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Spectroscopy of vortex bound states can provide valuable information on the structure of the
superconducting order parameter. Quasiparticle wavefunctions are expected to leak out in the
directions of gap minima or nodes, if they exist, and scanning tunneling spectroscopy (STS) on
these low-energy states should probe the momentum dependence of the gap. Anisotropy can also
arise from band structure effects, however. We perform a quasiclassical calculation of the density
of states of a single vortex in an anisotropic superconductor, and show that if the gap itself is
not highly anisotropic, the Fermi surface anisotropy can dominate, preventing direct observation of
superconducting gap features. This serves as a cautionary message for the analysis of STS data on
the vortex state on Fe-based superconductors, in particular LiFeAs, which we treat explicitly.

PACS numbers: Valid PACS appear here

Introduction. Four years after the discovery of the iron-
based1,2 high temperature superconductors, the struc-
ture and symmetry of the gap function are still being de-
bated. There is considerable experimental evidence that
there is no universal gap shape3–5, perhaps in part due
to the electronic structure that combines small electron
and hole pockets, leading to an “intrinsic sensitivity”6

to details. It is likely5 that in most cases the gap has
A1g symmetry, which, however, allows a continuous de-
formation from a full gap to that with nodes on the Fermi
surface (FS) sheets. Bulk experimental probes of the gap
structure include specific heat and thermal conductivity
oscillations in an external magnetic field7,8, performed on
the Fe(Te,Se) system9 and P-doped 122 family10 respec-
tively. In both systems the oscillation pattern was found
to be consistent8,10–12 with an anisotropic gap with min-
ima along the Γ−X axis (in the unfolded Brillouin zone),
as predicted by spin fluctuation theories (see, e.g. Ref. 5).
Order parameter structure is also reflected in the lo-

cal properties of inhomogeneous superconducting states.
Inhomogeneities may arise due to impurities, and the re-
sulting quasi-bound states in nodal superconductors have
tails that “leak out” in the nodal directions13, providing
a signature of the amplitude modulation of the gap. The
interpretation of these impurity states is complex: disor-
der potentials can be of the order of electron volts, and
hence relatively high energy processes control the for-
mation of such states, as well as their contribution to
scanning tunneling spectroscopy (STS) images14.
Under an applied magnetic field, inhomogeneous su-

perconductivity arises due to modulation of the order
parameter in a vortex lattice, and bound states localized
around the vortex cores appear. In this case, relevant
energy scales are of the order of the gap or lower and
the bound states properties are determined by the shape
of the gap and the band features near the Fermi sur-
face. The decay length of the core states is of order of
ξBCS = vF /π∆, where vF is the Fermi velocity and ∆
is the gap amplitude. Consequently, variation of the gap

with direction k̂ at the FS, ∆(k̂) 6= const, directly influ-
ences the shape of the core states in real space, leading to
the “tails” extending along nodes or minima. Since the
decay of these states is exponential in distance ρ from
the center of the vortex (except along true nodes where
it follows power laws), these tails are very clearly seen in
local measurements, and can be used to probe the gap
shape15. Difficulties of interpretation exist in cuprates,
where the coherence length is short and the cores may
nucleate competing order (see, e.g., Ref. 16), but in most
Fe-based superconductors (FeSC) these complications are
less severe or absent over a wide range of experimentally
tunable parameters.
On the other hand, a complex aspect of these latter

systems arises due to their multiband nature. The di-

rectional dependence vF (k̂) also affects the decay length
of the core states, especially when combined with differ-
ent gap amplitudes on different Fermi surface sheets. In
FeSC, the Fermi surface typically consists of two or three
hole pockets and two electron pockets, as represented in
the Brillouin zone corresponding to 1-Fe unit cell (see
Fig. 1). The size and shape of these pockets varies con-
siderably from family to family. A natural question is
whether it is the normal state band structure and the
Fermi surface, or the order parameter shape that deter-
mine the salient features of the vortex core states as seen
in experiment, and whether one can draw reliable con-
clusions about the directions of the gap nodes or minima
based on the real space structure of these states. This is
the question we address in the current Communication.
The competition between the two effects has been ex-

