, ap_g(k,v, Lg) is largest for acoustic modes that (i) are polarized orthogonal to their
direction-of-travel (i.e., transverse modes) whose associated atomic motions extend into the vacuum-gap, and (ii)
have k.Lqg < 1. For very small vacuum-gaps, £.Lqg < 1 for all phonon modes and ay_, g(k,v, Lg) depends strongly
on the phonon angle-of-incidence and is branch-independent. The greater the angle between the incident phonon
velocity vector and the normal of the Si/vacuum-gap boundary, the less likely that phonon mode is to transport its
vibrational energy across the vacuum-gap. Landry and McGaughey” report a similar angle-of-incidence dependence
for their Si/Ge/Si and Ge/Si/Ge structures.

The mode-dependent phonon transmission coefficients plotted in Fig. a) describe the fraction of incident phonon
energy that transmits across the vacuum-gap. They do not describe which phonon modes are excited in the right
lead. In Fig. l(b the fraction, n(k, v, Lg), of transmitted energy that remains in its incident phonon mode as it
crosses the vacuum-gap is plotted for modes with ar_,r(k,v, Lg) > 0.01 for L5 = 0.02 and 1.72 A. For a system
with no vacuum-gap, all transmitted phonon energy remains in its original phonon mode as it crosses the junction
li.e., n(k,v, Lg) = 1 for all phonon modes]. As L¢ increases, some of the transmitted phonon energy excites different
modes in the right lead as it crosses the vacuum-gap [i.e., n(k,v, Lg) < 1 for some phonon modes|. For the L& = 0.02
A structure, n(k, v, L) shows a strong correlation with the bulk phonon density of states in the right lead, which is
plotted in Fig. [2| I(c The greater the phonon density of states in the right lead, the more modes that are avallable to
excite, and the less likely transmitted phonon energy is to remain in its original mode. For the L& = 1.72 A structure,
n(k,v,Ls) < 1 for the majority of the transmitted phonon modes.

IV. VACUUM THERMAL RESISTANCE

The phonon thermal resistance of the vacuum-gap can be calculated using the mode-dependent phonon transmission
coefficients. The most commonly-applied expression for calculating the thermal resistance of a junction is based on
Landauer theory and is given by®

R(Lg) =

-1

1 +
W Z /L Cph (K" v, T)Ug,z(ﬁa V)aLHR(N7 v, Ec)dn . (1)

The summation and integral are over all incident phonon modes in the first Brillouin zone of the left lead, cpp (K, v, T') is
the mode-dependent phonon specific heat, which we evaluate at a temperature of 300 K using quantum (Bose-Einstein)
statistics, and vy . (K, ) is the z component of the group velocity vector (i.e., along the [001] direction).
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FIG. 2: (color online) Frequency dependence of (a) phonon transmission coefficient [ar—r(k, v, Lg)] for 10000 randomly
sampled phonon modes in the first Brillouin zone and (b) the fraction of transmitted phonon energy that remains in its original
eigenstate [n(k, v, Lg)] for transmitted phonon modes with arr(k,v, Lg) > 0.01. (c) Bulk phonon density of states for the
silicon leads. The phonon density of states is calculated using a histogram with a bin width of 0.25 THz. The dashed line
around 12 THz separates acoustic modes from optical modes.

It is well known that Eq. incorrectly predicts a non-zero thermal resistance when applied to an ideal system
with no interface (e.g., a perfect silicon crystal with no vacuum-gap, Lo = 0). To address this issue, Landry and
McGaughey™ combined the approaches of Simons™® and Chen?? to derive an expression for thermal resistance using
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FIG. 3: (color online) (a) Vacuum thermal resistance (Ryg) as a function of vacuum-gap width (L¢) at a temperature of 300
K. (b) Total lattice energy (E) and its derivative (dE/dL¢) as a function of vacuum-gap width. The dashed line at L& = 1.89
A corresponds to the Stillinger-Weber silicon potential cutoff (L&),

the nonequilibrium (N E) phonon distributions in each lead, which they denote by Ryg:

