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A general theory of collective spin wave excitations in a two-dimensional array of magnetic nano-
dots coupled by magnetodipolar interaction is developed. The theory allows one to analytically
calculate spectra, damping rates, excitation efficiencies, and other characteristics of spin waves in
both periodic and aperiodic ground states of an array. It is demonstrated that all the properties of
collective spin waves in an array existing in any spatially periodic ground state (e.g., ferromagnetic
or chessboard antiferromagnetic) are determined by the same state-independent array’s demagneti-

zation tensor F̂k, which is determined by the spin wave wavevector k, size and shape of the array’s
elements (nano-dots), and the geometry of the array’s lattice. The applications of the developed
general theory are illustrated on particular examples: (i) spin waves in ferromagnetic and chessboard
antiferromagnetic states of a square array, and (ii) localized spin wave excitations associated with
an isolated “defect” in a uniform ferromagnetic ground state of a square array.

PACS numbers: 75.75.-c, 75.78.-n, 75.30.Ds

I. INTRODUCTION

Recent advances in the fabrication of patterned mag-
netic media open a possibility to create large arrays of
interacting sub-micron-sized magnetic dots. Such dot ar-
rays are promising candidates for applications not only
as bit-patterned magnetic storage media1, but, also, as
magnonic crystals – artificial structures with periodic
variation of magnetic properties. During the last decade
the concept of artificial magnonic crystals becomes in-
creasingly popular because these periodic structures have
interesting and useful new properties that can not be
achieved in conventional magnetic media. In particular,
it has been demonstrated experimentally2–6 that periodic
patterning of a ferromagnetic film leads to a strong mod-
ification of the spin-wave spectra and may result in the
formation of frequency zones where spin wave propaga-
tion is prohibited. The widths and positions of frequency
zones where spin wave propagation is allowed and pro-
hibited can be controlled by changing the geometric and
magnetic parameters of artificial magnonic crystals.
It is important to mention, that the properties of col-

lective spin wave excitations in artificial magnonic crys-
tals formed by arrays of interacting magnetic nano-dots
can, in principle, be controlled dynamically by dynami-
cal modification of the ground state of the magnetic dot
array. It should be noted, that in the absence of an ex-
ternal bias magnetic field the ground state of an indi-
vidual magnetic nano-dot is at least doubly degenerate,
because the magnetic energy of the dot is an even func-
tion of the dot magnetization. Therefore, there are many
possible static configurations in an array of dots under
the same external conditions. The magneto-dipolar in-
teraction between dots removes the degeneracy of differ-
ent configurations, leading to the instability of the most

of them. Nonetheless, even in a relatively simple array
of dots, having perpendicular anisotropy, there may be
several stable static configurations (ground states) sep-
arated by energy barriers. Besides two relatively sim-
ple ground states, such as ferromagnetic (when all the
magnetic moments are parallel to each other) and chess-
board antiferromagnetic (when the magnetic moments
of the neighboring dots have opposite directions), there
can exist periodic ground states with larger spatial peri-
ods (for details see, e.g.,7). Moreover, a periodic ground
state can have point defects or an array can be divided
into domains, thus forming states that are non-periodic
(see examples in Fig. 1). Also, in the case of a dot ar-
ray formed by magnetic dots that are in-plane isotropic
(in that case the ground state of an isolated dot is in-
finitely degenerate) the ground state of an array could
be much more complicated8–10. Recently, it has been
demonstrated experimentally that it is possible to control
the ground state, and, therefore, the microwave spin wave
properties of an artificial magnonic crystal by gradually
changing an external parameter (e.g., the bias magnetic
field)11,12.

The theoretical investigations of collective spin wave
excitations in arrays of interacting magnetic dots are
rather complicated due to the long-range nature of
magneto-dipolar interaction existing between individ-
ual dots. Small dot arrays, consisting of not more
than ten dots, were investigated using micromagnetic
modeling in the cases of dots having rectangular13,14

and cylindrical2,15 shapes. The arrays of long mag-
netic stripes were analyzed using the method of tensorial
Green’s functions3,16. In the framework of this method
the problem is reduced to a system of integral equa-
tions that were solved numerically. With some modifi-
cations, the same method was applied to calculate the
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FIG. 1. (Color online) Examples of periodic (upper frames)
and aperiodic (lower frames) ground states of an array of mag-
netic nano-dots. Different colors represent different magneti-
zation direction (for the antiferromagnetic state – the direc-
tions are opposite).

spin wave spectrum of the array of interacting rectan-
gular dots5. Alternatively, collective spin wave excita-
tions of an array of interacting magnetic elements can be
treated as a linear combinations of eigenmodes of an iso-
lated magnetic dot. Using this approach, the spin wave
spectra in arrays of spherical magnetic elements17–19 and
rectangular20 magnetic dots in a saturated state, and ar-
rays of cylindrical dots in a vortex state21 were calcu-
lated. The lowest (gyrotropic) collective mode of an array
of dots in a vortex ground state was analyzed using the
well-known Thiele’s equation in22. An approximate ana-
lytical theory of a spin wave spectrum in infinite periodic
arrays of magnetic dots in ferromagnetic and chessboard
antiferromagnetic ground states was developed in23,24 us-
ing the Holstein-Primakoff transformation. Within this
analytical approach, individual magnetic dots were ap-
proximated by point-like magnetic dipoles. A variant of
a similar analytic theory that uses multipole expansion
of the dot variable magnetization was developed in25.

In our current paper we present a general analytic
method that allows one to calculate spin wave spectra
in an arbitrary array of interacting magnetic dots. Al-
though we assume that the magnetization of each individ-
ual dot in the array is spatially uniform (“macrospin” ap-
proximation), in contrast with the “point-dipole” approx-
imation of23,24 we take into account real shape-dependent
demagnetization fields of individual dots. Of course, the
“macrospin” approximation for the magnetization of in-
dividual dots limits the applicability of our dynamic cal-
culations to the case of collective branches of spin wave
spectrum of the array, formed by quasi-uniform modes
of dots. These branches are expected to be dominant in
the microwave response of an array and, therefore, are
the most interesting branches from the practical point of
view. Our method of calculation of the dipolar interac-
tion between the dots is general and can be also used in
the case of spatially non-uniform dot magnetization. In
contrast with all the previously used theories, the general

analytic approach developed below is applicable to both
finite-size and infinite periodic arrays of magnetic dots.
In the framework of this analytic approach it is possible
to develop a perturbation theory, that allows one to cal-
culate damping rates of the collective spin-waves modes
and to build a theory of excitation of these modes by an
external microwave magnetic field.
We would like to stress that the analytic understand-

ing of the spectra of collective spin wave modes in arrays
of interacting magnetic dots is not only necessary for the
practical applications of magnonic crystals based on these
arrays, but, also, provides information about the stabil-
ity of the array ground states: usually, when a magnetic
order is approaching a critical value for an external pa-
rameter (e.g., inter-dot distance or applied field), one of
the collective modes is softening and its frequency van-
ishes. Therefore, information about the spin wave spec-
tra is vital for the development of bit-patterned magnetic
memory devices.
In the following we restrict our attention to the case of

identical magnetic dots, although the developed method
is general and can be used in more complicated cases.
Also, after formulating the general equations describing
the magneto-dipolar interactions in a dot array of an ar-
bitrary geometry we consider in more detail the case of
a simple array lattice where a unit cell contains only one
magnetic dot.
The paper has the following structure. In Sec. II we

introduce a mutual demagnetization tensor N̂ (r)26,27

to describe the magneto-dipolar interaction between the
magnetic nano-dots forming the array. In Sec. III we
present a general formalism for the description of collec-
tive spin wave excitations in an arbitrary array of mag-
netic nano-dots. The results of this Section are general
and can be applied, without restrictions, to an arbitrary
array of magnetic dots in an arbitrary ground state. Sev-
eral examples of application of this general formalism
are presented in Sec. IV. In particular, we calculate
the spectrum of spin waves in a square array of mag-
netic nano-dots (in both ferromagnetic and chessboard
antiferromagnetic ground states) and the spectrum of lo-
calized spin wave excitations associated with an isolated
“defect” in a periodic ground state of a dot array. Fi-
nally, summary of the obtained results and conclusions
are presented in Sec. V.

