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Planar spin-transfer devices with dominating easy-plane anisotropy can be described by an ef-
fective one-dimensional equation for the in-plane angle. Such a description provides an intuitive
qualitative understanding of the magnetic dynamics. We give a detailed derivation of the effective
planar equation and use it to describe magnetic switching in devices with tilted polarizer.
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I. INTRODUCTION

Spin-transfer effect is a non-equilibrium interaction
that arises when a current of electrons flows through a
non-collinear magnetic texture1–3. Spin-transfer torque
can lead to current induced magnetic switching in mul-
tilayer devices or domain wall motion in devices with
continuous change of magnetization.4–6 Both phenomena
serve as an underlying mechanism for a number of sug-
gested memory and logic applications.7,8

Magnetic dynamics in spin-transfer devices is de-
scribed by the Landau-Lifshitz-Gilbert (LLG) equation
with added current-induced torques.2,6 Analytic solu-
tions of LLG can be readily found in the simplest case
of an easy axis magnetic anisotropy. However, when the
form of anisotropy energy becomes more complicated, in-
vestigations of the static equilibria stability become much
more involved.9 A study of precession cycles is even more
complicated10 and often makes it necessary to resort to
numeric simulations.11,12 Due to the complexity of the
LLG equation it is always interesting to consider cases
where some simplifying approximations can be made.

In many devices the easy plane anisotropy energy is
much larger than the other anisotropy energies, and
the system is in the planar spintronic device regime13

(Fig. 1). The limit of dominating easy plane en-
ergy is characterized by a simplification of the dynamic
equations14, which comes not from the high symmetry of
the problem, but from the existence of a small parame-
ter: the ratio of the energy modulation within the plane
to the easy plane energy. Strong easy plane anisotropy
forces the deviations of the magnetization from the plane
to be small, making the motion effectively one dimen-
sional. As a result, an effective description in terms of
just one azimuthal angle becomes possible.

Our publications15–19 extended the planar approxima-
tion to systems with spin-transfer torques and presented
a number of results, highlighting the practical use of the
method. In this paper we give a detailed derivation the
effective planar equation for a macrospin free layer in the
presence of spin transfer torques (Sec. III). We then show
how this equation can be applied to a system with the
tilted polarizer and obtain a qualitative picture of the

device dynamics (Sec. IV).

II. MAGNETIC DYNAMICS OF THE FREE

LAYER

We consider a conventional spin-transfer device con-
sisting of a a magnetic polarizer (fixed layer) and a small
magnet (free layer) with electric current flowing from one
to another (Fig. 1). The free layer is influenced by spin-
transfer torque, while the polarizer is too large to feel it.
It is assumed that in the limit of large exchange stiffness
the free layer can be described by a macrospin model,
where its state is characterized by just one vector, the
total magnetic moment M = Mn with a constant abso-
lute value M and a direction given by a unit vector n(t).
The LLG equation2,9 reads:

ṅ =

[

− δε

δn
× n

]

+ u(n)[n× [s × n]] + α[n× ṅ] . (1)

Here the re-scaled energy ε = (γ/M)E has the dimen-
sions of frequency and is expressed through the total
magnetic energy E(n) of the free layer; γ is the gyro-
magnetic ratio, and α is the Gilbert damping constant.
The second term on the right hand side of the equation is
the spin transfer torque. Unit vector s points along the
polarizer direction. We do not impose any restrictions on
the fixed layer (e.g., it is not required to have a strong

s

 

j
n

j
n

s
(A) (B)

FIG. 1: Planar spin-transfer systems driven by current j.
Hashed parts of the devices are ferromagnetic and clear parts
are made from a non-magnetic metal. Spin polarizers have
arbitrary magnetization directions s, while the free layer mag-
netization n is directed in the easy plane.
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planar anisotropy) and assume that the direction of s can
be arbitrary (Fig. 1). The spin transfer strength u(n) is
proportional to the electric current I,9 and in general is
a function of the angle between the polarizer and the free
layer u(n) = g[(n·s)] I. The spin current efficiency factor
g[(n · s)] is a material and device specific function.20

In standard polar coordinates θ and φ (see Fig. 8 in
Appendix A) equation (1) reads

θ̇ + αφ̇ sin θ = − 1

sin θ

∂ε

∂φ
+ u(n)(s · eθ) ,

φ̇ sin θ − αθ̇ =
∂ε

∂θ
+ u(n)(s · eφ) , (2)

where the unit tangent vectors eθ and eφ are also defined
in Appendix A.
We choose the easy plane to be defined by θ = π/2,

and write the re-scaled magnetic energy in the form

ε =
ωp

2
cos2 θ + εr(θ, φ) , (3)

where the first term represents the easy plane anisotropy,
with the planar frequency ωp related to the easy plane
constant Kp as ωp = γKp/M . The remainder εr is
the “residual” energy. The planar limit is character-
ized by ωp → ∞. Large easy plane constant forces the
energy minima to be very close to the easy plane and
the low energy solutions of LLG to have the property
θ(t) = π/2 + δθ with δθ → 0. Equations (2) can then be
expanded in small parameters

|εr|
ωp

≪ 1 and
|u(n)|
ωp

≪ 1 .

By truncating this expansion one obtains the effective
planar approximation.

