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We use molecular dynamics (MD) with the DREIDING force field to characterize the 
ultimate mechanical response of amorphous PMMA. We characterize how volumetric 
and deviatoric strains contribute to yield for a wide range of loading conditions from 
pure deviatoric, volume-conserving, cases to isotropic volume expansion. We propose 
and apply an energy-based yield criterion to define yield consistently for all cases. Our 
results show that permanent deformation occurs when either the deviatoric or 
volumetric strains reach critical values except in a narrow region around the 
transformation between deviatoric- and volumetric-dominated yield where the two 
strain invariants interact. In contrast, the pressure-modified von Mises criterion is only 
applicable to shear dominated loading conditions. These results provide insight into 
the physics of yield in amorphous polymers and provide quantitative information and 
guidance for physics-based yield criteria for polymer-matrix composite materials. 

Keywords: glassy polymer, molecular dynamics, PMMA, thermoplastic, mechanical 
properties. 

 

I. INTRODUCTION 

Understanding the molecular origins of the mechanical response of amorphous 
polymers remains one of the main challenges in materials science and condensed 
matter physics. Such an understanding together with quantitative computational models 
are not only relevant from the point of view of basic science but have the potential to 
help design new materials with improved properties and impact a wide variety of 
established industries like aerospace1 and electronics2 as well as emerging technologies 
like micro-electromechanical systems.3 The mechanical response of crystalline 
materials is well understood in terms of processes involving the motion of defects 
including dislocations, grain boundaries and vacancies and such understanding has 
enabled the development of physics-based, predictive, models for these materials. 
Much less is known in the case of amorphous polymers. Despite progress in the 
experimental characterization mechanisms responsible for inelastic deformation and 
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fracture4 and theoretical advances at the molecular level,5,6,7,8,9 in thermodynamically 
consistent viscoelastic modeling10 and failure criteria11,12 little is known regarding the 
conditions associated with the onset of permanent deformation. The use of polymers as 
matrix in composites pose additional challenges since they experience a wide range of 
loads including various amounts of deviatoric and dilational loads due to the constraints 
imposed by the stiffer reinforcements. Experimental studies for complex tri-axial 
deformation states are challenging and there is limited data for the wide range of 
conditions experienced by polymeric composite matrices. On the other hand, atomistic 
simulations have the potential to help fill this gap in understanding as the increase in 
computing power enables larger-scale simulations and advances in simulation 
techniques improve the accuracy of the predictions. State-of-the-art molecular 
dynamics (MD) simulations of polymers can achieve length-scales of tens of 
nanometers and timescales of tens to hundreds of nanoseconds and while these are 
small compared to most experiments of interest these simulations can provide a 
valuable link between atomic processes and macroscopic response, see for example 
Refs. [5,13,14,15]. Such simulations have provided valuable insight of the mechanisms 
of post yield softening and hardening and the role of thermal history on mechanical 
response.8 Atomistic simulations are also ideally suited to characterize the effect of 
size16,17 and molecular structure6,18 on thermo-mechanical properties. Significant efforts 
have been devoted to studying the role of tri-axial loading and the molecular 
mechanisms responsible for yield;5,19 however work so far has focused on applying the 
pressure-modified von Mises yield criteria; this assumes deviatoric stresses to be the 
driving force for inelastic deformation and is not applicable to the wide range of 
deformations dominated by the dilatational component. 

In this paper we use large-scale MD to characterize the onset of permanent deformation 
for a family of deformations spanning from volume conserving uniaxial to isotropic 
expansion designed to capture the transition from deviatoric- to volumetric-dominated 
irreversible deformation. We propose an energy-based yield definition applicable to 
any deformation path and characterize the yield conditions for the entire family of 
deformations. Our results indicate that a strain invariant yield criterion can describe the 
entire family of deformations except for a narrow region around the transition between 
deviatoric-dominated and volumetric-dominated yield. 

The paper is organized as follows. Section II describes the simulation details including 
deformation paths and analysis; Section III describes the stress-strain behavior obtained 
for the various simulations. Section IV describes the analysis of our results in terms of 
the commonly used pressure-modified von Mises yield criterion and Section V presents 
a more generally applicable energy-based yield criterion and the results of this analysis. 
Finally conclusions are drawn in Section VI.  