II. MUTUAL DIPOLAR INTERACTION OF
MAGNETIC DOTS

Let us consider magneto-dipolar interaction between
two magnetic dots separated by the distance r = rj −
rk. The averaged magneto-dipolar field created by the
dot located at the position rk (position vector of the dot
center) and acting on the dot at the position rj can be
written as26,27

Bjk = −µ0N̂(rj − rk) ·Mk , (2.1)
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where µ0 is the vacuum permeability, Mk is the magne-
tization vector of the k-th dot, and N̂(r) is the mutual
demagnetization tensor which depends on the size and
shape of the dots and the interdot separation r = rj−rk.

In the case r = 0 the tensor N̂(0) coincides with the
usual self-demagnetization tensor of the dot.
In a general case, tensor N̂(r) can be expressed as the

following inverse Fourier transform26:

Nαβ(rj−rk) =
1

Vj

∫

Dj(κ)D
∗
k(κ)

κακβ

κ2
eiκ·(rj−rk)

d3κ

(2π)3
,

(2.2)
where α, β ∈ {x, y, z} are the Cartesian vector compo-
nents, Vj is the volume of the j-th dot, integration is car-
ried out over the whole three-dimensional κ-space, and
the so-called “shape amplitude”26 of the dot is defined
as:

Dj(κ) =

∫

Vj

e−iκ·rd3r . (2.3)

In our current paper we are interested in a specific case
when the interacting dots are identical and lie in the same
x-y plane. Under this restriction, the z component of the
separation vector r = rj − rk is identically zero. In such
a case it is convenient to represent the wave-vector κ as a
sum of the in-plane wave vector k = kxex + kyey (where
eα is the unit vector in the α direction) and a perpendicu-
lar (to the dot plane) wave vector κz: κ = k+κzez. Per-
forming integration over the perpendicular wave vector
κz, one can represent the mutual demagnetization tensor
N̂(r) as a two-dimensional Fourier transformation,

N̂(r) =

∫

N̂ke
ik·r d2k

(2π)2
, (2.4)

where N̂k is the two-dimensional Fourier image of the
demagnetization tensor N̂(r). Integration over the κz

can be performed analytically in the case of “planar”
dots having constant height h along the z axis, and the
tensor N̂k takes the form

N̂k =
|σk|

2

S











k2x
k2

f(kh)
kxky
k2

f(kh) 0

kxky
k2

f(kh)
k2y
k2

f(kh) 0

0 0 1− f(kh)











.

(2.5)
Here

f(kh) = 1−
1− exp(−kh)

kh
, (2.6)

S is the area of the dot, and σk is the Fourier image of
the dot’s shape in the x-y plane,

σk =

∫

S

e−ik·rd2r , (2.7)

where integration goes over the area S of the dot.

In particular, for a circular dot of the radius R we get:

S = πR2 , σk = S
2J1(kR)

kR
, (2.8a)

where J1(x) is the Bessel function of the first order. For
an elliptical dot having semi-axis a and b (along x and y
axis, respectively) we get:

S = πab , σk = S
2J1

(√

k2xa
2 + k2yb

2
)

√

k2xa
2 + k2yb

2
, (2.8b)

and for a rectangular dot having sizes lx and ly we obtain:

S = lxly , σk = S
sin(kxlx/2)

kxlx/2

sin(kyly/2)

kyly/2
. (2.8c)

As it will be shown below, the Fourier image of the mu-
tual demagnetization tensor N̂k can be directly used for
the computationally efficient evaluation of the spin wave
spectra in spatially periodic arrays of magnetic dots.

It is evident from the definitions of the tensors N̂(r)

and N̂k that they are both real-valued and symmetrical
with respect to transposition of vector indices and spatial
inversion. Namely:

N̂(r) = N̂∗(r) = N̂T(r) = N̂(−r) , (2.9a)

and

N̂k = N̂∗
k = N̂T

k = N̂−k . (2.9b)

These symmetry relations are important for some of the
properties of collective spin excitations in a array of in-
teracting nano-dots coupled by magneto-dipolar interac-
tion. In addition, one can show that Tr[N̂(0)] = 1 and

Tr[N̂ (r)] = 0 for non-overlapping dots27.

Finally, we note that, using the demagnetization tensor
N̂(r), the dipolar energy of the array can be written in
the following compact form:

Wdip =
µ0V

2

∑

j,k

Mj · N̂(rj − rk) ·Mk . (2.10)

Note, that a similar approach can also be used to study
dipolar interaction between dots having non-uniform pro-
files of either static or/and dynamic magnetization. In
such a case, instead of a single demagnetization tensor
Eq. (2.5), it is necessary to find separate static-static,
dynamic-dynamic, and static-dynamic demagnetization
tensors, where the Fourier image σk of the dot’s shape
in Eq. (2.5) is replaced by the Fourier images of the non-
uniform spatial profiles of either a static dot magnetiza-
tion or a particular non-uniform spin wave mode (static
or dynamic cell functions).
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FIG. 2. (Color online) Sketch of the considered array of inter-
acting magnetic dots. The dots lie in the common x-y plane
and form a periodic lattice with the basis vectors a1 and a2.

III. GENERAL THEORY OF COLLECTIVE
SPIN WAVE EXCITATIONS

A. Principal equations

We consider below a two-dimensional array of identical
magnetic dots lying in the x-y plane (see Fig. 2). The
dots are arranged in a spatially periodic lattice with basis
vectors a1 and a2. The location of a dot in the array
is determined by the two-dimensional integer index j =
(j1, j2), and the two-dimensional position vector of the
j-th dot (more precisely, the position vector of the center
of the j-th dot) is given by

rj = j1a1 + j2a2 . (3.1)

The area of the unit cell of the lattice is equal to:

S0 = ez · (a1 × a2) . (3.2)

We assume that the basis vectors ai are ordered in such a
way that the area of the unit cell S0 defined by Eq. (3.2)
is positive.
We also assume that the sizes of the interacting mag-

netic dots are sufficiently small, so that the magnetic
state within each dot can be considered to be spatially-
uniform (i.e., we can use a macrospin approximation for
the magnetization in all individual dots). In this case the
state of each dot is completely described by one magne-
tization vector Mj ≡ Mj(t) of a constant magnitude
(|Mj | = Ms), where Ms is the saturation magnetization.
We would like to note that the macrospin approxima-

tion for the dynamic magnetization of the dot is not an
essential feature of our theoretical approach and can be
relaxed if one uses the actual profile of a spin wave mode
existing in each individual magnetic dot when the cal-
culation of the dot’s shape amplitude Eq. (2.3) is per-
formed. This correction will modify the form of the de-
magnetization tensor N̂ (r), but will not affect any other
calculation results.
Below we consider the case when the dot array is

placed in the uniform external bias magnetic field Be

and individual dots are mutually coupled only by the
magneto-dipolar interaction. For simplicity, we will not
consider crystallographic anisotropy – it can be taken
into account simply by the renormalization of the self-
demagnetization tensor N̂ (0). The influence of damp-
ing and other weak perturbations will be considered in

Sec. III C in the framework of the general perturbation
theory.
Under the above formulated approximations, the dy-

namics of the dots’ magnetization vectors Mj is de-
scribed by the Landau-Lifshits equation

dMj

dt
= γ (Beff,j ×Mj) , (3.3)

where γ ≈ 2π · 28 GHz/T is the modulus of the gyro-
magnetic ratio for electron spin and the effective mag-
netic field Beff,j consisting of the external bias field and
magneto-dipolar field created by other dots is given by:

Beff,j = Be − µ0

∑

k

N̂(rj − rk) ·Mk . (3.4)

The total magnetic energy of the array under our as-
sumptions has the form:

W = −V
∑

j

Be ·Mj +
µ0V

2

∑

j,k

Mj · N̂(rj − rk) ·Mk .