III. DERIVATION OF THE EFFECTIVE

PLANAR EQUATION

Explicitly separating the large easy plane terms, we
rewrite equations (2) as

θ̇ + αφ̇ sin θ = fθ + uθ

φ̇ sin θ − αθ̇ = −ωp cos θ sin θ + fφ + uφ

where the residual energy is responsible for the terms

fθ(θ, φ) = − 1

sin θ

∂εr
∂φ

,

fφ(θ, φ) =
∂εr
∂θ

, (4)

and the spin transfer torque produces the terms

uθ(θ, φ) = u(n)(s · eθ) ,
uφ(θ, φ) = u(n)(s · eφ) . (5)

We also introduce a notation Fθ,φ = fθ,φ + uθ,φ, and
re-write the LLG system as

θ̇ =
Fθ − α(−ωp cos θ sin θ + Fφ)

1 + α2

(6)

φ̇ =
−ωp cos θ sin θ + Fφ + αFθ

(1 + α2) sin θ

Next, we make approximations. In the ωp → ∞ limit
the solution is expected to have a property θ(t) = π/2 +
δθ(t) with δθ → 0. Expanding all quantities on the r.h.s.
of (6) in small δθ up to the first order we get

δθ̇ =
F 0
θ + F 1

θ δθ − α(ωpδθ + F 0
φ + F 1

φδθ)

1 + α2
, (7)

φ̇ =
ωpδθ + F 0

φ + F 1
φδθ + α(F 0

θ + F 1
θ δθ)

1 + α2
, (8)

where we have used the notation

F 0 = F
(π

2
, φ
)

,

F 1 =
∂F

∂θ

(π

2
, φ
)

.

In the approximation (7,8) equations are linear with re-
spect to the unknown function δθ(t), but still fully non-
linear with respect to φ(t).
Eq. (8) can be solved with respect to δθ

δθ =
(1 + α2)φ̇− F 0

φ − αF 0
θ

ωp + F 1
φ + αF 1

θ

= q(φ, φ̇) , (9)

so that the out-of-plane deviation becomes a “slave” of
the in-plane motion.14 The presence of the large ωp in the
denominator ensures the smallness of δθ. Substituting
the resulting expression δθ = q(φ, φ̇) back into equation
(7) one obtains a second order differential equation for a
single unknown function φ(t)

∂q

∂φ̇
φ̈+

∂q

∂φ
φ̇ =

F 0
θ − αF 0

φ

1 + α2
+

(

F 1
θ − αωp − αF 1

φ

1 + α2

)

q .

Denoting Ω(φ) = ωp + F 1
φ + αF 1

θ and simplifying the
terms we get

1 + α2

Ω
φ̈ +

(

α+
∂q

∂φ
− (1 + α2)

F 1
θ

Ω

)

φ̇ =

= F 0
θ −

F 1
θ (F

0
φ + αF 0

θ )

Ω
(10)

In this form the equation is still rather complicated but
since it was obtained from the approximate system (7,8)
we are allowed to drop any terms below the approxima-
tion accuracy. The terms neglected in Eqs. (7,8) were the
second order terms F ′′δθ2 in the expansion of F , and the
third order terms ωpδθ

3 in the easy plane energy expan-
sion. While formally the latter terms are of higher order
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FIG. 2: Typical trajectory of n(t) on a unit sphere in a sys-
tem with a dominating easy plane anisotropy. The azimuthal
angle φ is measured along the equator in the direction shown
by the arrow. The deviation δθ from the equator is small. In
the planar picture vectors n ending in the points A and B

correspond to effective particles with the same coordinates φ

but opposite velocities φ̇.

in the δθ expansion, the presence of a large coefficient
ωp causes them to be comparable to the former terms.
To compare the orders of magnitude of the terms consis-
tently, we need to know the order of magnitude of δθ. At
the present stage we know that δθ is small but its exact
order of magnitude is not known because we do not have
an estimate for the φ̇ term in the numerator of Eq. (9).
A quick way to estimate δθ is to consider a typical tra-

jectory n(t) in a planar system with negligible dissipation
(Fig. 2). In the absence of dissipation the trajectory is an
equipotential line ε(n) = const. Using the energy expres-
sion (3) and denoting the change of the residual energy
on the trajectory as ∆εr, one can find the maximum de-
viation from the equator as δθmax =

√

2∆ǫr/ωp. Below
we will show how the same result can be observed in the
framework of effective planar description.

A. Simple residual energy in the absence of spin

torque

Let us first consider the problem in the absence of
spin transfer,14 assuming a simple form of residual en-
ergy εr = εr(φ). In this case we find f0

φ = f1
φ = f1

θ = 0
and get

q(φ, φ̇) =
(1 + α2)φ̇− αf0

θ

ωp
. (11)

Equation (10) takes a form

1 + α2

ωp
φ̈+ α

(

1− 1

ωp

∂f0
θ

∂φ

)

φ̇ = f0
θ .

Assuming that the residual energy εr(φ) does not have
any special points of fast change we can estimate F 0

θ ∼
ε ≪ ωp. Then

1− 1

ωp

∂f0
θ

∂φ
≈ 1

and we can approximate the equation by

1 + α2

ωp
φ̈+ αφ̇ = f0

θ = −∂εr
∂φ

.

