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Using a discrete-lattice approach, we calculate the conductance spectra between a normal-metal
and an s-wave Larkin-Ovchinnikov (LO) superconductor, with the junction interface oriented along

the direction of the order parameter (OP) modulation. The OP sign reversal across one single nodal
line can induce a sizable number of zero-energy Andreev bound states around the nodal line, and a
hybridized midgap-states band is formed amid a momentum-dependent gap as a result of the periodic
array of nodal lines in the LO state. This band-in-gap structure and its anisotropic properties give
rise to distinctive features in both the point-contact and tunneling spectra as compared with the
BCS and Fulde-Ferrell cases. These spectroscopic features can serve as distinguishing signatures of
the LO state.

PACS numbers: 74.25.fc 74.20.Pq 74.55.+v

I. INTRODUCTION

When a spin-singlet superconductor is subjected to a
Zeeman magnetic or exchange field, the Fermi surfaces
of spin-up and -down electrons can undergo energy split-
ting. If this pair-breaking field is sufficiently strong,
the order parameter (OP) can become spatially peri-
odic, as proposed by Fulde and Ferrell1 and by Larkin
and Ovchinnikov2 independently. In the Fulde-Ferrell
(FF) scenario, the pairing is between (k + q/2, ↑) and
(−k + q/2, ↓) electrons, which results in an order pa-
rameter (OP) of the form ∆q exp iq · x with a winding
phase factor where q is the pairing momentum. In the
Larkin and Ovchinnikov (LO) scenario, the OP is spa-
tially modulated with periodic sign reversal, the simplest
case being 2∆q cosq ·x. Such pairing states are now col-
lectively known as the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state. This novel inhomogeneous superconduct-
ing state has attracted broad theoretical interest3–18 due
to the experiments suggestive of its existence in various
superconductors such as heavy-fermion,19–21 organic and
other superconductors,22,23 and its possible realization
in cold atom systems,24,25 high-density quark matter,
and nuclear matter.26 Though it is long believed that
the FFLO state can only exist in unconventional super-
conductors, experimental indication of disordered FFLO
phase was reported in a conventional superconductor re-
cently.27 However, direct evidence for the periodic OP
variation is still desirable.28–33

To help identify the FFLO state unambiguously, we
previously proposed using conductance spectroscopy of
normal-metal (N)/ superconductor (S) junctions as an
experimental probe, treating the FF state first as an il-

lustrative case in that work.34 However, only the spectral
characteristics of a momentum-dependent gap due to a
single non-zero pairing momentum are discussed there.
Here we show that the periodic OP sign reversal of the
LO state can lead to further distinctive features in both
point-contact and tunneling conductance spectra when
the junction interface is oriented perpendicular to the
OP nodal lines. These features are the result of repeated
intrinsic Andreev reflections around each nodal line in
the bulk superconductor and can be used to distinguish
the LO state from both the BCS and the FF states.
When an electron from N is incident on S at an en-

ergy within the superconducting gap, it can enter S via a
process known as Andreev reflection,35,36 whereby a hole
of nearly equal momentum is retro-reflected at the N/S
interface and a Cooper pair emerges simultaneously in S.
An important application of Andreev reflection is when
the OP experienced by a quasiparticle changes sign upon
a specular reflection at a barrier interface, such as in a
finite-impedance NIS junction oriented along a nodal line
of a dx2−y2-wave superconductor [see Fig. 1(a)]. Midgap
surface states (MSS) of practically zero energy37 are
formed near the interface due to repeated Andreev and
specular reflections, in accordance with the Atiyah-Singer
index theorem in topology.38 A distinct manifestation of
these MSS is the zero-bias conductance peak (ZBCP)
observed in the N/S tunneling spectra on various un-
conventional superconductors,36,39,40 sometimes with ro-
bust spectral height and sharpness.41 These MSS are also
manifested in penetration-depth measurements.42,43