(3.5)

B. General formalism for collective spin wave
excitations in the dot array

Magnetization of the j-th dot in a stationary ground
state can be written as Mj = Msµj , where µj is a unit
vector in the direction of the dot static magnetization.
Vectors µj are determined from the system of equations:

Bjµj = Be − µ0Ms

∑

k

N̂(rj − rk) · µk , (3.6)

where Bj is the intrinsic scalar magnetic field acting on
the j-th dot.
To find the dynamical equations describing small (lin-

ear) magnetization excitations of the dot array, we shall
use the following ansatz for the dot magnetization:

Mj = Ms(µj +mj) +O(|mj |
2) , (3.7)

where mj is the small dimensionless deviation of the
magnetization of the j-th dot from the static equilibrium
(ground) state described by the vector µj . The condition
of conservation of the length of magnetization vector Mj

in each dot requires the orthogonality of vectors µj and
mj,

µj ·mj = 0 . (3.8)

Substituting Eq. (3.7) for Mj in Eq. (3.3), using
Eqs. (3.6) and (3.8), and keeping only the terms that
are linear in mj , one obtains the following dynamical
equations for mj:

dmj

dt
= µj ×

∑

k

Ω̂jk ·mk . (3.9)
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Here the tensor operator Ω̂jk is defined by the equation:

Ω̂jk = γBjδjk Î + γµ0MsN̂(rj − rk) , (3.10)

where δjk is the Kronecker delta (δjk = 1 for j = k

and δjk = 0 otherwise) and Î is the identity matrix.

It is clear that the tensor operator Ω̂jk is self-adjoint

(in the sense Ω̂jk = Ω̂
T

kj), is symmetric with respect to

spatial inversion (Ω̂jk = Ω̂kj), and has the dimension of
frequency.
Note, that the changes to the magnetic energy due

to the spin wave excitations mj can also be expressed

through the tensor Ω̂jk:

∆W =
MsV

2γ

∑

j,k

mj · Ω̂jk ·mk . (3.11)

The spin wave frequencies ων and the profiles of collec-
tive spin wave modes mν,j can be found as eigenvalues
and eigenvectors of Eq. (3.9), respectively:

−iωνmν,j = µj ×
∑

k

Ω̂jk ·mν,k . (3.12)

Here ν is an index or set of indices used to enumerate
different spin wave modes.
The main properties of the collective spin-wave excita-

tions of the array of dots follow from the properties of the
eigenvalue problem Eq. (3.12) and from the fact that the

tensor Ω̂jk is real and self-adjoint. In particular, it can
be shown that the eigenvectorsmν,j satisfy the following
relation:

(ω∗
ν′ − ων)

∑

j

m∗
ν′,j · µj ×mν,j = 0 , (3.13)

where the superscript ∗ denotes complex conjugation.
Then, for ν′ = ν, the eigenvalues are real, ω∗

ν = ων ,
unless

∑

j m
∗
ν,j · µj × mν,j = 0. The latter condition

can be satisfied only if the stationary configuration µj

(ground state) corresponds to a saddle point of the mag-
netic energy W Eq. (3.5). Such magnetization states are
unstable, so they cannot be realized in practice, and we
will not consider them below. Then, Eq. (3.13) means
that the frequencies of collective spin wave eigenmodes
are real, and different eigenmodes mν,j are orthogonal in
the sense

∑

j

m∗
ν′,j · µj ×mν,j = −iAνδν,ν′ , (3.14)

where Aν are real constants dependent on the normal-
ization of the eigenvectors mν,j . We would like to stress
that the orthogonality condition Eq. (3.14) holds even for
the non-uniform ground states of the array, i.e., when dif-
ferent dots have different equilibrium directions of mag-
netization µj .

Another orthogonality-type relation for spin wave
modes mν,j is

∑

j,k

m∗
ν′,j · Ω̂jk ·mν,k = ωνAνδν,ν′ . (3.15)

This property is useful in approximate calculations of the
spin wave frequencies28.
Taking complex conjugate of Eq. (3.12) and using the

fact that the tensors Ω̂jk are real it is easy to show that,
if mν,j is an eigenvector with an eigenfrequency ων , then
m∗

ν,j is also an eigenvector with an eigenfrequency −ων.
Such double degeneracy of spin wave eigenmodes arises
from the fact that the magnetization vectors mj are real
quantities, and their spectra contain both positive and
negative frequency components. Only the half of the for-
mal solutions of Eq. (3.12) describe “physical” modes
mν,j , while the rest of the solutions are the formal “con-
jugated” modes m∗

ν,j that guarantee that the vectorsmj

are real-valued.
The “physical” modes mν,j have positive norms Aν >

0, whereas the “conjugated” ones have negative norms
−Aν . This can be seen from the general eigenmode ex-
pansion of the magnetization vectors mj(t):

mj(t) =
∑

ν

(mν,jcν(t) + c.c.) . (3.16)

Here cν(t) is the complex amplitude of the ν-th mode,
the summation goes only over the “physical” spin wave
modes having Aν > 0, and c.c. denotes complex con-
jugated terms (which include all “conjugated” modes).
Substituting the expansion Eq. (3.16) into the expression
for energy Eq. (3.11) and using Eqs. (3.12) and (3.14) one
can write ∆W as:

∆W =
MsV

γ

∑

ν

ωνAν |cν |
2 . (3.17)

If the equilibrium magnetization configuration µj corre-
sponds to a local minimum of magnetic energy, then ∆W
is positive-definite, and the “physical” modes (Aν > 0)
have positive frequencies ων > 0. On the other hand, if
we formally consider dynamics near a maximum of mag-
netic energy, than ∆W < 0 and the frequencies of the
spin wave modes will be negative ων < 0 , which corre-
sponds to the precession of the magnetization vector in
the opposite direction. Thus, Eq. (3.17) gives a conve-
nient tool for the investigation of ground state stability –
only the states having all the ων real and ωνAν > 0 are
stable.
The general spin wave formalism presented above can

be used for effective numerical calculations of the spin
wave spectra in finite arrays of magnetic dots in an ar-
bitrary ground state. It follows from Eq. (3.12) that the
problem of calculation of the spin wave spectrum of a
dot array can be reduced to a standard task of finding
eigenvalues and eigenvectors of a Hamiltonian matrix.
In the case when the ground state of an array is periodic
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(e.g., ferromagnetic or antiferromagnetic), the theory can
be further simplified and such cases are considered in
Sec. III D and Sec. III E.

C. Perturbation theory for spin wave modes

Magnetic damping and other weak perturbative effects
neglected in Eq. (3.3) can be effectively considered in the
framework of a spin wave perturbation theory. In a gen-
eral case, the perturbed equations for dot magnetization
vectors Mj(t) can be written as:

dMj

dt
= γ (Beff,j ×Mj) + γ (bj ×Mj) , (3.18)

where bj is the effective field of the perturbation which
may depend both on time and the dot magnetizations
Mk. Considering only the linear processes, we can ex-
pand the magnetization of each dot in a series of spin
wave eigenmodes:

Mj(t) = Ms

[

µj +
∑

ν

(mν,jcν(t) + c.c.)