Rye(Le) =
1 &
1= (27)3 Z/L/BL(N,V, T)arr(k, v, Lo)dk
=
_WZ/R,BR(K',V,T)QR%L(K,V,Eg)dI‘& R(Lg). 2)

Here, IEIQILZ%&V’ T) and Br(k,v,T) are the fraction of the total heat flux carried by a specific phonon mode in the
leads:. We evaluate S (k,v,T) and Sr(k,v,T) at a temperature of 300 K using a model based on the Boltzmann
transport equation under the relaxation-time approximation and the Fourier law 2 Because bulk extents of silicon are
considered on either side of the vacuum-gap, the bulk phonon properties that we previously predicted using harmonic
and anharmonic lattice dynamics calculations?22 are used to evaluate Eqs. and .

The lattice-dynamics predicted vacuum thermal resistances (Ryg) are plotted versus vacuum-gap width in Fig.
a). The limits of Ryg are intuitive. For a system with no vacuum-gap, the phonon transmission coefficient is one
for all phonon modes. Under this condition, the two terms involving integrals in Eq. are each equal to 1/2 and
the vacuum thermal resistance is zero. As the vacuum-gap width increases and approaches Eg‘tof F=189 4 [the
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FIG. 4: (color online) Frequency-dependence of vacuum thermal conductance at a temperature of 300 K. The mode conductances
are sorted using a histogram with a bin width of 0.25 THz. The dashed line around 12 THz separates acoustic modes from
optical modes.

dashed line in Fig. a)], the mode-dependent phonon transmission coefficients approach zero and the vacuum thermal
resistance approaches infinity. We find no significant change to the phonon transmission coefficients or Ryg if the
right silicon lead is shifted slightly (by 0.02 A) in the z or y direction such that the atomic monolayers in the right
lead do not align with those in the left lead.

To understand the origin of the local maximum at L = 0.98 A, the total lattice energy, E, and its derivative
with respect to the vacuum-gap width, dE/dL¢, are plotted as a function of L in Fig. b). The local maximum
in the vacuum thermal resistance coincides with the point of inflection of the total lattice energy, where dE/dL¢g is
maximum. Using electronic structure calculations on iron, Eberhart and MacLaren®® showed that the second nearest
neighbour bonds at the interface are broken at this point.

Although our calculations are performed using quantum statistics, there is no significant change to the vacuum
thermal resistance results when classical (Maxwell-Boltzmann) statistics are used. This result is not surprising because
quantum effects are not significant for Stillinger-Weber silicon at a temperature of 300 K (Ref. 22)). In a classical
harmonic calculation, ¢, (k, v, T) is equal to kg /V for all phonon modes? where kg and V are the Boltzmann constant
and the volume of the left lead. We perform the following analysis in the classical limit to focus on the effects of
vy »(K,v) and ag_,r(K, v, Lg) on the mode-dependent contributions to the vacuum thermal conductance, which is the
inverse of the vacuum thermal resistance.

The mode-dependent contributions to vacuum thermal conductance are plotted versus frequency for L5 = 0.02
and 1.72 A in Fig. 18 In contrast to the typical assumption that optical phonons (w > 12 THz for Stillinger-Weber
silicon) are negligible heat carriers in bulk because of their low group velocities [e.g., they contribute 3.5% to the bulk
Stillinger-Weber silicon thermal conductivity at a temperature of 300 K (Ref. 21))], they contribute 32% to the vacuum
thermal conductance for the Lo = 0.02 A structure. As noted in Section the phonon transmission coefficients
strongly depend on phonon angle-of-incidence and are branch-independent for L& = 0.02 A. We thus attribute the
large contributions of optical modes to their large phonon density of states [see Fig. (c)] By including phonon
dispersion in the DMM, Duda et al2¥ also found that the contribution of optical phonon modes to thermal boundary
conductance can be significant. For L = 1.72 A, only a few phonon modes contribute significantly to vacuum thermal
conductance. Transverse acoustic modes are responsible for 90% of the transmitted phonon energy, with almost all of
this contribution coming from phonon modes with x,Lg < 1 (see discussion in Sec. . Longitudinal acoustic (8.5%)
and longitudinal optical (1.5%) modes make up the remaining 10%, while the contributions of transverse optical
modes are negligible.