plored numerically. For example, the sixfold pattern ob-
served in 2H-NbSe2 core states17 can be explained ei-
ther assuming a weak gap anisotropy or using the angle-
dependent density of states around the Fermi surface18.
In pnictides it was argued both that the vortex core states
are controlled by the order parameter shape19 and that
the location of the peak in the DOS is determined by
the proximity to the band edge in the electron or hole
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FIG. 1. (Color online) (a) Fermi surface of stoichiometric
LiFeAs at kz = 0 in the unfolded 1-Fe “effective” Brillouin
zone from DFT. The Fermi velocities for different sheets are
indicated by the arrows pointing to the higher E(k). We label
two inner hole pockets α1, α2, one outer hole pocket γ and
two electron pockets β1, β2. (b) The Fermi velocity direction
θvF

vs the momentum k azimuthal angle θ for the LiFeAs γ
pocket and the circular Fermi surface (shown as insets).

bands20. To gain qualitative insight into this issue we
consider a simple model with both the order parameter
and band anisotropy characteristic of the Fe-based su-
perconductors, and find that in the absence of strong
nodes the Fermi velocity anisotropy can dominate the
real-space shape of the vortex core states. These states
have been observed in STS experiments,21 albeit with-
out the spatial resolution necessary to analyze the order
parameter structure.

We focus on the LiFeAs system, which is ideal for
STS measurements due to its nonpolar surfaces. Accord-
ing to density functional theory (DFT) calculations22,
the Fermi surface of this material has three hole pock-
ets and two electron pockets, (see Fig. 1). The outer
hole pocket is large and quite square, according to both
DFT results and ARPES23 and dHvA24 measurements.
Both γ and α2 pocket have small Fermi velocities and
therefore large normal state DOS. ARPES has identified
superconducting leading edge gaps of order 1.5-2 meV
for the hole pockets, and 3 meV for the electron pock-
ets23. The London penetration depth data25 and spe-
cific heat measurements26 ruled out the existence of gap
nodes and were fit to models with two isotropic gaps with
(∆1,∆2) ≃ (3meV, 1.5meV) and (2meV, 0.5meV), re-
spectively. This suggests moderate gap anisotropy, which
is not easily detected by the bulk measurements, but can
substantially affect the real space structure of the core
states.

For circular Fermi surfaces the low-energy core bound
states extend furthest in the direction of the smallest
gap, but for realistic bands the Fermi velocity anisotropy
plays a significant role. Since the cross-sections of the
β1 and β2 electron pockets rotate by a full 180◦ along
the kz direction, and since these gaps are larger, it is
unlikely that these sheets contribute substantially to the
spatial anisotropy. We therefore focus on the possible
anisotropy of the gap on the hole Fermi surfaces. The

most likely candidate for the anisotropic gap that domi-
nates the low-energy vortex bound states is the γ pocket.
The orbital content of this pocket is exclusively dxy, and
it couples only weakly to the primarily dxz and dyz elec-
tron pockets which provide the main pairing weight in the
conventional spin fluctuation approach5. It is also nearly
square, with weakly dispersive parallel surfaces oriented
along the [110] direction in the 1-Fe zone, and with signif-
icant variations of the Fermi velocity between [100] and
[110] directions. Hence we first neglect other FS sheets,
and contrast the results obtained for the γ sheet alone
with those for a single circular FS.
Model. We follow the approach of Ref. 27 that re-

lied on the quasiclassical method for superconductiv-
ity28–30, used previously to study vortex cores31. The
energy-integrated normal and anomalous Green’s func-
tions g(r, θ, iωn) and f(r, θ, iωn) obey the coupled Eilen-
berger equations

[
2
(
iωn +

e

c
vF ·A(r)

)
+ i~vF · ∇

]
f(r, θ, iωn)

= 2ig(r, θ, iωn)∆(r, θ), (1a)
[
2
(
iωn +

e

c
vF ·A(r)

)
− i~vF · ∇

]
f̄(r, θ, iωn)