Midgap quasiparticle states can also form about an
isolated real-space nodal line of a tanh(x)-like OP in-
side the superconductor as a result of repeated Andreev
reflections alone, without involving specular reflection
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and thus the OP sign reversal in momentum-space [see
Fig. 1(b)]. In the LO state, the intrinsic OP sign re-
versal over a periodic array of real-space nodal lines
[see Fig. 1(c)] will cause the formation of a hybridized
midgap-states band (HMSB),31,32 which cannot form in
either the BCS or the FF states. The states in this
HMSB, being anisotropic bulk quasiparticle states in na-
ture, can facilitate the transmission of the incident elec-
trons mainly along the nodal lines if only the nodal lines
are intercepted by the junction interface.44 These states
will then reduce the probability for Andreev reflection
at the interface. Consequently, novel features related
directly to the periodically sign-reversing OP are man-
ifested in the conductance spectra, depending on both
the N/S junction orientation and impedance.

It should be noted that these bulk manifestations of
the LO state are independent of the pairing symmetry,
since the formation of the bulk midgap states does not
require momentum-space OP sign reversal. Therefore d-
wave pairing symmetry will not disrupt these bulk man-
ifestations qualitatively, even though quantitative spec-
tral differences are expected to appear. Furthermore, the
bulk manifestations of the LO state can also be systemat-
ically distinguished from the surface manifestations of a
d-wave OP arising from the MSS, i.e. the ZBCP in tun-
neling spectra,37 because a barrier layer is required to in-
duce the MSS [see Fig. 1(a)]. Therefore, the MSS can ap-
pear only in finite-impedance spectra as a midgap peak,
but disappear in zero-impedance point-contact spectra.
In contrast, the bulk HMSB states can appear in both
finite- and zero-impedance spectra because they are es-
sentially bulk quasiparticle states.

In order to demonstrate the mechanism of the HMSB
in identifying the LO state, we focus on s-wave super-
conductors so that the MSS formed at the N/S-interface
barrier due to momentum-space OP sign reversal are ex-
cluded and only the essential differences between the LO
and FF states are illustrated. We present the calculated
conductance spectra of the LO state with the N/S in-
terface parallel to q (hence perpendicular to the nodal
lines) in a discrete-lattice model, along with that of the
FF state for comparison. A continuum model for the
high-impedance junction where the interface is normal

to q (hence parallel to the nodal lines) has been given by
Tanaka et al.45

This paper is organized as follows. In Section II, we
introduce the model and present the numerical results on
the density of states (DOS) and conductance spectra of
both the LO and the FF cases. After an analysis of the
band structures of both the FF and the LO states, the
manifestations of the HMSB in the conductance spec-
tra which occur in the LO state only are discussed in
Section III. Concluding remarks are offered in Section
IV. Throughout this paper we consider zero temperature
only in order to illustrate the essential physics.

FIG. 1. (color online) Formation of the Andreev midgap
states: (a) on the (110) surface of a dx2

−y2 -wave supercon-
ductor; (b) about the nodal line of an s-wave superconductor
with a tanh(x)-like order parameter. In both cases, a quasi-
electron (solid arrow) is retro-reflected near the surface or the
nodal line (white line) as a quasi-hole (dashed arrow) and
vice versa. Essentially zero-energy midgap states are formed
near the interface due to the order-parameter sign reversal ex-
perienced by repeated Andreev reflections. (c) Schematic of
the spatial variation of the OP of the LO state with periodic
sign-reversal. The Andreev midgap states, which form in the
vicinities of the periodically-spaced nodal lines, are coupled
to become a hybridized midgap-states band.

II. MODEL AND NUMERICAL RESULTS

Here, we consider a quasi-two-dimensional (2D) mate-
rial, with the magnetic field applied parallel to the layers.
We let the N/S junction interface be perpendicular to the
layers. The q-vector describing the one-dimensional OP
variation is assumed to be in the layers and along the
interface. We choose a coordinate system such that the
x-axis is perpendicular to the N/S interface, and the y-
axis is along q. The layers of the material are therefore
parallel to the xy plane shown in Fig. 2(a). In this geome-
try, the orbital effect is very weak and can be neglected to
a good approximation (especially if the sample thickness
along z is much smaller than the Josephson penetration
depth of the sample). Thus only conductance within the
layers needs to be considered. For simplicity, we assume
that the N side is similarly quasi-2D. We can then reduce
the problem to a 2D problem.