The equation above has the form of the Newton’s equa-
tion for a particle of mass (1 + α2)/ωp moving in a one-
dimensional potential εr(φ), subject to a viscous friction
force with a friction coefficient α.
Our goal is to estimate the value of φ̇, i.e., of the speed

of the “effective particle”. The characteristic speed de-
pends on the total energy of the particle

εtot = φ̇2/2ωp + εr(φ)

and on the relative strength of the friction forces. We will
assume that the total energy is of the order of εr (this is
the mathematical equivalent of our original assumption
about the low-energy dynamics). Furthermore, in the
present paper we will concentrate on the case of α → 0
that corresponds to an almost frictionless motion of the
particle. Then one can use the approximate conservation
of the total energy and obtain the maximum speed from
φ̇2/2ωp = εr, which gives

φ̇ ∼ √
εrωp .

Using similar arguments one can estimate the maximum
acceleration as

φ̈ ∼ εrωp .

Note that the viscous friction can be approximately ne-
glected when αφ̇ ≪ F 0

θ ∼ εr. Thus the Gilbert damping
constant α has to be not just small compared to unity
but satisfy a more stringent inequality

α ≪
√

εr
ωp

≪ 1 . (12)

We see now that φ̇ is the largest term in the denominator
of (11) and hence get an estimate

δθ ∼
√

εr
ωp

, (13)

in accord with the result obtained by considering a tra-
jectory on the unit sphere.

B. Arbitrary residual energy in the absence of spin

torque

Let us return to the approximation (7,8) and assume
a general form of the residual energy εr = εr(θ, φ) but
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still keep the current equal to zero (u = 0, F = f). It
is now possible to use the a posteriori estimate (13) for
δθ to consider the orders of magnitude of the terms. We
start the discussion from the “slave” equation (8). Here

ωpδθ ∼ √
εrωp

f0 ∼ εr

f1δθ ∼ εr

√

εr
ωp

αf0 ≪ εr

√

εr
ωp

αf1δθ ≪ εr
εr
ωp

As we see, the orders of magnitude of the terms form a
series

. . . εr
εr
ωp

, εr

√

εr
ωp

, εr,
√
εrωp . . . (14)

where each term is given by an expression εr(εr/ωp)
n/2.

The terms neglected in transition from (6) to (8) were

ωpδθ
3 ∼ εr

√

εr
ωp

,

∂2f

∂θ2
δθ2 ∼ εr

εr
ωp

.

This means that in (8) one should only keep the terms
of the order εr and higher. Lower order terms would be
comparable to some of the discarded ones. Using this
argument we discard f1δθ, αf0 and αf1δθ. The 1/(1 +
α2) factor in (8) can be expanded using Eq. (12)

1

1 + α2
= 1+ δ, δ ∼ α2 ≪ εr

ωp
.

This shows that 1/(1 + α2) can can be approximated by
unity in (8) without changing the accuracy. After all
those simplifications equation (9) takes the form

q(φ, φ̇) =
φ̇− f0

φ

ωp
.

As for the equation (7), the terms discarded in going
from (6) to (7) were

αωpδθ
3 ≪ εr

εr
ωp

,

∂2f

∂θ2
δθ2 ∼ εr

εr
ωp

,

and therefore we have to keep the terms of the order
εr
√

εr/ωp and higher. Thus the f1δθ and αf0 terms
should be kept in (7) but the αf1δθ terms should be dis-
carded. One can also conclude that it is safe to replace
the factor 1/(1 + α2) by unity. Equation (7) is now re-
placed by

δθ̇ = f0
θ + f1

θ δθ − α(ωpδθ + f0
φ) ,

where one should use

f1
θ δθ = f1

θ

φ̇− f0
φ

ωp
≈ f1

θ φ̇

ωp
,

since the term f1
θ f

0
φ/ωp ∼ ε2r/ωp is of the same order as

the already discarded terms.
Without the discarded terms Eq. (10) reads

φ̈

ωp
+

(

α− 1

ωp

[

∂f0
φ

∂φ
+ f1

θ

])

φ̇ = f0
θ = −∂εr(π/2, φ)

∂φ
.

This is the effective particle equation discussed in the
previous section, except that the viscous friction coeffi-
cient seems to acquire a correction. While this correction
is a small quantity of the order εr/ωp ≪ 1, it is added
to a small number α ≪ 1 and therefore can potentially
change the sign of the dissipation term, leading to a sig-
nificant effect. However, one finds

∂f0
φ

∂φ
+ f1

θ =
∂

∂φ

∂εr
∂θ

+
∂

∂θ

(

−∂εr
∂φ

)

= 0 , (15)

so the correction actually vanishes. We come back to the
effective equation

φ̈

ωp
+ αφ̇ = −∂εr(π/2, φ)

∂φ
,

which corresponds to the most natural generalization of
the equation derived in the previous section. The posi-
tive effective friction coefficient ensures that the effective
particle always stops at an energy minimum point, as
expected for a closed system with dissipation.