= 2ig(r, θ, iωn)∆
∗(r, θ), (1b)

together with the normalization condition g2 + f f̄ = 1.
Here A(r) is the vector potential, vF is the Fermi ve-
locity at the location at the Fermi surface labeled by
θ, and ωn = (2n + 1)πkBT are fermionic Matsubara
frequencies. The Fermi velocity, vF (θ), is along the

2D unit vector k̂ for the circular Fermi surface, and is
computed for the γ-band in LiFeAs using the Quan-
tum EXPRESSO package32, as in Ref. 33. In the
low field regime, we consider the problem of an iso-
lated vortex and assume a separable momentum and co-

ordinate dependence of the order parameter ∆(ρ, k̂) =
∆0Φ(θ) tanh (ρ/ηrξ0), where ∆0 is the bulk gap value
in the absence of the field and Φ(θ) describes the gap

shape on the Fermi surface, Φs = 1 , Φd =
√
2 cos 2θ,

and Φs,ani = (1 − r cos 4θ)/
√
1 + r2/2 with r = 0.3,

for the isotropic s-wave, nodal d-wave, and extended
s-wave gaps respectively.34,35 The coherence length is

ξ0 = ~vF,rms/∆0 where vF,rms =

√
〈|vF (k̂)|2〉FS , and the

brackets denote the normalized average over the Fermi
surface,

〈· · · 〉FS =
1

N

∮

FS

dk‖

|vF (k̂)|
· · · =

∫ 2π

0

dθ

2π
ρ̃(θ) · · · , (2)

where N ≡
∮
FS

dk‖

|vF (k̂)|
and ρ̃(θ) is the angle-dependent

density of states. The factor ηr accounts for the shrink-
ing of core size at low temperature (Kramer-Pesch ef-
fect36,37), and we set ηr = 0.1 corresponding to T ∼
0.1Tc. In a fully self-consistent calculation the gap
anisotropy in momentum space will induce weak core
anisotropy in real space38, which we ignore here since
the effect is small even for nodal systems38.
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We solve Eq. (1) using the Riccati parameteriza-
tion39 and integrating along classical trajectories, r(x) =
r0 + xv̂F to obtain the functions g and f at Mat-
subara frequencies. The LDOS is found after analytic
continuation from the retarded propagators, N(r, ω) =
N0〈Re gR(kF , r, ω+ iδ)〉FS . At each point r = (ρ, φ) the
LDOS is obtained by summation over the quasiclassical
trajectories passing through r. Each trajectory follows
the direction of the Fermi velocity at a given point on the

FS, v̂F (k̂), and samples the gap ∆(r(x), k̂). Trajectories
sampling regions of small order parameter contribute to
the low energy LDOS. This occurs if the trajectory either
passes in the vicinity of the core where the order parame-
ter is suppressed in real space, ∆(ρ) ≪ ∆0 (small impact
parameter, dominant for isotropic gaps), or is along the
direction where the gap has a node or a deep minimum

in momentum space, ∆(k̂) ≪ ∆0 (dominant for nodal
superconductivity).
The influence of the FS shape is then clear: the number

of trajectories with a given impact parameter depends on
the band structure. Denote the angle between v̂F and kx
axis as θvF

. For a circular FS θvF
= θ, and quasiclas-

sical trajectories in different directions θvF
are equally

weighted in FS averaging. In contrast, for anisotropic
cases, such as the square γ-sheet in LiFeAs, large parts
of the FS have the vF along the diagonals (see Fig. 1b),
and therefore the average over the trajectories is heavily
weighted towards that direction as well.