We use a discrete square-lattice application of the
Blonder-Tinkham-Klapwijk (BTK) theory.46 The semi-
infinite N and S regions are on the left (x < 0) and right
(x > 0) sides of the interface, respectively. The barrier at
the interface (x = 0) is modeled by a scattering potential
U0δx,0 with the barrier-strength parameter Z = U0/2t
where t is the hopping integral and is taken to be 1 as
the unit of energy. The quasiparticles of the system are
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described by the Bogoliubov-de Gennes (BdG) equations,

∑

j

(

Hij,σ ∆ij

∆∗

ji −H∗

ij,σ̄

)(

ujσ

vjσ̄

)

= E

(

uiσ

viσ̄

)

(1)

where i = (x, y) is the site position in units of lattice
spacing which is set to be 1; Hij,σ = −t

∑

1 δi+1,j+(σh−
µ)δij + U0δx,0; 1 denotes (±1, 0) and (0,±1); σ = ±1 is
the spin index and σ̄ = −σ; h is the Zeeman field; µ is the
chemical potential; ∆ij is the OP and ∆ij = ∆iδi,j for an
s-wave superconductor; ujσ and vjσ̄ are the amplitudes of
quasi-electron and quasi-hole components, respectively.
The proximity effect at the N/S junction interface is ne-
glected and the OP of the S side is taken to be the bulk
one, since we are interested in the bulk properties here as
in the original BTK theory. Here, we let the OP of the LO
state be ∆i =

∑

α ∆αe
iαy, where the reciprocal lattice

vector α = 0, 2π/a, · · · , 2π(a − 1)/a and a is the period
of the OP. According to the Bloch theorem, the quasi-
particle amplitude is a plane-wave factor with crystal

y-momentum Ky ∈ (−π/a, π/a] and true x-momentum
kx ∈ (−π, π] times a function of period a along y. For a
given incident electron beam of spin σ with energy E and
true y-momentum ky = Ky +α, we solve the BdG equa-

tions on a square lattice, to obtain B
Ky

αα′,σ and A
Ky

αα′,σ̄
which are respectively the probabilities of reflected elec-
trons and holes with true y-momentum Ky+α′. The dif-
ferential conductance of the N/S junction is then given
by the Landauer-Büttiker-like formula,

Gns
σ =

1

Ly

∑

Ky,α

[

1 +
∑

α′

(A
Ky

αα′,σ̄ −B
Ky

αα′,σ)

]

, (2)

where the junction size Ly along y is an integer multiple
of a. It can be seen from Eq. (1) that the dependence of
Gns

σ on ∆E = E−σh is the same for both σ = ±1 and the
conductances due to σ = +1 and −1 incident electrons
are not coupled. Thus the total conductance Gns(E) =
Gns

+1(E) +Gns
−1(E) and only the portion with one spin σ

will be considered in the following. Also, both the N/S
conductance Gns

σ and the density of states (DOS) in the
superconducting state are divided by their corresponding
normal-state values at each E to yield the normalized
Gσ(E) and ρσ(E), respectively.
In our numerical calculations, we take the chemical

potentials of both sides to be the same µ = −3, so
that the Fermi surface is close to being circular and the
Fermi momentum is roughly given by kF = 1 for conve-
nience. For a Zeeman field substantially above the lower
critical field of the LO state, the OP can be approxi-
mated as ∆i = 2∆q cos qy, where q = 2π/a. We note
that a is determined by the strength of the pairing in-
teraction (and thus the OP and the coherence length).
However, for a given h/∆BCS, ∆qa is fixed because it
measures the ratio of the period length over coherence
length [which is equivalent to (qvF /∆q)