C. Effective equation in the presence of spin torque

Finally, we proceed to the derivation of the effective
equation in the presence of spin torque. Consider ap-
proximations (7,8) with εr = εr(θ, φ) and u 6= 0.
The orders of magnitude of the extra terms produced

by the current will depend on the value of u. For the
planar approximation to be valid, the spin torque terms
certainly have to be small compared to the torques pro-
duced by the easy plane anisotropy. The latter are re-
sponsible for the terms of the order

√
εrωp in Eqs. (7) and

(8). Thus it seems that u should not exceed εr, which
is the largest term before

√
εrωp in the series (14). Such

a conclusion is correct for a general situation. We will,
however, see below that in some special cases the current
can be increased up to u ∼ √

εrωp without violating the
dominance of the easy plane anisotropy torque.
To include those special cases we assume u <∼

√
εrωp

and revisit Eqs. (7,8) discarding the terms smaller than

εr
√

εr/ωp in Eq. (7), and smaller than εr in Eq. (8).
Eq. (8) acquires the form

φ̇ = (ωp + u1
φ)δθ + f0

φ + u0
φ ,
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where, just like in the previous section, the factor 1/(1+
α2) was approximated by unity without loss of accuracy.
By solving for δθ and expanding the denominator up to
the same accuracy we find the form of the slave condition
(9)

δθ =

(

1−
u1
φ

ωp

)

φ̇

ωp
−

f0
φ + u0

φ

ωp
+

u1
φu

0
φ

ω2
p

. (16)

Differentiating both sides one gets a formula

δθ̇ =

(

1−
u1
φ

ωp

)

φ̈

ωp
−

∂u1
φ

∂φ

φ̇2

ω2
p

−

−
(

∂f0
φ

∂φ
+

∂u0
φ

∂φ
− 1

ωp

∂
[

u1
φu

0
φ

]

∂φ

)

φ̇

ωp
(17)

for the time derivative of the out-of-plane angle.
Returning now to Eq. (7), we find that with the de-

clared accuracy it can be rewritten as

δθ̇ = f0
θ + u0

θ − αu0
φ +

(

f1
θ + u1

θ − αωp

)

δθ .

Substituting δθ from (16) and discarding any terms that

are smaller than εr
√

εr/ωp, we get

δθ̇ = f0
θ + u0

θ −
(

α− f1
θ + u1

θ

ωp
+

u1
θu

1
φ

ω2
p

)

φ̇−

−
f1
θ u

0
φ + u1

θf
0
φ + u1

θu
0
φ

ωp
+

u1
θu

1
φu

0
φ

ω2
p

.

The last step is to use Eq. (17) to express δθ̇ on the left
hand side. This gives the form of the effective equation
(10) without the terms below our accuracy

(

1−
u1
φ

ωp

)

φ̈

ωp
+

+

(

α− 1

ωp

[

∂f0
φ

∂φ
+ f1

θ +
∂u0

φ

∂φ
+ u1

θ

]

−

+
1

ω2
p

[

∂
[

u1
φu

0
φ

]

∂φ
+ u1

θu
1
φ

])

φ̇−
∂u1

φ

∂φ

φ̇2

ω2
p

=

= f0
θ + u0

θ −
f1
θ u

0
φ + u1

θf
0
φ + u1

θu
0
φ

ωp
+

u1
θu

1
φu

0
φ

ω2
p

.

The bracketed expression on the second line can be fur-
ther simplified using the identity (15).
We now cast the effective planar equation in its final

form

mφ̈+ αeff φ̇−
(u1

φ)
′

ω2
p

φ̇2 = −(εeff )
′ . (18)

Here primes denote differentiation with respect to φ, and

the parameters are given by

m =
1

ωp

(

1−
u1
φ

ωp

)

,

αeff = α−
(u0

φ)
′ + u1

θ

ωp
+

(

u1
φu

0
φ

)

′

+ u1
φu

1
θ

ω2
p

, (19)

εeff = εr

(π

2
, φ
)

+ U ,

−U ′ = u0
θ −

f1
θ u

0
φ + u1

θf
0
φ + u1

θu
0
φ

ωp
+

u1
θu

1
φu

0
φ

ω2
p

.

Equations (18) and (19) constitute the first main result
of this paper.
In the presence of the current the right hand side of

(18) contains additional “effective forces” added to the
zero current term −εr

′. All these forces can be repre-
sented as derivatives of an additional energy U due to
the fact that we are dealing with the functions of one
variable.
One of the effective forces, namely the u0

θ term, re-
quires a special discussion. When u ∼ √

εrωp this term
becomes larger than εr

′ on the right hand side of Eq. (18),

and the estimates for φ̇ and φ̈ made in Sec. III A become
invalid. As discussed above, this means that in a general
case with non-zero u0

θ the effective equations (18, 19) can
be only used for currents u <∼ εr. However, if u

0
θ is iden-

tically equal to zero, while the other spin torque terms in
U and αeff remain non-zero, one can apply Eqs. (18, 19)
for currents up to u ∼ √

εrωp. We will see an example of
such a situation in Sec. IVA below.
In the absence of current, corrections to the friction

coefficient vanish, giving αeff = α > 0. When the cur-
rent is turned on, the sign of the friction coefficient may
change15–19, reflecting the possible influx of the energy
from the current source into the system.

IV. TILTED POLARIZER DEVICE

We now present the application of the effective planar
equation approach to devices with a “tilted polarizer”
geometry, which recently became a subject of a number
of investigations.21–30

The general discussion of Sec. III C is applica-
ble to a polarizer with arbitrary direction, s =
(sin θs cosφs, sin θs sinφs, cos θs). In this section we will
consider a special case of s lying in the (x, z) plane, i.e.,
φs = 0 (see Fig. 8). Vector s constitutes an angle of
π/2 − θs with the easy plane. To calculate uθ and uφ

from Eq. (5) one needs to know the function u(n). In
many cases2,20 it has a form

u(n) =
g0I

1 + g1(n · s) .

We will consider the case of small g1 ≪ 1 and approxi-
mate

u(n) = g0I(1− g1(n · s)) . (20)
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Using the expressions in Appendix A, we find

uθ = g0I [1− g1(sin θs sin θ cosφ+ cos θs cos θ)]

×(sin θs cos θ cosφ− cos θs sin θ) ,

uφ = −g0I [1− g1(sin θs sin θ cosφ+ cos θs cos θ)]

× sin θs sinφ .