For an isotropic gap ∆(k̂) = const, the largest con-
tribution to the low energy LDOS at r = (ρ, φ) comes
from the trajectories passing through the core, θvF

=
φ or φ+ π. For a cylindrical FS parameterized by angle
θ this corresponds to two points since θvF

= θ. On an
anisotropic FS, such as the γ pocket in LiFeAs, many
different momentum angles θ correspond to θvF

≈ ±π
4 ,

and quasiparticles from a large portion of the FS travel
along these directions. For real space direction φ = π

4 , all
these trajectories sample the core region and contribute
to the low energy LDOS. For φ away from these directions
these trajectories have a nonzero impact parameter and
therefore small weight at low energies. For the extended
s-wave gap model with r > 0 in the form factor Φs,ani,
this implies that the regions of large gap will be empha-
sized due to preferential directions of vF , and therefore
the FS effects compete with the gap shape in determin-
ing the spatial profile of the vortex core states. Simply
assuming that the direction of the smallest gap in k space
yields the orientation of the tails of the bound state wave
function need not be correct, and may be wrong with a
strongly anisotropic Fermi surface40.
Results. Fig. 2 shows the zero energy density of states

(ZDOS) of a circular Fermi surface (a-c) and LiFeAs γ
pocket (d-f). Comparing panel (a, d) for the isotropic
gap, we see that the rotation symmetry of ZDOS in (a)
is broken due to the anisotropy of γ pocket and Fermi
velocity; at the same time the ZDOS still preserves the
crystal four-fold symmetry. In the d-wave case (b) for a
circular Fermi surface, we recover well-known results for
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FIG. 2. (Color online) Normalized ZDOS in a 2.5ξ0 × 2.5ξ0
region around the center of the single vortex for different gap
models with a circular Fermi surface (a – c) and LiFeAs γ
pocket (d – f): (a, d) an isotropic s-wave gap ∆0; (b, e) a
nodal d-wave gap ∆0

√
2 cos 2θ; (c, f) extended s-wave gap

∆0(1 − r cos 4θ)/
√

1 + r2/2, r = 0.3. The gap bulk value is
taken to be ∆0 = 1.76Tc. The inset on each panel represents
a cartoon of the corresponding gap along the Fermi surface.
White contour lines shown correspond to 0.025N0 .

the ZDOS, including the double tails along the nodal di-
rections forced by the vanishing of the bound state wave-
function exactly along the 45◦ directions in the quasiclas-
sical theory31. While this feature remains, it becomes es-
sentially invisible in the case of the square Fermi surface
shown in panel (e), as the Fermi surfaces concentrates
the quasiparticle trajectories even more in the nodal di-
rections. Our primary results are now contained in panels
(c) and (f). The extended-s state Φs,ani has been chosen
deliberately to have gap minima along the 0◦ directions
(along the Fe-Fe bond in the FeSC case). This is clearly
visible in the case of an isotropic pocket (c), as the tails,
while not as well-defined as in the true nodal case, ex-
tend clearly along these directions in real space. These
directions rotate by 45◦, however, when the same gap
exists on the square LiFeAs γ pocket, as in (f). In fact,
the ZDOS in panel (f) strongly resembles the structure
observed by Hanaguri et al. in recent STS measurements
on LiFeAs41.
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The results in Fig. 2 strongly challenge the common
interpretation of STS images of vortices, which assign
gap minima to the directions of the extended intensity
in real space. This is probably reasonable in the case of
true nodes, as indicated by the d-wave examples shown,
but fails if these minima are not sufficiently deep due to
the competition with the Fermi surface effects. Now that
the basic structure of this competition in the case of the
the ZDOS has been understood, it is interesting to ask
what may happen in the case of finite energies ω 6= 0.
Fig. 3 shows the calculated LDOS N(r, ω) as a function
of energy at the vortex core center (a,b,c) and one co-
herence length away from the center in the 0◦ direction
(d,e,f) and 45◦ direction (g,h,i). The spectrum is quite
insensitive to the Fermi surface shape at the vortex core
center where the results for the circular FS and LiFeAs γ
pocket are almost the same. Away from the vortex center
the direction-dependent LDOS N(r, ω = 0) reflects the
competition between gap and Fermi surface anisotropy.
The higher/lower LDOS of the LiFeAs γ pocket/circular
FS at zero energy in Fig. 3(i) than that in Fig. 3(f) is
equivalent to our result shown in Fig. 2. The quasiclassi-
cal theory incorporates the FS properties solely via vF ,
and thus does not account for the possible changes in the
shape of the constant energy surfaces for STS biases away
from zero. Provided the band shape varies very slowly
on the scale of Tc, this neglect should not significantly af-
fect the shape of vortex bound states at nonzero energy,
however. On the other hand, even within the current
model, a more important effect may be included. In our
analysis of LiFeAs, we have until now neglected all Fermi
surface pockets except the outer (γ) hole pocket, due
to its square shape and because it seems likely to have
the smallest gap. When the bias is increased, higher en-
ergy quasiparticle states, including those associated with
larger gaps, will be probed. Within spin fluctuation the-
ory5, both the high density of states α2 pocket, and the
electron pockets, tend to have gap minima along the 0◦