−1 in a continuum
model]. With increasing h/∆BCS, ∆qa will decrease. A
self-consistent calculation of the OP with h/∆BCS = 0.8

yields ∆qa ≈ 1.5, in our model. Therefore, in Fig. 2,
we take ∆q = 0.075 and a = 20 as an example to il-
lustrate the physics. We also calculate two more cases
with ∆q = 0.015, a = 100 (Fig. 3) and ∆q = 0.025,
a = 20 (Fig. 4) to show the situations with weak pairing
interaction and strong Zeeman field, respectively. The
junction size along y is fixed at Ly = 200, 000 and peri-
odic boundary condition is adopted. The x-momentum
of the incident electron and those of the reflected elec-
tron and hole are not assumed to be equal in magnitude
as in the BTK theory. Therefore the corresponding group
velocities are unequal, causing the Gσ(E) spectra to be
asymmetric about ∆E = 0.

III. MANIFESTATIONS OF HYBRIDIZED

MIDGAP-STATES BAND IN CONDUCTANCE

SPECTRA

Before investigating the spectroscopic features of the
LO and FF states, we need to first understand their band
structures. For the FF state, due to the non-zero pairing
momentum, the quasiparticle energy is given by

∆Ek,q = ξ
(a)
k,q ±

√

ξ
(s)2
k,q +∆q

2, (3)

where ξ
(a)
k,q = (ξk+q/2 − ξ−k+q/2)/2, ξ

(s)
k,q = (ξk+q/2 +

ξ−k+q/2)/2, and ξk = −2t(coskx + cos ky) − µ is the ki-
netic energy of a +k electron, relative to µ. From Eq. (3),
we see that the gap of size ∆q is no longer centered at

∆E = 0, but is shifted by ξ
(a)
k,q which has the same sign

as ky for pairing momentum +q [Fig. 2(b)]. Since each
gap shift in the FF case involves a single sign of ky, such
that the dispersion curves for the opposite sign of ky cross
inside the shifted gaps, we obtain a quasiparticle disper-
sion without a clear gap for the FF state [Fig. 2(c)].47 For
the LO state however, there is now also pairing between
(k−q/2, ↑) and (−k−q/2, ↓) which causes a large number
of y-momentum states to be coupled. In essence, our nu-
merical treatment reveals that the crossings shown in the
dispersion curves of the FF case become anti-crossings.
Consequently, a kx-dependent gap appears in the disper-
sion, centered at ∆E = 0, with a HMSB lying inside
this gap [Figs. 2(b) and (d)]. The surviving gaps on the
two sides of the HMSB have roughly the same sizes and
locations as the Zeeman-shifted gaps in the FF case, be-
cause they actually arise from the crossing/anti-crossing
conversion.
As a result, bulk DOS with several singularities are

obtained as shown in Figs. 2(e) and (f). Here, we find
two types of singularities. One type are related to states
with momenta parallel to q (i.e. with kx = 0; see dashed
arrows in Fig. 2); the other type appears to be always
associated with states with large kx, and therefore with
momenta nearly perpendicular to q (thus along the nodal
lines; see solid arrows of the same figure). The momen-
tum directions of the states contributing to these singu-
larities can be more easily understood by referring the
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FIG. 2. (color online) Numerical simulations illustrating the effects of the hybridized midgap-states band on the DOS and N/S
junction conductance spectra. (a) Schematic of an N/S junction for the s-wave LO case considered in our model, with the N/S
interface (x = 0) parallel to the pairing momentum q. The OP variation is assumed to be within the layers of the quasi-2D
material, which are parallel to the xy-plane. (b) Trajectories of the gap centers of the FF states with pairing momenta of +q