]

. (3.19)

Here and below the summation over the index ν goes
only over the “physical” modes (Aν > 0). Substituting
Eq. (3.19) for Mj(t) in Eq. (3.18) and using the orthogo-
nality properties of spin wave eigenmodes mν,j , one can
obtain the perturbed equations for the spin-wave ampli-
tudes cν(t):

dcν
dt

= −iωνcν + iγbν − iγ
∑

ν′

(

Sν,ν′cν′ + S̃ν,ν′c∗ν′

)

,

(3.20)
with the following coefficients:

bν =
1

Aν

∑

j

m∗
ν,j · bj , (3.21a)

Sν,ν′ =
1

Aν

∑

j

(m∗
ν,j ·mν′,j)(µj · bj) , (3.21b)

S̃ν,ν′ =
1

Aν

∑

j

(m∗
ν,j ·m

∗
ν′,j)(µj · bj) . (3.21c)

In the case when the field bj of perturbation depends on
the magnetization vectors, one should retain in Eq. (3.20)
only the terms of the zeroth and first order in cν .
The general Eq. (3.20) allows one to analyze the influ-

ence of any type of small perturbations on the spin waves
in a dot array.
As an example of such perturbative analysis we con-

sider below two practically important cases: weak damp-
ing of collective spin wave modes and their excitation
by an external microwave magnetic field. In the former

case, the perturbation field that is created by the Gilbert
damping has the form bj = −(αG/γMs)dMj/dt, where
αG is the Gilbert damping parameter. Taking into ac-
count that dcν/dt = −iωνcν +O(αG), one can derive the
following first-order perturbative equation for the spin
wave amplitudes:

dcν
dt

= −iωνcν −
∑

ν′

Γν,ν′cν′ . (3.22)

Here

Γν,ν′ = αGων′





1

Aν

∑

j

m∗
ν,j ·mν′,j



 . (3.23)

If there is no frequency degeneracy among the spin wave
modes, Eq. (3.22) is simplified to the usual form of equa-
tion describing damped oscillations with the damping
rate Γν = Γν,ν . In a degenerate case, one should also take
into account the off-diagonal terms ν′ 6= ν for proper de-
scription of the magnetic damping. As one can see from
Eq. (3.23), the difference between the damping rate Γν

and αGων is determined by the elipticity of the excited
spin wave mode.
The direct excitation of spin waves by an external

microwave field is described by the perturbation terms
bj = (be,je

−iωt + c.c.). With the account of magnetic
damping (assuming a non-degenerate case) the dynamic
equations for cν can be written as:

dcν
dt

= −iωνcν − Γνcν + iγbe,νe
−iωt , (3.24)

where

be,ν =
1

Aν

∑

j

m∗
ν,j · be,j . (3.25)

Then, the stationary amplitude of the ν-th mode is given
by

cν =
γbe,ν

ων − ω − iΓν
. (3.26)

Using the above expressions, one can easily calculate
the microwave absorbtion spectra of an array of inter-
acting magnetic dots. In particular, in a practically im-
portant case of a spatially-uniform external microwave
field, be,j = be, the microwave power absorbed by the
dot array is given by:

P =
ωV Nd

µ0
b∗e · χ̂

′′(ω) · be , (3.27)

where Nd is the number of dots in the array and the
effective array permeability tensor χ̂(ω) = χ̂′(ω)+iχ̂′′(ω)
is given by

χ̂(ω) = γµ0Ms

∑

ν

χ̂ν

(ων − ω)− iΓν
, (3.28a)

χ̂ν =
1

NdAν

∑

j,k

m∗
ν,j ⊗mν,k . (3.28b)
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Thus, all the practically important characteristics of
an array of magnetic dots can be easily found provided
one knows the frequencies ων of the collective spin wave
eigenmodes and the corresponding eigenmode profiles
mν,j .

D. Collective spin waves of an array in a
ferromagnetic ground state

When the ground state of an infinite array of magnetic
dots is ferromagnetic, the equilibrium directions of mag-
netization of all dots are identical, µj = µ. Therefore,
the internal fields in all the dots are the same, Bj = B,
and are determined by:

Bµ = Be − µ0Ms

∑

r∈L

N̂ (r) · µ . (3.29)

Here L denotes the lattice of the dot array:

L = {n1a1 + n2a2 |n1 ∈ Z, n2 ∈ Z} . (3.30)

The spin wave modes in the periodic ferromagnetic
ground state of an array have the form of plane waves:

mj = mke
ik·rj , (3.31)

and can be characterized by their wavevectors k. The
wavevector k lies within the first Brillouin zone of the
array’s lattice.
Substituting Eq. (3.31) for mj in Eq. (3.12) we get a

simple (and effectively two-dimensional) eigenvalue prob-
lem for mk and ωk:

−iωkmk = µ× Ω̂k ·mk , (3.32)

where

Ω̂k = γBÎ + γµ0MsF̂k , F̂k =
∑

r ∈L

N̂(r)e−ik·r .

(3.33)
Using a well-known expression that relates the sums

over the direct and reciprocal lattices29,

∑

r ∈L

e−ik·r =
(2π)2

S0

∑

K ∈L∗

δ(k +K) , (3.34)

on can rewrite the tensor F̂k in the form:

F̂k =
1

S0

∑

K ∈L∗

N̂k+K , (3.35)

where L∗ denotes the reciprocal lattice:

L∗ = {n1k1 + n2k2 |n1 ∈ Z, n2 ∈ Z} , (3.36)

that is formed by the two basis wavevectors:

k1 = −

(

2π

S0

)

ez × a2 , k2 =

(

2π

S0

)

ez × a1 . (3.37)

Here S0 is the area of the unit cell of the direct lattice L
(see Eq. (3.2)).

The tensor F̂k possesses all the symmetries of the ten-
sor N̂k. In addition, it is periodic with the periods of
the reciprocal lattice, F̂k = F̂k+k1

= F̂k+k2
, and has a

unit trace, Tr(F̂k) = 1. In the case of “planar” magnetic
dots, for which the xz and yz components of the tensor
N̂k vanish (see Eq. (2.5)), there are only three indepen-

dent components of the tensor F̂k (e.g., xx, xy, and yy
components).

The expression for the tensor F̂k Eq. (3.35) is especially
convenient in practical calculations since the Fourier im-
age N̂k of the mutual demagnetization tensor can be
found analytically (see Eq. (2.5)) in all the practically
important cases. With the help of Eq. (3.35), calcula-
tions of the spin wave spectra of an array of magnetic
dots (with account of finite size and real shape of indi-
vidual dots) are no more difficult than the calculations in
model where individual dots are approximated as “point
dipoles”23,24.
Equation (3.32) is identical to the equation for a single

macrospin with the effective demagnetization tensor F̂k.
Choosing a coordinate system (x′y′z′), in which the di-
rection of the equilibrium magnetization µ coincides with
the z′ axes, the spin wave frequency ωk of the collective
spin wave mode in the array can be written as:

ω2
k =

(

γB + ωMF
(x′x′)
k

)(

γB + ωMF
(y′y′)
k

)

−
(

ωMF
(x′y′)
k

)2

, (3.38)

where ωM = γµ0Ms. Note, also, that the equilibrium
condition Eq. (3.29) can be written as

Bµ = Be − µ0MsF̂0 · µ . (3.39)

Thus, the tensor F̂k, which we will call the fundamental

tensor of the array, contains all the necessary informa-
tion to find both the possible equilibrium ferromagnetic
states and the corresponding spectra of the collective spin
wave excitations. As we will show in the following sub-
section, the fundamental tensor F̂k contains, also, all the
necessary information to find the spin wave spectra in an
arbitrary periodic state of an array of interacting mag-
netic dots.

E. Collective spin wave modes of a dot array in a
complex periodic ground state

An important class of stationary configurations in an
infinite magnetic dot array is formed by periodic non-
ferromagnetic states (see examples in Figs. 1 and 3a).
In such a state the equilibrium magnetizations µj of in-
dividual dots form a periodic “superlattice” with basis
vectors

ã1 = s11a1 + s12a2 , ã2 = s21a1 + s22a2 , (3.40)
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a)

b) c)

a1

a2

ã1

ã2

δp

k1

k2

k1

k2 κp

˜

˜

FIG. 3. (Color online) Example of a complex periodic ground
state of a magnetic dot array, the so-called non-collinear anti-
ferromagnetic state8. (a) Equilibrium magnetization distribu-
tion forming a periodic superlattice SL. The light gray area
shows a unit cell of the superlattice SL, which is P = 4 times
larger than the unit cell of the fundamental lattice L (dark
gray area). (b) Direct lattice L (small gray circles) formed by
the basis vectors a1, a2 and the superlattice SL (large red
circles) formed by the vectors ã1, ã2. The lattice L is P = 4
times denser than the superlattice SL and can be restored by
translating the superlattice SL using shift vectors δp (green
arrows). (c) Reciprocal lattice L

∗ (large gray circles) and
reciprocal superlattice SL

∗ (small red circles) with basis vec-

tors ki and k̃i, respectively. The reciprocal superlattice SL
∗

is denser than L
∗ and is restored by translating L

∗ using shift
wavevectors κp (green arrows).

where sii′ are integer numbers. Note, that although the
choice of four numbers sii′ completely defines the super-
lattice, the same superlattice corresponds to many possi-
ble choices of sii′ . The superlattice is not simple, i.e., its
unit cell contains P > 1 dots (i.e., the area of the unit
cell of the superlattice is PS0), where

P = s11s22 − s12s21 . (3.41)

We assume that P defined by Eq. (3.41) is a positive
number, which can always be achieved by proper ordering
of the basis vectors ãi.