II. SIMULATION DETAILS 

A. Atomic model preparation 

We use the DREIDING force field20 to describe atomic interactions with partial atomic 
charges for electrostatic interactions from the Gasteiger method.21 A cutoff of 12 Å is 
used for all non-bond interactions during thermalization runs while the PPPM method22 
is used to describe electrostatics during the deformation simulations. All MD 
simulations are performed using the LAMMPS code from Sandia National 
Laboratories23. All systems consist of PMMA chains with 96 monomers each; 80% of 
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the chains are syndiotactic and 20% atactic. The simulation cells contain 1080 chains 
for a total 1,557,360 atoms; this leads to a relaxed (300 K and 1 atm) cubic simulation 
cells with length 24.173 nm. The initial structures for our simulations are built at low 
density (0.95 g/cm3) and high temperature (500 K) using the commercial software 
MAPS.24 These structures are then compressed to atmospheric pressure using 
isothermal MD simulations and then cooled down to T=300 K using isothermal and 
isobaric MD simulation with a rate of 1.25 K/ps. The effect of cooling rate and size is 
currently being studied in detail25 but our preliminary results indicate that, while the 
mechanical response of the polymer is affected by cooling rate and (to a less degree) 
size, the main results of this paper, i.e. the relative role of volumetric and deviatoric 
deformation on yield and the strain invariant yield criterion, remain valid when the 
cooling rate is reduced by a factor of 10 to 0.125 K/ps. Physical aging denotes the non-
chemical relaxation that amorphous polymers undergo with time at temperatures below 
their glass transition. Both simulations, see for example Refs. [18,26], and 
experiments27 have shown that aging leads to an increase in yield stress (with little 
change in the corresponding yield strain). This aging process can be reversed by 
deformation (rejuvenation) as can be observed by the flow stress of polymers with 
different thermal histories collapsing into a common curve after yield. 

B. MD simulations of mechanical deformation 

Starting with the structures described above, we use non-equilibrium MD to 
characterize their mechanical response under a variety of loading conditions. The 
simulation cell is deformed in small increments at each MD step using the following 
engineering strain tensor: 

ξxΔε l 0 0
0 ξyΔε l 0
0 0 Δε l

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
        (1)       

The incremental engineering strain in the longitudinal direction (Δεl) is kept constant 
throughout each simulation and it determines the length of the simulation cell as a 
function of MD step, i, as L(i) − L(i −1)[ ]/L(0) = Δεl . We adjust the response in the 
transverse directions to achieve varying amounts of deviatoric and volumetric strains. 
We explored the following deformation pathways: i) volume conserving uniaxial with 
ξx= ξy both adjusted to conserve volume (for small deformations ξx= ξy=-0.5), and ii) 
uniaxial deformations with constant transverse to longitudinal strain ratios with values 
from ξx=ξy=-0.33 to ξx=ξy=1. Pure uniaxial strain: ξx=ξy=0 and isotropic expansion: 
ξx=ξy=1 are special cases of these deformation paths. For completeness, we also 
performed simulations involving volume conserving pure-shear with ξx=0 and ξy 
adjusted to conserve volume (ξy=-1 for small strains). Temperature during the 
simulations is controlled via a Nose-Hoover thermostat with coupling constant of 0.1 
ps. The presence of the thermostat does not affect our results, as can be seen in the 
supplementary material28 where stress-strain curves are compared with results obtained 
from microcanonical MD simulations (NVE ensemble). We studied two strain rates 
along the z direction Δεl/Δt (where Δt is the MD time step) 3.75 108 1/s and 1.855 108 
1/s. While these rates are large compared with experiments (except for shock loading) 
they are typical of MD simulations due to the relatively short timescales accessible and 
have been shown to be appropriate to provide insight into yield in polymeric systems. 
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C. Analysis of the MD runs 

A widely used approach to study the results of different loading conditions is to 
separate both stress and strain tensors into their deviatoric and volumetric (or 
hydrostatic) components. The deviatoric stress is defined as: 

σeff = 1/2 σ1 − σ2( )2
+ σ2 −σ3( )2

+ σ3 −σ1( )2[ ]     (2) 

where σi denote stress components along principal axes; we define effective strain in a 
similar fashion: 

( ) ( ) ( )2 2 2
1 2 2 3 3 13 / 4 1/ 2effε ε ε ε ε ε ε⎡ ⎤= − + − + −⎣ ⎦      (3)                                 

where strain components are also given in principal axes. Pressure and volumetric 
strain describe the volume-changing terms: 

1 2 3

3vol
σ σ σσ + +=                                                                                (4) 

1 2 3volε ε ε ε= + + .                                  (5) 

Note that pressure is the negative of the volumetric stress. 