(red dashed line) and −q (blue dotted line), respectively, along with the Fermi surface of the normal state (solid line). (c – d):
The quasiparticle energy-momentum dispersions for s-wave FF (c) and LO (d) superconductors, respectively, with different
crystal y-momenta Ky . The dispersion curves are symmetric about the true x-momentum kx = 0. In (d), the gray shading
marks out regions in (kx, E)-space where states exist, while in (c), the gray shading is the overlap of the regions occupied by
states of positive (blue shading) and negative (yellow shading) ky . (e – f): The normalized DOS ρσ(E) for the FF (e) and LO
(f) states in a bulk superconductor. (g – h): The normalized conductances Gσ(E) of the FF (g) and LO (h) states in the point-
contact (Z = 0) and tunneling (Z = 5) limits. The green dashed (cyan solid) arrows indicate that the singularities in the DOS
and Gσ(E) spectra originate from states in the quasiparticle dispersion which have momenta nearly parallel (perpendicular)
to the pairing momentum q. Here E is the quasiparticle energy, σ is the spin index, h the Zeeman energy and t the hopping
integral. In this case, we take LO OP ∆q = 0.075 and the period length a = 20 for a better illustration of the fine features of
the DOS and the junction conductance. See text for the values of other parameters used.
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FIG. 3. (color online) Numerical simulations illustrating the situation with weak pairing interaction. The figures are the same
as Figs. 2(c) – (h) except ∆q = 0.015 and a = 100. The energy range is changed to [−0.1, 0.1] as a result of the small ∆q

compared with Fig. 2.

values of kx on the Fermi surface shown in Fig. 2(b).
The singularities of each type can be further divided
into two categories according to their origins, one due
to the HMSB states and the other from the outer edges
of the surviving gaps. For the “parallel-momenta” type
of singularities, the energy difference of the singularities
of the two origins is about 2∆q and thus decreases with
increasing Zeeman field [see Figs. 2(f) and 4(d)]. For
the “perpendicular-momenta” singularities, the ones due
to the HMSB states approach ∆E = 0 upon increas-
ing the period-length a with fixed h/∆BCS and there is
always a gap separating the singularities of the two ori-
gins apart [see Figs. 2(f) and 3(d)]. In FF state, we
only have the “parallel-momenta” singularities but not
the “perpendicular-momenta” singularities because the
HMSB is absent in the FF state.

In the point-contact or metallic-junction limit (Z = 0),
Andreev reflection can occur with 100% probability for
E inside a clean gap to enhance Gσ(E) by a factor of
exactly two, since one hole retro-reflected in N means
one electron from within the Fermi sea of N has also
moved from N into S. However, this enhancement would
be reduced if transmission across the N/S interface could
proceed via quasiparticle states at the incoming energy.
These tendencies are well manifested in the s-wave BCS

case, where Gσ(E) is exactly 2 inside the gap and reduces
gradually to 1 outside the gap, by virtue of an energy-
dependent transmission coefficient.46 For the FF state,
Gσ(E) cannot exceed 1.5, since the kx-dependent shift of
the gap renders Andreev reflection non-dominant in any
energy range after summing over all ky states [Fig. 2(g)].
For the LO state, in contrast, Gσ(E) can exceed 1.5 for
energies within the surviving gaps, which occur on the
two sides of the HMSB, where Andreev reflection can oc-
cur for a large range of kx [red dashed line in Fig. 2(h)].
Here Gσ(E) cannot reach 2.0 for any energy, since the
HMSB essentially consists of quasiparticle states which
can now facilitate the transmission of the incident elec-
trons into S. This quasiparticle transmission, even if re-
duced from 100% by N/S impedance mismatch, does di-
minish the subgap enhancement of Gσ(E) and cause it
to show a dip in an energy range around ∆E = 0 where
the HMSB exists.

As already discovered in our BTK model for the FF
state,34 the tunneling (Z ≫ 1) conductance measures
the weighted DOS that sums over states with a projec-
tion factor, which favors quasiparticle states with mo-
menta nearly perpendicular to the N/S interface when
only the bulk properties are involved. Therefore, the
“parallel-momenta” singularities shown in the bulk DOS
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FIG. 4. (color online) Numerical simulations illustrating the situation with reduced Zeeman field h/∆BCS. The figures are the
same as Figs. 2(c) – (h) except ∆q = 0.025 and a = 20.