We will denote the superlattice formed by the basis
vectors Eq. (3.40) as SL. Note, that the superlattice SL
is a subset of the fundamental lattice L. In fact, one
can define P shift vectors δp ∈ L, p ∈ [1, P ] is such a
way, that the union of the superlattices SL shifted by δp
equals L (see Fig. 3b),

L =
⋃

p

{r + δp | r ∈ SL} . (3.42)

The reciprocal superlattice, SL∗, is formed using the

basis vectors

k̃1 = −

(

2π

PS0

)

ez × ã2 =
(s22
P

)

k1 −
(s21
P

)

k2 ,

(3.43)

k̃2 =

(

2π

PS0

)

ez × ã1 =
(s11
P

)

k2 −
(s12
P

)

k1 .

(3.44)

The reciprocal superlattice is P times “denser” than the
fundamental reciprocal lattice L∗ (see Fig. 3c), i.e., the
area of its unit cell is P times smaller and is equal to
(2π)2/(PS0). Correspondingly, the equation that is in-
verse to Eq. (3.42) holds for reciprocal lattices. Namely,
one can choose P shift wavevectors κp ∈ SL∗, p ∈ [1, P ],
such that

SL∗ =
⋃

p

{k + κp |k ∈ L∗} . (3.45)

The choice of the shift vectors δp and κp is not unique.
Besides the freedom in the order of enumeration of the
shift vectors, the real-space vectors δp are defined to
the accuracy of the superlattice vector SL, whereas the
wavevectors κp can be shifted by an arbitrary vector of
the fundamental reciprocal lattice L∗.
Each dot at the position jp belongs to a certain p ∈

[1, P ] superlattice (in the sense of Eq. (3.42)). The equi-
librium directions of the magnetizations µj and internal
fields Bj depend only on the index p,

µjp = µp , Bjp = Bp . (3.46)

Then, the general equilibrium condition Eq. (3.6) reduces
to P vector equations,

Bpµp = Be − µ0Ms

∑

q

Ĝ0(δpq) · µq , (3.47)

where

δpq = δp − δq (3.48)

and

Ĝ0(δ) =
∑

r∈SL

N̂ (r + δ) . (3.49)

The meaning of the subscript 0 will be explained below.
The linear spin wave excitations in a superlattice have

the form of plane waves and can be written as:

mjp = mk,pe
ik·rjp , (3.50)

where the wavevector k belongs to the first Brillouin
zone of the reciprocal superlattice SL∗. Using the
ansatz Eq. (3.50) in Eq. (3.12) one can obtain a finite-
dimensional eigenvalue problem for ωk and mk,p:

−iωkmk,p = µp ×
∑

q

Ω̂k,pq ·mk,q . (3.51)
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Here

Ω̂k,pq = γBpδpq Î + γµ0MsĜk(δpq) , (3.52)

where

Ĝk(δ) =
∑

r∈SL

N̂ (r + δ)e−ik·(r+δ) . (3.53)

As one can see, for k = 0 the definition Eq. (3.53) coin-
cides with Eq. (3.49). Changing the summation from the
direct SL to the reciprocal SL∗ lattice (see Eq. (3.34)),
one gets

Ĝk(δ) =
1

PS0

∑

K ∈SL∗

N̂k+KeiK·δ . (3.54)

The tensor Ĝk(δ) is symmetric with respect to the

transposition of the vector indices (ĜT

k
= Ĝk) but, in

general, is neither real nor symmetric in respect to inver-
sion. Instead, one can prove the following general sym-
metry properties of this tensor:

Ĝk(δ) = Ĝ∗
−k(δ) = Ĝ∗

k(−δ) = Ĝ−k(−δ) . (3.55)

In addition, Ĝk+kS
(δ) = Ĝk(δ)e

−ikS ·δ for any reciprocal
wavevector kS ∈ SL∗.
Using Eq. (3.45), we can rewrite in Eq. (3.55) the sum

over the reciprocal superlattice SL∗ as P sums over the
fundamental reciprocal lattice L∗:

Ĝk(δ) =
1

PS0

∑

p

∑

K ∈L∗

N̂k+κp+Kei(κp+K)·δ . (3.56)

Note, that δpq = δp − δq in Eq. (3.53) belongs to the
fundamental lattice and, respectively,

eiK·δpq = 1 , (3.57)

for any wavevector K ∈ L∗. This fact allows one to
rewrite Ĝk(δ) in the following final form:

Ĝk(δ) =
1

P

∑

p

F̂k+κp
eiκp·δ . (3.58)

It is useful to note that eiκp·δ is a P -th order root of 1,
i.e., κp · δ = 2πn/P , where n is an integer number.

The tensor Ĝk(δ) describes both static (see Eq. (3.47))
and dynamic (Eqs. (3.51) and (3.52)) properties of the
magnetic dot array in a complex periodic state. Equa-
tion (3.58) represents this tensor as a finite sum (P terms)

of the fundamental tensors F̂k calculated at different
points of the wavevector space. Thus, the fundamen-
tal tensor F̂k allows one to analytically describe all the
properties of any periodic ground state of a magnetic dot
array.
For a fixed value of the wavevector k, the eigenvalue

problem Eq. (3.51) is a 2P -dimensional linear system of
equations. It has 2P solutions, which can be enumerated

using a discrete index λ. As usual, one half of the so-
lutions corresponds to “physical” modes having positive
norms Ak,λ > 0, while the other half are formal “conju-
gated” modes with Ak,λ < 0, so the spin wave spectrum
contains P branches. In analyzing the properties of spin
wave modes in an infinite array (e.g., Eqs. (3.14) and
(3.23)), the infinite sum over the dot index j can be re-
placed by the finite sum over the superlattice index p.
For instance, the orthogonality condition Eq. (3.14) will
have the following form:

∑

p

m∗
k,λ,p · µp ×mk,λ,p = −iAk,λδλ,λ′ , (3.59)

whereas the damping rate Γk,λ is given by:

Γk,λ = αGωk,λ

(

1

Ak,λ

∑

p

m∗
k,λ,p ·mk,λ,p

)

. (3.60)

The absorption spectra are, also, described by Eqs. (3.27)
and (3.28), where the summation over the dots is re-
placed by the summation over the superlattices and only
the modes with zero wavevector k = 0 are taken into
account.

IV. EXAMPLES: APPLICATIONS OF THE
GENERAL THEORY IN SEVERAL

PARTICULAR CASES

In this section the above described general formalism
will be used for the calculation of the spectra of collec-
tive spin-wave modes in several particular cases. We
will consider an array of circular cylindrical magnetic
dots having the radius R and height h (see Fig. 4a) ar-
ranged in a square lattice with the lattice constant a
(see Fig. 4b). We will focus mainly on the case of “long”
cylinders (h > 2R), when, in the absence of the bias mag-
netic field, the equilibrium magnetization direction µ is
directed along the dot’s axis of symmetry (see Fig. 4a).