III STRESS-STRAIN RELATIONSHIPS FOR VARIOUS LOADING 
CONDITIONS 

Figure 1 shows the temporal evolution of the stress along the principal axes for various 
loading conditions for a strain rate of 3.75 108 1/s. Figure 1(a) corresponds to volume 
conserving uniaxial deformation where we observe tensile stress along the z direction 
and compression along x and y. For ξx=ξy=0, i.e. pure uniaxial strain, [Fig. 1(b)] the 
simulations predict tensile stress in all three directions and a significant decrease in the 
flow stress after yielding. As the molecular snapshots shown in Fig. 2 demonstrate, the 
significant drop in flow stress observed for uniaxial strain is associated with cavitation, 
i.e. the formation of internal voids in the polymer. We note that voids are present in the 
system and can percolate before they become visible in projections like those shown in 
Fig. 2.29 As expected, this process is not observed for volume conserving simulations 
where we observe very little softening after yield. Uniform expansion, Fig. 1(c), also 
leads to cavitation and significant post yield softening. Figures 1 and 2 show clear 
differences in the polymer behavior when deformation is dominated by deviatoric or 
volumetric strains underscoring the significant challenge involved in developing a 
generally applicable yield criterion. While there is no ambiguity regarding the nature of 
the driving force for inelastic deformation for pure deviatoric or pure volumetric 
deformations, deformation paths involving a combination of deviatoric and volumetric 
strains, such as the pure uniaxial strain case of Figs. 1(b), 2(c-d), are more difficult to 
understand. 

Figure 3 shows the deviatoric stress vs. deviatoric strain [Fig. 3 (a)] and volumetric 
stress-volumetric strain [Fig. 3(b)] curves for the various loading conditions 
corresponding to the slow deformation rates. We see that the two volume-conserving 
deformations we studied (volume-conserving uniaxial and shear) lead to essentially 
identical effective stress-strain behavior. The remaining uniaxial tension deformation 
simulations involve various amounts of volume expansion and Fig. 3(a) shows how the 
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effective stress and strain decrease as the transverse to longitudinal strain ratio (ξx=ξy) 
increases from -0.5 to 1. The fact that the deviatoric stress decreases with increasing 
volume expansion in the deformation path is the basis for the pressure-modified von 
Mises criterion for this class of materials.5,8,30,19 

IV PRESSURE MODIFIED von MISES YIELD CRITERIA 

The pressure modified von Mises criterion, that states that irreversible deformation 
occurs when the deviatoric stress reaches a pressure-dependent critical value, has been 
used in the past to analyze experiments30 and simulation results.5,19 In prior simulations 
yield stress was defined as a maximum in the effective stress-strain curve or using the 
offset method. While this fails to acknowledge that irreversible deformation can be 
driven by volumetric strains, as will be shown in Section V, we apply it to our 
simulations in order to compare our results with prior experimental and theoretical 
work. 

Figure 4 shows the deviatoric stress as a function of pressure at the yield point for the 
various loading paths investigated and for the two strain rates used. In agreement with 
prior molecular simulations5,19 we observe a linear decrease in deviatoric stress at the 
yield point with decreasing pressure up to transverse-longitudinal strain ratios of ~0.16. 
Increasing the strain rate leads to higher yield stresses but similar pressure sensitivity of 
the linear region of the pressure modified von Mises plot; the slope predictive by our 
MD simulations is in good agreement with experimental data30 shown as triangles in 
Figure 4. The yield stresses obtained from the MD simulations are significantly higher 
than those in experiments. This is a common result in MD simulations due to the small 
size of the systems that preclude strain localization and is also due to the large strain 
rates.  

V ENERGY-BASED YIELD POINT AND CRITICAL STRAIN INVARIANTS 

The pressure-modified von Mises criterion assumes that the driving force for 
irreversible deformation is deviatoric, relegating the role of volumetric deformation to a 
mere modification of the critical deviatoric stress. The data shown so far suggests a 
more complex picture where volumetric loads can also drive the onset of plastic 
deformation. In this Section we propose a definition of yield that treats deviatoric and 
volumetric components on an equal footing and analyze the conditions and stress and 
strain that lead to yield. 