Therefore

u0
θ = −g0I [1− g1 sin θs cosφ] cos θs ,

u0
φ = −g0I [1− g1 sin θs cosφ] sin θs sinφ , (21)

and

u1
θ = −g0I[sin θs cosφ− g1(sin

2 θs cos
2 φ− cos2 θs)] ,

u1
φ = −g0Ig1 sin θs cos θs sinφ . (22)

A. In-plane polarizer

In the case of in-plane polarizer (θs = π/2) further
simplifications happen:

u0
θ = 0 ,

u0
φ = −g0I(1 − g1 cosφ) sin φ ,

u1
θ = −g0I(1 − g1 cosφ) cosφ ,

u1
φ = 0 .

As we see, the in-plane polarizer happens to be one of
the special cases with u0

θ ≡ 0 discussed at the end of
Sec. III C. Consequently, the effective equation can be
used up to the rescaled currents u ∼ √

εrωp. Coefficients
(19) acquire the form

m =
1

ωp
,

αeff = α+
g0I
[

2 cosφ− g1(3 cos
2 φ− 1)

]

ωp
, (23)

−U ′ = −g0I(1 − g1 cosφ)

ωp
× (24)

× [g0I(1− g1 cosφ) sinφ cosφ −
−(f1

θ sinφ+ f0
φ cosφ)

]

.

Importantly, the φ̇2 term in Eq. (18) vanishes identically.
In Refs. 15,16 the in-plane polarizer was considered in

the case of g1 = 0 and a residual energy

εr = −ωa

2
sin2 θ cos2 φ− h sin θ cosφ , (25)

describing a free layer with a small easy axis anisotropy
ωa ≪ ωp, and an external magnetic field h, both directed
along the x-axis. In this case one finds f1

θ = f0
φ = 0

and expressions (24) reproduce the results obtained in
Refs. 15 and 16.

B. General case of a tilted polarizer

When the polarizer magnetization s points at an arbi-
trary angle θs the term u0

θ is nonzero and we have to limit
the current magnitudes to g0I <∼ εr to maintain the valid-
ity of Eq. (18). With smaller currents more terms can be
discarded from the effecitve equation without changing
its accuracy. Expressions (19) reduce to

m =
1

ωp
,

αeff = α−
(u0

φ)
′ + u1

θ

ωp
, (26)

−U ′ = u0
θ .

Moreover, for g0I <∼ εr the nonlinear term with φ̇2 be-
comes small enough to be dropped from Eq. (18).
The effective planar equation now reads

φ̈

ωp
+ αeff φ̇ = −∂εeff

∂φ
, (27)

where the effective damping and the effective energy can
be expressed through the polarizer tilting angle θs using
Eqs. (21), (22), and (26)

αeff = α+
g0I

ωp
(2 sin θs cosφ− g1[3 sin

2 θs cos
2 φ− 1]) ,

εeff = εr

(π

2
, φ
)

+ g0I(cos θs · φ− g1 sin θs cos θs sinφ) .

(28)

Note how in the presence of spin torque the effective en-
ergy acquires a term that is linear in φ.

C. Switching diagram of the tilted polarizer device

Let us now discuss the consequences of the spin torque
induced modifications α → αeff and εr → εeff . The
advantage of the effective planar approximation is the
possibility of using the analogy with the particle motion.
The latter enables one to utilize mechanical intuition to
predict the behavior of the solutions of Eq. (27) and qual-
itatively understand the dynamics of the spin-transfer
device. The mechanical analogy makes it clear that
the modifications of the effective damping qualitatively
transform the particle motion when αeff (φ) changes its
sign, and the modifications of εeff (φ) become qualita-
tively important when equilibrium points appear or dis-
appear as the energy profile is deformed.
We will consider the standard nanopillar device de-

scribed by the residual energy (25). In the special case of
an in-plane polarizer this problem was discussed in our
earlier publications.15,16,18 Our goal here is to general-
ize these results to the case of a non-zero polarizer tilt
and show that the effective planar approach allows one
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φ

ε

φ

I = 0

I < I ∗ε

(A)

(B)

I > I∗ε(C)

φ

ε

ε

FIG. 3: (Color online) Effective energy profiles at different
current magnitudes. Red (gray) dashed lines show the regions
of negative friction.

to understand the qualitative picture of the motion with-
out doing the detailed calculations. Switching diagrams
for devices with arbitrary θs and φs = 0, h = 0 were re-
cently studied by conventional methods.26,27 We will use
the same assumptions and compare the results.
For a generic value of the tilt angle θs the terms en-

tering expressions (28) with a small factor g1 produce
negligible corrections and can be discarded. Those terms
can be important only when θs approaches zero or π/2
and the main terms vanish. We will assume that s is
not too close to either the in-plane or the perpendicular
directions and inequalities cos θs, sin θs ≫ g1 hold. Find-
ing the critical currents in the narrow bands of angles
θs ≈ 0 or θs ≈ π/2 where the g1 terms are important
would require a more careful consideration.
Discarding the g1 terms one gets a simplified form of

Eqs. (28)

αeff = α+
2g0I sin θs

ωp
cosφ ,

εeff = −ωa

2
cos2 φ+ (g0I cos θs)φ . (29)

As already mentioned in Sec. IVB, the energy εeff (φ)
contains a term linear in φ: Spin torque produces a tilted
washboard potential for the effective particle (Fig. 3).
The washboard tilt reflects the fact that the total mag-
netic energy of the free layer can change due to the energy
transfer from the current source.
In the presence of current the effective energy minima

are shifted from their zero current positions φ = 0 (par-

M

M

M1

2

3

AP

P

FIG. 4: (Color online) Effective particle performing a 360◦

motion, starting from the energy maximum M1 and reach-
ing an equivalent maximum M3. The red (gray) dashed line
denotes the interval of αeff < 0.

allel, or P state) and φ = π, (antiparallel, or AP state)
to the new positions φm(I) given by

sin 2φm = −2g0I cos θs
ωa

.