A. Ferromagnetic (FM) state of the magnetic dot
array

First, we consider a “perpendicular” ferromagnetic
(FM) ground state of the array, in which equilibrium
directions of magnetizations of all the dots are aligned
along the z axis, µ = ez. Note, that the area of the
unit cell of the square lattice is S0 = a2 and the basis
wavevectors of the reciprocal lattice (see Eq. (3.37)) are
given by:

k1 =
2π

a
ex , k2 =

2π

a
ey . (4.1)

This allows us to directly calculate the fundamental ten-
sor F̂k using Eq. (3.35). The spin wave spectrum in the
FM state is described by the general Eq. (3.38). Note,
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b) c)

a

a)

a
2 /aπ

kx

ky

Γ X

M

2 /aπ2R

hμ

FIG. 4. (Color online) (a) Geometry of the nano-dots. (b)
Square lattice of the array. (c) Reciprocal lattice (gray circles)
of the array. Dashed line – boundary of the first Brillouin zone
in the ferromagnetic state. Green arrows show the contour
Γ → X → M → Γ of the spectrum plot in Fig. 5.

km

μ

single dot

a/R=6

a/R=4.1

FIG. 5. (Color online) Spectra of collective spin waves of
a square array of cylindrical magnetic dots (aspect ratio is
h/R = 5) in a ferromagnetic (FM) ground state without ex-
ternal magnetic field . The contour Γ → X → M → Γ is
shown in Fig. 4c. Open circles – calculations using Eq. (3.38)
with account of the real shape of the nano-dots; solid lines –
calculations in point-dipole approximation24. The lower pair
of curves corresponds to the array’s lattice constant a = 4.1R
and the upper pair to a = 6R . The upper dashed line shows
the resonance frequency of a single dot. Inset: vector struc-
ture of the dynamical magnetization mk of a spin wave with
wavevector k.

that in the considered case (µ = ez) the primed coor-
dinate system (x′y′z′) in Eq. (3.38) coincides with the
unprimed one (xyz).
The calculated spectra of collective spin waves in a

magnetic dot array in the perpendicular FM ground state
in the absence of the external field are shown in Fig. 5
by open circles (for definition of the symmetric points Γ,
X, and M of the first Brillouin zone see Fig. 4c). Solid
lines in Fig. 5 show, for comparison, spin wave spectra
for an array of point dipoles24 having the same magnetic
moment per dot.
As one can see from Fig. 5, for relatively large sep-

aration a between the dots the spectrum is monotonic
in the whole Brillouin zone. For a smaller separation,
the spectrum becomes nonmonotonic – a local frequency
minimum appears at k = {π/a, 0} (point X). With fur-
ther reduction of the separation a the frequency in the

X-point becomes complex, and the FM state loses stabil-
ity. This corresponds to the transition into a chessboard
antiferromagnetic state. The corresponding region of sta-
bility of the FM ground state will be shown in sec. IVC.
It can also be seen from Fig. 5 that the spin wave spec-

tra of the array calculated in the model of point-dipoles24

are qualitatively similar to the spectra calculated with ac-
count of real shape of the magnetic dots (compare solid
lines and open circles in Fig. 5). At the same time, the
two models agree quantitatively only for rather large sep-
arations a, when the dynamic dipolar coupling (propor-
tional to the width of the spin wave band) is weak. In
particular, the point-dipole model substantially underes-
timates the region of stability of the FM state. Thus,
although the point-dipole model can be used for a qual-
itative analysis of spin wave spectra in magnetic arrays,
the quantitatively correct calculations require account of
the real shape of the dots.
The excitations mk of the array in the FM state are

plane waves with right elliptic polarization (only in the
two symmetric points Γ and M the polarization is circu-
lar). The major axis of the polarization ellipse is per-
pendicular to the wavevector k (see inset in Fig. 5). In
accordance with Eq. (3.60), this elipticity causes the in-
crease in the spin wave damping rate, but our calcula-
tions showed that these changes are rather small – the
difference between Γk and αGωk exceeds 10 % only in
a small region near the boundary of stability of the FM
state.
Using Eq. (3.38) and noting that the off-diagonal com-

ponents of the tensor F̂k vanish at k = 0, one can derive a
simple expression for the ferromagnetic resonance (FMR)
frequency of the square dot array in a perpendicular bias
field Be = Beez:

ωFMR = γBe + ωM

(

F
(xx)
0 − F

(zz)
0

)

. (4.2)

In the long-wavelength limit k → 0 the spin wave spec-
trum is isotropic and has non-analytic peculiarity (which
means that the spin waves have a finite group velocity
at k → 0). The long-wavelength approximation of the
dispersion relation ωk can be easily derived by noting
that in Eq. (3.35) only the term N̂k has a non-analytic

behavior near k = 0, whereas all the other terms N̂k+K

are regular in k and can be expanded in a Taylor se-
ries. The terms in N̂k+K that are linear in k vanish
after summation over the reciprocal lattice, and the dis-
persion relation for small k can be written in a simple
form:

ωk ≈ ωFMR + ωM
πhR2

4a2
|k|+O

(

(ka)2
)

. (4.3)

By comparing this expression with the dispersion equa-
tion for the magnetostatic waves propagating in a
normally magnetized thin film30 written in a long-
wavelength limit one can conclude that the group velocity
in both cases is exactly the same, provided that magnetic
moments per unit area in both cases (πR2hMs/a

2 for our
case and Msh for the film) are equal.
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FIG. 6. (Color online) (a) Square array of magnetic dots in a
chessboard antiferromagnetic (CAFM) ground state. Empty
and filled circles represent the dots with opposite directions of
the equilibrium magnetization µj = ±ez. (b) Reciprocal lat-
tice L

∗ (larger open circles) and reciprocal superlattice SL
∗

(smaller filled circles). The solid (dashed) lines in the middle
show the boundaries of the first Brillouin zone for the recip-
rocal fundamental lattice (reciprocal superlattice). The solid
arrows in the middle show the contour Γ → X → M → Γ of
the spectrum plot in Fig. 7.

B. Chessboard antiferromagnetic (CAFM) state of
a magnetic dot array

As an example of a complex periodic ground state, we
consider a chessboard antiferromegnetic (CAFM) ground
state, in which the equilibrium magnetizations of the
nearest neighbors are opposite (see Fig. 6a),

µj = (−1)jx+jyez . (4.4)

The CAFM state is the true ground state for a square
array of magnetic dots with perpendicular anisotropy
(without applied field), i.e., it corresponds to the global
energy minimum of the array7.
For the CAFM ground state, the basis vectors of the

superlattice SL can be chosen as (see Fig. 6a)

ã1 = a1 − a2 , ã2 = a1 + a2 . (4.5)

In terms of Eq. (3.40), this corresponds to the choice
s11 = s21 = s22 = 1, s12 = −1. The number of indepen-
dent superlattices is, clearly,

P = s11s22 − s12s22 = 2 . (4.6)

The basis wavevectors of the reciprocal superlattice SL∗

are given by (see Eq. (3.43)):

k̃1 = (k1 − k2)/2 , k̃2 = (k1 + k2)/2 . (4.7)

The reciprocal superlattice SL∗ is shown in Fig. 6b in
comparison with the fundamental reciprocal lattice L∗.
The area of the first Brillouin zone of the superlattice
SL∗ is P = 2 times smaller than the area of the first
Brillouin zone of the fundamental lattice L∗.
The shift vectors δp and wavevectors κp can be chosen

as

δ1 = 0 , δ2 = a1 , (4.8a)

κ1 = 0 , κ2 ≡ κ = (k1 + k2)/2 . (4.8b)

One can check by direct substitution that Eqs. (3.42) and
(3.45) are satisfied with this choice of δp and κp.
Noting that e±ia1·κ = −1, one can simplify expressions

for the interaction tensors Ĝk(δpq) (see Eq. (3.58)) to:

Ĝk(0) =
1

2

(

F̂k + F̂k+κ

)

, (4.9a)

Ĝk(±a1) =
1

2

(

F̂k − F̂k+κ

)

. (4.9b)

The tensors Ĝk(0) and Ĝk(±a1) describe, respectively,
the self-interaction of the superlattices (p = q = 1 or
p = q = 2) and the interaction between the different
superlattices (p = 1, q = 2 or p = 2, q = 1).
Using Eqs. (3.47) and (4.9), the effective fields B1,2

acting on superlattices can be written as:

B1,2 = ±Be − µ0MsF
(zz)
κ . (4.10)

Here, the first p = 1 superlattice has the equilibrium
magnetization direction in the +z direction, i.e., µ1 = ez
and µ2 = −ez.
Then, the eigenvalue problem Eq. (3.51) is simplified

to:

∓iωkmp = ez ×
(

γBp +
ωM

2
[F̂k + F̂k+κ]

)

mp

+
ωM

2
ez × [F̂k − F̂k+κ]mq , (4.11)

where p, q = 1, 2, q 6= p. The characteristic equation
of the system (4.11) is, in fact, biquadratic, having two
pairs of conjugated solutions (two “physical” branches
and two “conjugated” ones). In the most important case
k = 0 (only such modes can be excited by a spatially-

uniform microwave field) both tensors F̂k and F̂k+κ be-
come diagonal, that allows one to derive a simple explicit
expression for the FMR frequencies of the square array
in the CAFM ground state:

ωFMR = ωM

√

(

F
(xx)
κ − F

(zz)
κ

)(

F
(xx)
0 − F

(zz)
κ

)

± γBe .