In order to define the yield point in a consistent manner for all possible deformation 
paths we use the rate of mechanical work performed on the system per unit initial 
volume: 

Ý W t( ) =
1

V 0( ) V t( )σii t( )dε ii
t

dt
ti=1

3

∑  

where σ ij  and εij
t  are the stress and true strain tensors along the principal axes. This is 

computed from the simulation using stress and cell lengths (Li) at discrete times, nΔt :  

Ý W nΔt( ) =
1

V 0( ) V n( )σii n( )Li n +1( )− Li n −1( )
2L n( )Δti=1

3

∑  
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Figure 5 shows the temporal evolution of the mechanical work per unit time for the 
slow deformation rate and the various deformation paths. In all cases ÝW  increases with 
time early in the deformation process; as the stress required to continue the deformation 
at constant rate increases so does the mechanical work per unit time performed on the 
system. We define the onset of irreversible deformation, or yield point, as the condition 
of maximum mechanical work per unit time for constant strain rate deformation. With 
this definition, yield marks the point beyond which less work per unit time is required 
to continue deforming the polymer at a constant rate. Consequently, under load-
controlled conditions the material becomes unstable. The proposed definition is 
consistent with standard definitions for simple loading conditions (e.g. maximum stress 
in uniaxial tension experiments, where the transverse stress remains zero, and 
maximum pressure for isotropic expansion) but can be equally applied to any 
deformation path as opposed to prior definitions used in simulations. An important 
feature of our approach is that it does not make any assumption regarding whether 
deviatoric or volumetric strains dominate deformation. In fact, as will be described 
below, our simulations and analysis enable us to quantify the relative amounts of 
effective and volumetric strain that lead to yielding as a function of loading path. 
Additionally we monitor the total mechanical work performed on the polymer up to the 
yield stress by integrating Ý W t( ) in time up to the yield point: 

ΔW Y = Ý W t( )dt
o

tyield∫  

Finally, since the rate of deformation has a strong influence on mechanical response a 
measure that can be applied to all deformation paths would be highly desirable. We 
cannot use strain rate because it is a tensorial quantity and no effective strain can be 
applied to the entire family of deformation paths. Thus, consistent with our definition 
of yield, we use the initial slope of the ÝW  vs. time curves, that is, the rate of change of 
the mechanical work per unit volume. This quantity will be denoted effective 
deformation rate.  

Figure 6 shows the deviatoric, Fig. 6(a), and volumetric, Fig. 6(b), strains at the yield 
point, εdev

Y  and εvol
Y  respectively, as a function of effective deformation rate; these points 

are obtained from the two deformation rates studied for each path (only one actual 
point is shown for ξx=ξy=1 and ξx=ξy=0.5 due to the scale of the plot but two 
simulations are analyzed in each case). Figures 6(c) and 6(d) show the deviatoric and 
volumetric stress at yield also as a function of deformation rate and Fig. 7 shows the 
rate dependence of ΔW Y , the total mechanical work input into the system up to yield. 
These plots show the important, and path dependent, role of deformation rate in 
yielding and the importance to compare results at equivalent rates.  To do this we 
extrapolate the MD results (yield strains, stresses and mechanical work) to zero 
deformation rate assuming linear relationships. These extrapolations are done to 
evaluate yield for the various paths at comparable deformation rates and are not 
expected to represent true low strain-rate results due to the linear relationship assumed. 

Figure 8 (a) shows the deviatoric and volumetric strains at the yield point as a function 
the transverse to longitudinal strain ratio for all the simulations performed. Figure 8(b) 
show the deviatoric and volumetric stresses corresponding to yield as a function of ξ. 
As expected, the amount of deviatoric strain and stress at onset decrease as the 
volumetric components increase with increasing ξ. Figure 8 makes it very clear that the 
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driving force for a large number of the deformation paths explored is volumetric and 
explains why the pressure modified von Mises criterion only apply to low ξ cases. An 
analysis of the yield strains shows that, except for a narrow set of conditions near ξ=-
0.1, yield occurs when either the deviatoric or volumetric strain reach a critical value 
(around 11% in our simulations). Even for the conditions near the transition between 
deviatoric-dominated to volumetric-dominated deformations the critical strains are only 
about 20% smaller than the asymptotic critical values. In contrast, the stress values at 
yield show larger variability. This is consistent with the observation that yield stress is 
more sensitive to processing and deformation conditions than yield strain, see for 
example Ref. [18]. These results are consistent with the strain invariant failure theory 
(SIFT) obtained empirically from experimental testing of composites.11,31 

Finally, Figure 8(c) shows the total work done on the polymer up to yield as a function 
of transverse to longitudinal strain ratio. Our simulations show a relatively constant 
energy for volumetric-dominated deformations and a continuous decrease as the 
relative amount of shear increases. We find volumetric failure to require about 50% 
more energy than shear-driven yielding.  