are suppressed in the tunneling conductance spectrum
[Fig. 2(h)] when the N/S interface is parallel to q. How-
ever these “parallel-momenta” singularities are expected
to re-emerge when their corresponding momenta are no
longer parallel to the interface, such as in the situation
where the interface is tilted from the present direction.
An interesting situation to illustrate this expectation can
be achieved by hypothetically raising the chemical poten-
tial to µ = −1 so that the Fermi surface is changed from a
nearly circular shape to a squarish shape [Fig. 5(a)]. Here
we obtain two singularities associated with momenta nei-
ther parallel nor perpendicular to q [see dash-dotted
arrows in Fig. 5 and the circled shading in Fig. 5(a)],
and these singularities appear in the tunneling conduc-
tance as expected. As to the “perpendicular-momenta”
singularities, they are faithfully reproduced in the tun-
neling conductance spectrum of our choice of the inter-
face orientation because they are essentially unaffected
by the projection-factor weighting. For the FF state,
the “parallel-momenta” singularities [Fig. 2(e)] show very
similar behavior [Fig. 2(g)].

These observations agree well with the HMSB physics
reviewed in the introduction. For the LO state, the
HMSB states, formed around the nodal lines, pro-
duce a broad DOS hump near ∆E = 0, as well as
“perpendicular-momenta” singularities within this hump

due to accumulation of spectral contributions. When the
interface intercepts the nodal lines, the nodal lines of
the OP behave effectively as channels for transmission
because of the hybridized midgap states formed mainly
near and along these nodal lines. Thus electrons can be
transmitted from N to S as HMSB quasiparticles, caus-
ing a decrease in the metallic-junction conductance due
to reduced probability for Andreev reflection, and an in-
crease in the tunneling conductance due to resonant tun-
neling. This junction orientation can always be realized
on a finite-sized sample. Note that, provided the size of
the superconducting sample is not large enough to ac-
commodate multi-domains of the LO state, we have only
one direction of the nodal lines for the whole sample. It
is then possible to pick one of the several differently ori-
ented faces of the sample for making junctions so that the
nodal lines intercept the interface and the manifestations
of the HMSB discussed here can be observed. These man-
ifestations of the HMSB can also survive in the presence
of disorder due to the topological origin of the midgap
states. As shown in Ref. 27, when the disorder strength
is not strong enough to destroy the LO state, a broad
hump of lower height appears inside the gap and around
∆E = 0 in the DOS spectrum as a result of the HMSB.
However the DOS singularities discussed here are elim-
inated because disorder will spread the energies of the
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FIG. 5. (color online) Numerical simulations illustrating the
situation with chemical potential µ increased for the LO state.
Here, µ = −1, ∆q = 0.075, and a = 20. (a) The Fermi
surface of µ = −1 (solid line) compared with that of µ =
−3 (dashed line). (b – d) The same as Figs. 2(d), (f) and
(h). The singularities in DOS marked by green dash-dotted
arrows are related to states with momenta neither parallel nor
perpendicular to q [see the circled green shading in (a)].

originally accumulated states to a larger energy range.
We therefore find that the manifestations of the HMSB
in the junction conductance, which are consequences of
the unique periodically sign-reversing structure of the LO
OP, can be used to identify the LO state effectively.

IV. CONCLUSION

In conclusion, by applying a discrete square-lattice
BTK model to a spatially-periodic superconducting OP,
we have investigated signatures of the FFLO state in the
N/S conductance spectroscopy. We have focused on the
s-wave LO case with the N/S interface oriented along
the pairing momentum q, expanding on previous works
which include our prior treatment of the FF case. Unique
to the LO case is the HMSB, which is formed amid a
momentum-dependent gap as a result of the periodic OP
sign reversal. These HMSB states are hybridized from
essentially dispersionless midgap quasiparticle states lo-
calized along the nodal lines and can help the transmis-
sion of incident electrons into the superconductor. This
specific band-in-gap structure is thus shown to give rise
to distinctive conductance features, which are absent in
the FF case. Our results are generically robust, i.e. they
are expected to be qualitatively valid for all junction ori-
entations where the nodal lines are intercepted by the
N/S interface, and in the presence of disorder as long
as the LO state is not destroyed. We therefore con-
clude that these generic manifestations of the HMSB and
the surviving gaps discussed here can be systematically
probed with tunneling and point-contact spectroscopy on
oriented sample surfaces, to provide clear experimental
signatures for distinguishing the LO state from the FF
state, and both from the BCS state.
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