(4.12)
It should be noted that another possible antiferromag-

netic state – a stripe antiferromagnetic state (SAFM),
µj = (−1)jxez , – can be analyzed in absolutely analo-
gous way (in particular, the FMR frequencies are given
by the same Eq. (4.12)). The only substantial difference
with the case of CAFM ground state is that for the SAFM
state κ = k1/2.
The two (low-frequency and high-frequency) spin wave

branches of the CAFM state calculated in the absence of
the bias magnetic field (Be = 0) are shown in Fig. 7.
The branches are degenerate at two points of the Bril-
louin zone (Γ and X points). The degeneracy at Γ
point (k = 0) is connected with 90◦ rotational sym-
metry of the square lattice and will be absent, for ex-
ample, in an array having rectangular lattice or ellipti-
cal shape of the dots. The degeneracy at the X point
(k = κ/2 = {π/(2a), π/(2a)}) is of a more general na-
ture. Using the general symmetry properties of the tensor
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FIG. 7. (Color online) Spectra of collective spin waves of
a square array of cylindrical magnetic dots (aspect ratio is
h/R = 5) in a chessboard antiferromagnetic (CAFM) ground
state without external magnetic field. The solid (red) lines
correspond to the lattice constant a = 2.5R while the blue
dashed lines to a = 5R. Insets: vector structures of dynamical
magnetization mp of the high-frequency (upper inset) and
low-frequency (lower inset) spin wave branches.

F̂k one can prove that F̂κ/2+κ = F̂−κ/2 = F̂κ/2. Then,
the system of equations (4.11) splits into two identical
independent equations. In other words, at this point the
two sublattices do not interact with each other. Thus, the
degeneracy at k = κ/2 will be present in arrays having an
arbitrary oblique lattice in zero bias magnetic field. The
application of a perpendicular bias field Be, of course,
removes the degeneracy of the spin wave branches, as it
is evident from Eq. (4.12).
The lower spin wave branch has a local minimum in the

M point (see Fig. 7). With decreasing aspect ratio h/R
of the dots or decreasing lattice constant a the spin wave
frequency at this point monotonically decreases. When it
reaches zero, the CAFM state losses its stability, and the
array switches to a collinear antiferromagnetic in-plane
state (for details and exact definitions see8).
The vector structure of the spin wave modes in the

CAFM ground state is shown in the insets in Fig. 7. The
magnetic moments of the neighboring dots (having op-
posite directions of the static magnetization) rotate in
opposite directions following the similar elliptic trajec-
tories. For the low-frequency branch, the major axis of
the precession ellipse is perpendicular to the wavevec-
tor k, whereas for the high-frequency branch it changes
from the parallel to k near the center of the Brillouin
zone to the perpendicular one near its edges (see inset
in Fig. 7). The sum of eigenvectors m1 and m2 forms
a linearly polarized wave with polarization parallel (per-
pendicular) to k for the high-frequency (low-frequency)
spin wave branch.
Similar to the situation in the FM ground state, the

spin wave damping in the CAFM state is close to αGωk

except for a rather small region near the boundary of sta-
bility of the CAFM state. Note, that, in general, due to

FIG. 8. (Color online) Regions of stability of different ground
states of a magnetic dot array in zero applied field: above the
solid blue line both the FM and the CAFM ground states are
stable; below the the solid blue line, but above the dashed
red line only the CAFM ground state is stable; below the
dashed red line both FM and CAFM states are unstable and
array switches to a state with in-plane direction of the dot
static magnetization. Black dot indicates the point at which
the absorption spectra shown in the inset were calculated.
Inset: normalized spin wave absorption spectra of the array
of Permallloy cylindrical dots in the FM (solid blue curve) and
CAFM (dashed red curve) ground states. Parameters: a/R =
4, h/R = 5, ωM/2π ≈ 30GHz, αG = 0.01, polarization of the
exciting microwave field – linear in the array’s plane.

the existence of off-diagonal terms in Eq. (3.22) damping
can cause splitting of frequencies of the spin wave modes
at the degenerate points. However, in the above consid-
ered case the degenerate spin waves are orthogonal to
each other, and the off-diagonal damping terms vanish,
Γν,ν′ = 0 for ν 6= ν′.

C. Multi-stability and possibility of dynamic
control of the array’s ground states

It was discussed above that FM and CAFM ground
states of the magnetic dot array remain stable within
certain intervals of variation of the dot aspect ratio h/R
and the dimensionless array lattice constant a/R and
lose their stability outside of these intervals. The sta-
bility diagram of ground states calculated for an array
of identical cylindrical dots coupled by magneto-dipole
interaction is shown in Fig. 8. Obviously, for infinitely
large interdot separation a both FM and CAFM ground
states are stable if the dot aspect ratio exceeds a critical
value h/R > βcr ≈ 1.81, at which the ground states of
a single dot with an in-plane and out-of-plane magneti-
zation have the same energy31. If the dot aspect ratio is
smaller than this critical value, the static magnetization
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of an individual dot will be lying in the dot plane, and an
“in-plane” ground state of a dot array will be realized.
When the interdot distance a/R is decreasing the criti-
cal aspect ratio h/R increases for both FM and CAFM
ground states, but with a different slope, and, in the case
of a very dense array, where dots are practically touch-
ing each other (a/R → 2), only the CAFM ground state
remains stable.

At the same time, there is a large interval of the
dot’s and array’s parameters where both FM and CAFM
ground states of the array are stable simultaneously. The
properties of spin wave excitations in these two ground
states of the array are substantially different. In partic-
ular, these states have different frequencies of the ferro-
magnetic resonance (FMR), which may be important for
the practical applications of magnetic dot arrays.

Our estimations have shown that in a dot array having
parameters that are not too close to the boundaries of the
ground states stability the difference between the FMR
frequencies in the FM and CAFM ground states can sub-
stantially exceed the FMR linewidth in the dot material
and, therefore, the different microwave absorption lines in
the FM and CAFM states could be observed experimen-
tally. In particular, for an array of Permalloy dots with
the aspect ratio h/R = 5, interdot separation a/R = 4,
static magnetization µ0Ms = 1.07 T (ωM/2π ≈ 30GHz),
and Gilbert damping parameter αG = 0.01 the differ-
ence between the FMR frequencies in the FM and CAFM
ground states can be of the order of 0.1ωM (about 3 GHz)
when the FMR frequencies themselves are of the order of
(0.2 ÷ 0.3)ωM and the FMR linewidth does not exceed
50 MHz (see inset on Fig. 8). It is clear from Fig. 8 that
the microwave absorbtion spectra in the FM and CAFM
states of the array of Py dots have well defined, distinct
peaks that is easy to detect in a standard microwave ex-
periment.