directions. Thus as higher energies are probed, it is pos-
sible that rotations of the bound state shape may take
place as the balance between gap structure and Fermi
surface anisotropy is altered. Unfortunately even qual-
itative statements depend on the details of the sizes of
gaps and gap anisotropies on each sheet, as well as on
the various Fermi velocities for each band. The LiFeAs
system is quite clean, however, and if the current con-
troversy between ARPES23 and dHvA24 regarding the
Fermi surface can be resolved, spectroscopies of bound
states on this system should provide enough information
to determine fairly detailed structure of the gap.
Conclusions. We have used quasiclassical methods to

calculate the vortex bound states within a single vortex

approximation, and highlighted the competition between
gap and Fermi surface anisotropy in the determination
of the shape of STS images of vortex bound states. If
the Fermi surface anisotropy is large enough, we have
shown that the tails of vortex bound states at low energy
need not correspond to the smallest gaps in the system,
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FIG. 3. (Color online) Normalized LDOS N(r, ω)/N0 ≡
N̄(ρ, φ, ω) vs energy for different gap models with a circu-
lar Fermi surface (red symbols) and LiFeAs γ pocket (blue
line): (a,d,g) isotropic s-wave gap ∆0; (b,e,h) nodal d-
wave gap ∆0

√
2 cos 2θ; (c,f,i) extended s-wave gap ∆0(1 −

r cos 4θ)/
√

1 + r2/2, r = 0.3. The gap bulk value is taken to
be ∆0 = 1.76Tc. r = (ρ, φ) = (0, φ) for (a,b,c); (ξ, 0◦) for
(d,e,f); (ξ, 45◦) for (g,h,i).

if those gaps are not true nodes. The ZDOS shape mea-
sured by STS in experiments on the LiFeAs system with
very clean surfaces is well reproduced by numerical cal-
culation. Within our model, we attribute the tail-like
spectrum to the effect of the non-uniformly distribution
of Fermi velocity direction on the Fermi surface of the
LiFeAs γ hole pocket. Further measurements of the en-
ergy dependence of bound state shape may further help
identify the gap anisotropy.
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13 J. M. Byers, M. E. Flatté, and D. J. Scalapino, Phys. Rev.
Lett. 71, 3363 (1993).

14 A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod.
Phys. 78, 373 (2006).

15 O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and
C. Renner, Rev. Mod. Phys. 79, 353 (2007).

16 J.-X. Zhu and C. S. Ting, Phys. Rev. Lett. 87, 147002
(2001).

17 H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys.
Rev. Lett. 64, 2711 (1990).

18 N. Hayashi, M. Ichioka, and K. Machida, Phys. Rev. Lett.
77, 4074 (1996).

19 X. Hu, C. S. Ting, and J.-X. Zhu, Phys. Rev. B 80, 014523
(2009).

20 D. Wang, J. Xu, Y.-Y. Xiang, and Q.-H. Wang, Phys.
Rev. B 82, 184519 (2010).

21 Y. Yin, M. Zech, T. L. Williams, X. F. Wang, G. Wu, X. H.
Chen, and J. E. Hoffman, Phys. Rev. Lett. 102, 097002
(2009); L. Shan, Y. Wang, B. Shen, B. Zeng, Y. Huang,
A. Li, D. Wang, H. Yang, C. Ren, Q. Wang, et al., Nature
Physics 7, 325 (2011).

22 D. J. Singh, Phys. Rev. B 78, 094511 (2008).
23 S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky,

T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk,
G. Behr, A. Vasiliev, R. Follath, and B. Büchner, Phys.
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