To put the results shown in Fig. a) into perspective, we provide the phonon resistance of a Si/Si grain boundary“>
and a Si/Ge interface!® predicted from molecular dynamics simulation using the Stillinger-Weber potential in Table
The predicted resistances of both the Si/Si grain boundary and the Si/Ge interface are comparable to our lattice
dynamics-based predictions for a 1 A wide vacuum-gap. Although bulk vacuum is traditionally treated as a perfect
phonon barrier, the results presented in Table [ suggest that an angstrom-sized vacuum-gap should be treated as a
phonon barrier with a finite resistance. One approach may be to treat the solid/vacuum-gap/solid structure as a
system of two solids connected by weak springs. An example of this approach is described by Persson et al®®

Because vacuum phonon transport is a parallel heat-transfer process to near-field radiation, we now compare our



TABLE I: Vacuum thermal resistance predicted by lattice dynamics calculations and near-field radiation theory for a 1 A
wide vacuum-gap at a temperature of 300 K. Thermal boundary resistances for a Si/Si grain boundary and a Si/Ge interface
predicted by molecular dynamics simulation using the Stillinger-Weber potential at a temperature of 500 K.

Calculation Method Resistance (m? K/W)
Si/vacuum-gap/Si (1 A vacuum-gap) Lattice Dynamics 0.19 x 10~% (this work)
Si/vacuum-gap/Si (1 A vacuum-gap) Near-field Radiation Theory 0.12 x 10™* (this work)
Si/Si Grain Boundary [¥29(001)] Molecular Dynamics 0.13 x 10~% 25
Si/Ge Interface Molecular Dynamics 0.27 x 1072 [14]

lattice dynamics-predicted phonon resistances to photon resistances predicted by near-field radiation theory. Classical
radiation theory predicts that vacuum photon resistance is a constant. Near-field radiation theory, however, predicts
that photon transport can be enhanced by the tunneling of evanescent waves and surface plasmon polaritons when
vacuum-gap widths are sufficiently small (e.g., less than 10 microns wide for a Si/vacuum-gap/Si structure®?). We
calculate near-field radiative heat transfer in our Si/vacuum-gap/Si structures using Rytov’s theory of fluctuational
electrodynamics 25728 The resistance to photon energy transport and the resistance to phonon energy transport for a
1 A wide vacuum-gap are provided in Table [IL We find that the resistance to photon energy transport is four orders
of magnitude larger than that to phonon energy transport.

Although vacuum phonon transport is not typically considered in AFM and STM studies, we have shown that
atomic interactions between leads separated by a vacuum-gap can result in energy transport at a rate that is four
orders of magnitude greater than predictions of near-field radiation theory. Altfeder et al' experimentally observed
a heat flux that was six orders of magnitude larger than predictions of near-field radiation theory. One explanation
for this discrepency may be that the electric-field /lattice-deformation coupling mechanism proposed by Prunnila and
Meltaus? is present in the STM tip-sample metal-metal junction studied by Altfeder et al'' but is not considered here.
Because free electrons couple strongly to electric fields, the electron tunneling present in this STM experiment could
have enhanced the atomic interactions between the leads. This hypothesis suggests directions for future study. First,
how would phonon transport in a STM system be affected if the voltage difference that facilitates electron tunneling
was removed? Second, can the effective range of vacuum phonon transport (Eg‘tof f ) be increased by taking advantage
of electron tunneling?

V. SUMMARY

Although bulk vacuum is a classically impenetrable phonon barrier, we showed that phonons can transport across
Angstrom-sized vacuum gaps due to atomic interactions between the leads. The thinner the vacuum-gap, the greater
the energy transport [see Fig. a)]. For a 1 A wide vacuum-gap, the magnitude of phonon energy transport is
comparable to that across a Si/Si grain boundary and four orders of magnitude greater than photon energy transport
across the same structure (see Table . While the vacuum-gaps studied in this work are atomically thin, they have
important implications for thermal transport across macroscopic heterointerfaces where nanoasperities can play a
crucial role in interface conductance.
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