The energy minima are located at the angles φmin + πn,
and are separated by the energy maxima located at at
φmax = π/2− φmin + πn (Fig. 3B). All minimum points
φmin(I) are equivalent from the point of view of effective
energy (29) but the minima that had evolved from the
P and AP points can differ in effective friction. To be
concise, we will continue calling the minima satisfying
φmin(0) = 0 the P points, and those satisfying φmin(0) =
π the AP points.
As the current grows, the washboard tilts more and

more, until the extrema of the energy εeff (φ) disappear
altogether (Fig. 3C). A short calculations shows that this
occurs at a critical current

I∗ε =
ωa

2g0 cos θs
. (30)

For |I| > I∗ε the effective particle slides down the slope
of the potential energy profile (either left or right, de-
pending on the current direction), regardless of the sign
and magnitude of αeff . This motion corresponds to the
full 360◦ rotations of vector n in the azimuthal angle φ.
In the spin transfer literature such a regime is called the
out-of-plane precession (OPP).
Importantly, the OPP precession can exist even at

|I| < I∗ε. When the particle moves down the tilted wash-
board, the drop of its potential energy during one spatial
period may be large enough to overcome the frictional en-
ergy loss (Fig. 4). Therefore there must be a second crit-
ical current IOPP < I∗ε, such that the OPP precession is
possible for |I| > IOPP . In the interval IOPP < |I| < I∗ε
the stable equilibrium state at the energy minimum co-
exists with the stable OPP state. The functional form of
IOPP (θs) depends on the energy profile and the friction
coefficient. Our goal here is not to find the expression
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M

M1

2

AP

M

M1

2

AP

B

(A) (B)

FIG. 5: (Color online) (A) Effective particle performing fi-
nite amplitude oscillations (IPP precession) near the AP min-
imum. The red (gray) dashed line denotes the interval of
αeff < 0. (B) With growing current the amplitude of the os-
cillations increases and the particle reaches the M2 maximum
point. Above this threshold the IPP precession is unstable.

for it, but to see how far can we proceed in qualitative
understanding of the device dynamics without doing the
actual calculations.

The possibility of energy transfer from the current
source to the spin torque device can also manifest itself
in the form of negative effective friction. The regions of
negative friction αeff (φ) first appear in the vicinity of the
angles φ+n = 2π(n + 1/2) for I > 0 and φ−n = 2πn for
I < 0 when the current magnitude exceeds the threshold

I∗α =
αωp

2g0 sin θs
. (31)

The intervals of αeff < 0 are shown in Figs. 3,4 by red
(gray) dashed lines. The first consequence of their pres-
ence is that on parts of the trajectory the friction force
increases the energy of the system instead of decreasing it
in a usual fashion. This, in particular, makes it easier for
the particle to achieve the state of the OPP precession
and thus the actual calculation of the IOPP threshold
must take into account the energy gain due to both the
tilt of the potential and the presence of negative fric-
tion intervals. Both features mathematically represent
the ability of the spin torques to transfer energy from
the current source to the system.

The second important effect of negative αeff is the lo-
cal destabilization of the energy minima. A minimum
point φmin(I) lying within the interval of αeff < 0
is unstable, and finite amplitude stationary oscillations
around it are developed. Fig. 5A shows such oscillations
near the AP minimum destabilized by a sufficiently large
positive current (see Eq. 29). These oscillations corre-
spond to the motion of vector n around the equilibrium
point, which is called an in-plane precession (IPP) in the
spin transfer literature.

The critical current of energy minimum destabiliza-
tion is determined from the equation αeff (φmin(I)) = 0
which can be rewritten for P and AP minima as

IAP cos[φmin(IAP )] = I∗α ,

IP cos[φmin(IP )] = −I∗α . (32)

Both threshold currents satisfy |IP,AP | > I∗α. This re-
sult can be naturally understood as follows. The friction
first becomes negative at the φ = 0 or φ = π points at
I = ±I∗α. But the P and AP minima are shifted from
the 0, π points to the φmin(I) points. In order to destabi-
lize them, the negative friction interval has to grow large
enough to cover the actual minima positions.

The amplitude of stationary oscillations is determined
by the balance of energy influx and energy dissipation on
the intervals of negative and positive friction.15,16,18,19

Two possible scenarios can be realized at the local desta-
bilization threshold31 (1) Soft generation. Stationary os-
cillations with an infinitesimally small amplitude are de-
veloped. Their amplitude grows with the further current
increase; (2) Hard generation. Stationary oscillations im-
mediately develop a finite amplitude.