It is important to note that in the parameter region
where both ground states of an array are stable it is pos-
sible to switch the array between the ground states by
applying an external bias magnetic field. The switching
to the ferromagnetic ground state is trivial – one needs to
apply a sufficiently large bias field that is perpendicular
to the dot plane. The switching to the antiferromagnetic
ground state is more complicated, but the fact, that the
CAFM state corresponds to the global energy minimum
of the array, helps to understand how this switching can
be performed. If, for example, we would bring the dot
array existing in the FM state to an unstable state with
maximum energy (where all the dot magnetizations are
oriented in-plane) by applying a sufficiently large in-plane
bias magnetic field and then removing it, the most prob-
able final ground state of the array will be chessboard
antiferromagnetic. The determination of the exact pa-
rameters (such as amplitude and duration) of the in-plane
magnetic field pulse that would guarantee switching from
the FM to the CAFM ground state represent an indepen-
dent non-trivial problem that is beyond the scope of the
current work.

D. Localized spin wave modes caused by a local
defect in a periodic array of magnetic dots

The above discussed ideal periodic ground states of a
magnetic dot array can not be realized in practice, since,
first of all, any real experimental array is finite in size.
Also, many types of local “defects”, such as a domain
wall, presence in the array of a dot having a different
size, or an absence of the dot at one of the regular dot
locations can exist in the array. However, if the density
of local defects is sufficiently small, the global properties
of the array may stay almost the same as in the perfect
periodic case. In such a case of relatively “rare” defects
one may expect only a weak change in the main spin wave
spectra of the array compared to the spectra of a “rig-
orously periodic” array, but, also, the appearance in this
spectrum of novel localized spin wave modes associated
with the existence of a particular defect.

To illustrate this idea and, also, to demonstrate the
power of the above developed general analytic approach
we will consider below one particular type of a local de-
fect, namely, when one of the dots in the array existing
in the FM ground state has the magnetization direction
that is opposite to the magnetization direction of all the
other dots in the array. In other words, the eigenvalue
problem Eq. (3.51) will be solved with all the dot magne-
tizations except one directed as µj = ez , and the remain-
ing “defective” dot has static magnetization µjd = −ez.
To avoid the influence of the edge effects, we will use the
periodic boundary condition in the array (so, formally,
a periodic ground state with a periodic local defect will
be considered). For a sufficiently large distance between
the defects (≥ 10 a for typical dot parameters) the in-
teraction between them is negligible and this approach
accurately imitate a single isolated defect in an infinite
array.

The spin wave absorption spectra and the mode struc-
ture in a dot array in the FM ground state with an iso-
lated defect are shown in Fig. 9. As one can see from
Fig. 9, the presence of an isolated defect (dot with oppo-
site magnetization direction) in the FM dot array only
weakly changes the spectrum of the fundamental spin
wave modes in the array: the mode’s frequencies sim-
ply increase slightly. This changes are mainly caused by
the static demagnetization field of the “defect”. Also,
the defect creates a certain spatial non-uniformity in the
profiles of the fundamental modes (an example of such a
profile for the mode with k = 0 is shown in Fig. 9c). Due
to this defect-related spatial non-uniformity the uniform
spin waves with nonzero wavevectors could be excited by
a uniform microwave field with right polarization (the
natural polarization for the state without defects).

Obviously, the magnetization of a “defect” dot pre-
cesses in the direction which is opposite to the preces-
sion direction of all the other dots. Thus, the eigenmode
associated with the defect can be effectively excited by
the left-polarized microwave field. This “defect” mode
is strongly localized near the defect, and the amplitude
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FIG. 9. Spin wave absorption spectra (a) and mode structure
((b) and (c)) in a magnetic dot array in a ferromagnetic (FM)
ground state having one defect per 11× 11 dots. Dot aspect
ratio h/R = 5, lattice constant a/R = 4. (a) Solid curve –
absorption spectrum for the microwave signal having right in-
plane polarization (i.e., be = (b cosωt, b sinωt, 0)). The main
peak at ω = 0.095 ωM corresponds to the FMR frequency of
the array. Dashed curve – absorption spectrum for the signal
having left in-plane polarization. The peak at ω = 0.4ωM

corresponds to the localized “defect” spin wave mode. Gray
area – region of existence of spin wave modes in a perfect
(without defect) dot array. (b) and (c) – spatial profiles of
the localized (ω = 0.4ωM ) and FMR (ω = 0.095 ωM ) spin
wave modes in the dot array with a defect.

of this mode (mostly related to the amplitude of pre-
cession of magnetization |mj | in the “defect” dot) de-
creases exponentially with the distance from the defect
(see Fig. 9b). Because of the larger value of the inter-
nal field near the defect the frequency of the defect mode
lies higher than the main (fundamental) spectrum. The
ratio of the intensities of the “defect” mode (excited by
the left-polarized microwave field) and the fundamental

mode (excited the by right-polarized microwave field) is
approximately equal to the relative density of defects in
the dot array. Also, the spatially uniform left-polarized
microwave field excite modes with k 6= 0 with rather low
amplitudes, because the overlap integral between the field
and the profiles of these modes is small and the polariza-
tion of the modes is elliptical. Obviously, the fundamen-
tal mode with k = 0 and right circular polarization can
not be excited by such a microwave field.
Thus, if the external microwave signal is spatially uni-

form and has right circular polarization the absorption
properties of the dot array in respect to this signal are
not substantially influenced by the presence of a localized
defect. At the same time, mesurements of the absorption
spectrum for the left-polarized microwave magnetic field
can be used as an effective characterization tool to find
the density and types of different “defects” in a dot array.

V. CONCLUSIONS

The general formalism developed in our current paper
allows one to investigate theoretically linear magnetiza-
tion dynamics in an arbitrary array of magnetic dots cou-
pled by magneto-dipolar interaction. In the calculations
presented above we restricted ourselves to the case of
identical magnetic dots and used a macrospin approxima-
tion for the magnetization of individual dots. Thus, our
calculation cover only the collective spin wave modes of
the array formed by spatially uniform modes of the indi-
vidual dots when these dots have spatially uniform static
magnetization (ground state). Both these restrictions
can be relaxed by using the exact spatially-nonuniform
profile of spin wave modes of individual dots in calcula-
tions of the demagnetization tensor and by introducing
more than one effective demagnetization tensors N̂ .
Since the calculations of the spin-wave spectra in finite

and infinite periodic arrays of magnetic dots are formally
identical, the properties of resulting collective spin wave
modes of the array are similar. In the latter case of spa-
tially periodic array of magnetic dots we find the collec-
tive excitations of the dot sublattices, and the role of the
mutual demagnetization tensor N̂(r) is played by the

tensor F̂k. These tensors contain all the necessary infor-
mation about the array’s geometry. In a general case the
spectrum and the profiles of the spin wave modes of the
array can be found from a standard eigenvalue problem.
A perturbation theory for the spin waves in the dot

array was also developed, and this theory allows one
to investigate such practically important phenomena as
damping of spin-wave modes and excitation of these
modes by an external microwave field. It was shown,
that, in general case, the influence of both dissipation
and the external microwave field leads to the interaction
between different spin wave modes of the array. In partic-
ular, these perturbations could lead to the hybridization
and frequency splitting of frequency-degenerate modes.
The application of the perturbation theory also demon-
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strated that the dissipation parameter of a particular
mode is, usually, proportional to the mode ellipticity, and
is not exactly equal to the Gilbert parameter αGω.

It has been also demonstrated that the spin wave spec-
tra in the dot arrays existing in different initial ground
states (e.g., FM and CAFM) can be substantially differ-
ent. In particular, such practically important character-
istics of the array as the ferromagnetic resonance (FMR)
frequency and group velocity of spin waves having small
wavevectors k ≪ π/a are significantly different for FM
and CAFM ground states of the array. In a wide range of
the array’s geometric parameters the difference in FMR
frequencies significantly exceeds the FMR linewidth in
the magnetic material of the dot. This important prop-
erty of the magnetic dot arrays opens the way for devel-
opment of dynamically reconfigurable magnonic crystals
based on magnetic dot arrays, where the ground state,
and, therefore, the microwave properties could be rapidly

switched by application of a pulse of an external bias
magnetic field. It has been also demonstrated that global
microwave properties of magnetic dot arrays are rather
robust and the presence of isolated defects in the array
can not significantly change the characteristics of funda-
mental spin wave modes of the array.
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