It is important to stress that our nanoscale samples are essentially defect-free and 
relatively uniform down to the nanometer scales. The presence of defects in real 
samples (including micro-cracks, inclusions and voids) is certain to affect the critical 
strains and energy absorbed up to yield. Furthermore defects are likely to have different 
effects on the critical volumetric and deviatoric values; we expect micro-cracks and 
voids to influence the critical volumetric strain more than the deviatoric one. The 
periodic boundary conditions imposed on the samples limit the maximum wavelength 
of fluctuations allowed and, consequently, the amount and characteristic size of strain 
localization that is allowed; this also affects yield and post yield behavior. 

We note that the volume conserving shear deformation is not included in Figure 8 since 
it cannot be described simply by the transverse to longitudinal strain ratio. While the 
deviatoric stress-strain curve is very similar to that of volume-conserving uniaxial 
deformation we find the deviatoric strain at yield and energy absorbed to be larger than 
that of the ξ=−0.5 simulation; this is in part due to the uncertainty in the determination 
of the yield point in volume conserving paths due to the minimal post-yield softening.  
VI. CONCLUSIONS 

In summary, we performed large-scale MD simulations to characterize the ultimate 
mechanical properties of amorphous PMMA for a wide range of loading conditions 
spanning from purely deviatoric loads to isotropic volume expansion. Such a wide 
range of loads, while difficult to explore experimentally, is critical to understand and, 
eventually, improve the polymer performance in composite materials where stiffer 
reinforcements provide constraints to mechanical load that cause complex tri-axial 
loading conditions.  

An energy-based yield definition enables us to identify the onset of irreversible 
deformation unambiguously and consistently for the entire family of loading paths. 
This analysis shows that yield occurs when either the volumetric or deviatoric strains 
reach a critical value except for a narrow region of loads where the two invariants seem 
to interact. This yield criterion is applicable over a much wider range of conditions than 
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the pressure modified von Mises criterion that assumes the driving force for plastic 
deformation to be deviatoric. Additional work, both experimental and theoretical, to 
further explore the physics of loading paths where deviatoric and volumetric 
deformations appear to interact in our simulations is likely to yield interesting new 
physics and insight into the yield processes of amorphous materials. 

The formation of voids such as those observed in pure uniaxial strain is likely to be 
related to the initial process of crazing that plays a central role in the failure of 
amorphous polymers.32 A detailed analysis of the formation and growth of these voids 
and the structure of the polymer fibrils that develop during deformation could provide 
insight into the growth of crazes. The transition to a shear-dominated regime as ξx and 
ξy is reduced may also provide insight into the transition from crazing to shear 
dominated regimes. 

It is important to stress that the simulations presented here contain no adjustable 
parameters and that the only fundamental approximations are associated with the 
interactions between atoms (the force field used) and the use of classical equations of 
motion. These approximations are unlikely to play a large role on yield envelope for 
various loading conditions. The high strain rates and relatively small periodic size of 
the simulations represent practical approximations that also contribute to the 
differences between MD predictions and experiments; a deeper understanding of their 
influence on yield requires additional work. Despite these challenges, atomistic and 
mesoscale simulations are likely to continue providing insight and increasingly 
quantitative information regarding the ultimate mechanical response of amorphous 
polymers. 
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FIGURE CAPTIONS 

 

FIG. 1. Stress along principal axis as a function of time for three different loading 
paths: (a) volume-conserving uniaxial, (b) pure uniaxial strain, and (c) volumetric 
expansion. 

 

FIG. 2. Snapshots of the MD simulations at two different times for volume-conserving 
uniaxial deformation (a,b) and pure uniaxial strain (c,d). 
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FIG. 3. Deviatoric (a) and volumetric (b) stress-strain curves for the entire family of 
deformation paths. Curves are identified by the transverse to longitudinal strain ratios. 

 

FIG. 4. Pressure modified von Mises plot (deviatoric stress at yield vs. pressure) 
including our MD simulations (squares and circles) and experiments (triangles).  

 

FIG. 5. Mechanical work performed on the samples per unit volume and time for the 
family of the deformation paths explored. The maximum of these curves define the 
yield condition. 

 

FIG. 6. Deviatoric and volumetric strains at yield (a,b) and deviatoric and volumetric 
stresses at yield (c,d) as a function of effective deformation rate for the various 
deformations. Curves are identified by the transverse to longitudinal strain ratios. 

 

FIG. 7. Total mechanical work absorbed up to yield as a function of effective 
deformation rate for the various deformations. Curves are identified by the transverse 
to longitudinal strain ratios. 

 

FIG. 8. Deviatoric and volumetric yield strain (a), yield stress (b) and energy absorbed 
(c) as a function of transverse/longitudinal strain ratio. 
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