Appendix B shows that in our situation the choice be-
tween the soft and hard generation scenarios is controlled
by the second derivative d2αeff/dφ

2 at the position of
the energy minimum, and a soft scenario is realized for
the function αeff given by Eq. (29), i.e., the amplitude
of stationary oscillations is zero at the threshold. As the
current is increased beyond the threshold, the amplitude
grows and eventually becomes so large that the particle
reaches the crest of the potential, as shown in Fig. 5B,
and falls down into the neighboring valley. This process
leads to the destruction of the IPP state. The latter
therefore exists between the two threshold currents. For
the AP equilibrium these are the IAP threshold, where
the AP point becomes unstable, and the IIPP threshold,
where the oscillation amplitude becomes too large to be
contained in the AP valley.

The critical current IIPP depends on the shape of the
potential in the entire interval traveled by the particle
in Fig. 5B. Its actual calculation is not the goal of our
qualitative approach. However, we can make two general
statements about IIPP . First, due to the soft character
of generation the destabilization of the IPP state cer-
tainly happens at a current that is larger than the local
destabilization threshold: For example, IIPP > IAP .

To set the stage for the second observation, we proceed
to the discussion of the switching diagram. In our case
the experimental parameters are the current I and the
tilting angle θs. Various critical currents are represented
as lines dividing the (I, θs) plane into domains with differ-
ent sets of stable states. The lines for the four thresholds
discussed above are sketched in Fig. 6. The I∗ε(θs) and
I∗α(θs) lines intersect according to Eqs. (30) and (31).
Due to the inequality IAP > I∗α the IAP (θs) line has to
be located to the right of the I∗α(θs) line on the diagram.
The IIPP (θs) > IAP (θs) line has to be located even fur-
ther to the right. Both IAP (θs) and IIPP (θs) cross the
I∗ε(θs) line, and one can prove that they do it at the
same point T . This is the second general property of the
IIPP threshold.

The uniqueness of the point T can be proven by con-
sidering a hypothetical switching diagram shown in the
inset to Fig. 6 where it is assumed that the AP and IPP
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FIG. 6: Preliminary discussion of the critical lines on the
(I, θs) switching diagrams. Each line is marked by the name
of the state which gets destabilized on it. The name is put
on the side of the line where the state is stable. Inset: An
impossible arrangement of the AP and IPP lines.

lines cross I∗ε(θs) at different points T1 and T2. Con-
sider the point T2. On the one hand, approaching it
from within the domain of existence of the IPP preces-
sion one should observe a decreasing amplitude of oscil-
lations around the AP minimum, because the size of the
valley around AP shrinks to zero with the approach to
the I∗ε line. At T2 the amplitude of sustained oscilla-
tions around AP should be infinitesimally small. On the
other hand, close to T2 there is a finite region of nega-
tive friction around the AP point because the current is
larger than the IAP threshold. Thus infinitesimally small
stationary oscillations are impossible since they would
be entirely contained in the negative friction region, and
their amplitude would grow due to the constant increase
of effective particle’s energy.16 This contradiction proves
that the assumption about the existence of two different
crossing points T1,2 was inconsistent. The point T2 can-
not lie to the right of T1. But we already know that it
cannot lie to the left of T1 either, since that would be
incompatible with the soft generation scenario. We con-
clude that both AP and IPP lines cross I∗ε at the same
point T .

The relationships between IAP and IIPP discussed
above follow from the fact that both currents are de-
termined by the energy and friction near the same min-
imum. The IOPP current depends on the details of εeff
and αeff on the whole 2π interval of φ and thus no gen-
eral relationships for it can be found, except for the al-
ready mentioned inequality IOPP < I∗ε(θs). A quali-
tative sketch of the full switching diagram is given in
Fig. 7 for I > 0. The full diagram is symmetric with
respect to the I → −I transformation, which is a conse-
quence of two symmetries built into the energy and fric-
tion functions (29): the π-periodicity of εr(φ), and the
αeff (π − φ,−I) = αeff (φ, I) symmetry of the effective
friction. The latter depends on vector s lying in the (x, z)
plane and the fact that the g1 terms were dropped. If ei-
ther of the two symmetries were violated, the P and AP

states would no longer be equivalent in all respects. Note
also, that had the effective friction function allowed for

IP
P

A
P

I

P, A
P

θs

0

π/2

s

P

s

O
P

P

FIG. 7: Switching diagram of a spin-transfer device with a
tilted polarizer: a qualitative sketch. Each line is marked
by the name of the state which gets destabilized on it. The
arrows next to the name point to the side of the line where this
state is stable. Horizontal gray bands denote regions where
approximations (29) may fail and Eqs. (28) should be used.

a hard generation of the IPP states, the diagram would
be more complex.
Notably, Fig. 7 reproduces all qualitative features

of the switching diagrams obtained by conventional
methods.26,27 In addition, it brings important qualita-
tive understanding of the behavior of critical currents
as a function of system parameters and approximations
used for the spin torque efficiency factor g(n). For exam-
ple, it warns that in the two most frequently considered
limiting cases of the perpendicular (θs = 0) and in-plane
(θs = π/2) polarizers the threshold currents will be most
sensitive to the g(n) function used for the calculations.
Finally, we should mention that the results obtainable

in the effective planar approach are not limited to the
qualitative conclusions. The method also allows one to
calculate the critical currents, often being the only one
providing analytical expressions in the case of precession
states, where the results are traditionally obtained from
numeric simulations.11 In the limit of small friction α ≪
√

ωa/ωp considered here, the critical currents IOPP (θs)
and IIPP (θs), and the frequencies of the precession states
can be analytically found using the methods introduced
in Refs. 16 and 19. In the present paper we have found
analytic formulas for the I∗ε threshold (30), and the IP
and IAP thresholds (32). The crossing point T of the AP,
IPP and I∗ε lines can be found by solving the equation
I∗ε(θs) = IAP (θs), which gives

tan θs(T ) =

√
2αωp

ωa
.

V. CONCLUSIONS

We have given the detailed derivation of the effective
planar equation for spin-transfer devices with dominat-
ing easy plane anisotropy and illustrated its application
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by performing a qualitative study of tilted polarizer de-
vices. Once the parameters of the effective equation are
found, the approach allows one to understand the dy-
namics qualitatively without performing detailed calcu-
lations. This is especially important in the case of pre-
cession cycles which are usually studied numerically. The
method also elucidates the role of approximations used
to model the spin-transfer efficiency factor and shows the
limits of their applicability.

The obtained switching diagram demonstrates a com-
petition between the two types of switching. For small θs
the destabilization of the AP minimum results from the
merging and disappearance of the minimum and max-
imum points of εeff . For θs close to π/2 the destabi-
lization happens locally, changing the nature of the AP

equilibrium from stable to unstable. This type of com-
petition is not unique to the systems with strong easy
plane anisotropy — it was shown in Ref. 32 that it may
happen in any spin-transfer device.
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Appendix A: Vector definitions

We use the standard definitions of polar coordinates
and tangent vectors (see Fig. 8):

n = (sin θ cosφ, sin θ sinφ, cos θ)

eθ = (cos θ cosφ, cos θ sinφ,− sin θ) (A1)

eφ = (− sinφ, cosφ, 0)

For the polarizer unit vector s with polar angles (θs, φs)
the scalar product expressions are

(s · eθ) = sin θs cos θ cos(φs − φ)− cos θs sin θ

(s · eφ) = sin θs sin(φs − φ) (A2)

z

eφ

θe

n

φ

θ

 

x

s
θs

FIG. 8: Definitions of the tangent vectors and polar angles.

Appendix B: Soft and hard generation

Suppose the effective energy has a minimum at the
point φmin and the effective friction is negative in the
interval [φ−(I), φ+(I)], such that the right end of the
interval reaches the equilibrium at the critical current
Ic and the minimum remains completely covered by the
negative friction region after that

φ− < φ+ < φmin , I < Ic ,

φ− < φ+ = φmin , I = Ic ,

φ− < φmin < φ+ , I > Ic .

In order to understand the character of generation that
occurs for currents exceeding Ic by a small increment, we
will use the simplest Taylor approximations for the en-
ergy εeff and effective friction αeff near the equilibrium
point φmin. In the case of soft generation the stationary
oscillations’ amplitude is small. Thus both εeff and αeff

will be accurately approximated by just a few terms of
the Taylor series. Solution of an approximate equation
using these Taylor expansions instead of the exact func-
tions εeff and αeff will be close to the actual one. For
hard generation there is no solution with small amplitude
which will be reflected in the absence of a stationary so-
lution for the approximate equation.
To implement this program we start with Eq. (27)

φ̈

ωp
+ αeff (φ)φ̇ = −∂εeff

∂φ

and approximate

ε(φ) =
ωmin(φ− φmin)

2

2
(B1)

αeff (φ) = α0 + α′(φ− φmin) +
1

2
α′′(φ − φmin)

2

The exact value of the positive number ωmin =
∂2ε/∂φ2 > 0 is not important. The numbers α0, α

′ and
α′′ are the value and derivatives of the function αeff (φ)
at φ = φmin. For a current slightly higher than critical
α0 is a small negative number. Condition α0(Ic) = 0 re-
flects the fact that the negative friction interval touches
φmin at the critical current. The derivative α′ is positive
to ensure φ+ > φmin for I > Ic.
We will investigate the stationary oscillations by using

the condition of zero total dissipation.16,19. The change
of the total effective particle energy during one period T
equals

∆εtot = −
∫ T

0

αeff (φ)φ̇
2dt .

In the limit of small friction coefficient one can substitute
the zero-friction solution

φ(t) = φmin +A cosΩt , Ω =
√
ωp ωmin
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into the integral above. The stationary oscillations con-
dition ∆εtot = 0 then reads

∫ T̃

0

(α0 + α′A cosΩt+
α′′

2
A2 cos2 Ωt)A2Ω2 sin2 Ωt dt = 0

with the approximate period T̃ = 2π/Ω. After the inte-
grals are taken, one gets an expression for the amplitude

A2 =
−8α0

α′′
.

Since α0 < 0 for I > Ic, the equation for the stationary
amplitude can be solved if α′′ > 0. The solution A ∼√−α0 describes a soft generation of oscillations: Their
amplitude is equal to zero at the critical current and then
continuously grows.
It is easy to check that the effective friction given by

Eq. (29) indeed has positive second derivative at φmin.
In addition it has a property (−α0) ∼ I − Ic, so the
oscillation’s amplitude obeys the law

A ∼
√

I − Ic (I > Ic) .

In the case of α′′ ≤ 0 there is no stationary solution.
The energy change ∆εtot > 0 is always positive and the
amplitude would grow, until limited by the properties of
the functions εeff and αeff far away from the equilibrium
where the truncated Taylor expansions (B1) are not valid.
This would be the case of hard generation.
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