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Motivated by the indication of a new critical theory for the spin-1/2 Heisenberg model with a
spatially staggered anisotropy on the square lattice, we re-investigate the phase transition of this
model induced by dimerization using first principle Monte Carlo simulations. We focus on studying
the finite-size scaling of ρs12L and ρs22L, where L stands for the spatial box size used in the
simulations and ρsi with i ∈ {1, 2} is the spin-stiffness in the i-direction. Remarkably, while we
observe a large correction to scaling for the observable ρs12L, the data for ρs22L exhibit a good
scaling behavior without any indication of a large correction. As a consequence, we are able to
obtain a numerical value for the critical exponent ν which is consistent with the known O(3) result
with moderate computational effort. Further, we additionally carry out an unconventional finite-
size scaling analysis with which we assume that the ratio of the spatial winding numbers squared
is fixed through all simulations. The theoretical correctness of our idea is argued and its validity is
confirmed. Using this unconventional finite-size scaling method, even from ρs1L which receives the
most serious correction among the observables considered in this study, we are able to arrive at a
value for ν consistent with the expected O(3) value. A detailed investigation to compare these two
finite-size scaling methods should be performed.

PACS numbers:

I. INTRODUCTION

Heisenberg-type models have been one of the central
research topics in condensed matter physics during the
last two decades. The reason that these models have
triggered great theoretical interest is twofold. First of
all, Heisenberg-type models are relevant to real materi-
als. Specifically, the spin-1/2 Heisenberg model on the
square lattice is the appropriate model for understand-
ing the undoped precursors of high Tc cuprates (undoped
antiferromagnets). Second, because of the availability of
efficient Monte Carlo algorithms as well as the increased
power of computing resources, properties of undoped an-
tiferromagnets on geometrically non-frustrated lattices
can be simulated with unprecedented accuracy1–15. As a
consequence, these models are particular suitable for ex-
amining theoretical predictions and exploring ideas. For
instance, Heisenberg-type models are often used to ex-
amine field theory predictions regarding the universality
class of a second order phase transition11,14–19. Further-
more, a new proposal of determining the low-energy con-
stant, namely the spinwave velocity c of antiferromag-
nets with O(2) and O(3) symmetry, through the squares
of temporal and spatial winding numbers was verified
to be valid and this idea has greatly improved the ac-
curacy of the related low-energy constants20,21. On the
one hand, Heisenberg-type models on geometrically non-
frustrated lattices are among the best quantitatively un-
derstood condensed matter physics systems; on the other
hand, despite being well studied, several recent numeri-
cal investigation of spatially anisotropic Heisenberg mod-
els have led to unexpected results14,22,23. In particu-
lar, Monte Carlo evidence indicates that the anisotropic
Heisenberg model with staggered arrangement of the an-
tiferromagnetic couplings may belong to a new univer-

sality class, in contradiction to the theoretical O(3) uni-
versality prediction14. For example, while the most ac-
curate Monte Carlo value for the critical exponent ν in
the O(3) universality class is given by ν = 0.7112(5)24,
the corresponding ν determined in14 is ν = 0.689(5).
Although the subtlety of calculating the critical expo-
nent ν from performing finite-size scaling analysis has
been demonstrated for a similar anisotropic Heisenberg
model on the honeycomb lattice25, the discrepancy be-
tween ν = 0.689(5) and ν = 0.7112(5) observed in14,24

remains to be understood.

In order to clarify this issue further, theoretical effort
has been devoted to studying the phase transition of this
model induced by dimerization. Specifically, in26 it is ar-
gued that the correction to scaling for this phase transi-
tion is enhanced because of a cubic irrelevant term, hence
leads to the unexpected ν = 0.689(5) obtained in14. Al-
though Monte Carlo results obtained at finite tempera-
ture seem to support this scenario of an enhanced correc-
tion to scaling, direct numerical evidences to solve this
puzzle is not available yet. In this study, we undertake
the challenge of determining the critical exponent ν by
simulating the spin-1/2 Heisenberg model with a spa-
tially staggered anisotropy on the square lattice. The
relevant observables considered in this study for calcu-
lating the critical exponent ν are ρs12L, ρs22L and Q2.
Here ρsi with i ∈ {1, 2} is the spin stiffness in the i-
direction, L is the box size used in the simulations and
Q2 is the second Binder ratio which will be defined later.
Further, we analyze in more detail the finite-size scaling
of ρs12L and ρs22L. The reason that ρs12L and ρs22L
are chosen is twofold. First of all, these two observables
can be calculated to a very high accuracy using loop
algorithms1,3,27,28. Second, one can measure ρs1 and ρs2
separately. On isotropic systems, one would naturally
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FIG. 1: The spatially anisotropic Heisenberg model consid-
ered in this study.

use ρs, which is the average of ρs1 and ρs2, for the data
analysis. However, for the anisotropic model considered
here, we find it is useful to analyze both the data of ρs1
and ρs2 because such a study may reveal the impact of
anisotropy on the system. Surprisingly, as we will show
later, the observable ρs22L receives a much less severe
correction than ρs12L. Hence ρs22L is a better suited
quantity than ρs12L for the finite-size scaling analysis.
Indeed, with moderate computational effort, we can ob-
tain a numerical value for ν consistent with the most
accurate O(3) Monte Carlo result ν = 0.7112(5). Be-
side the conventional finite-size scaling method, we ad-
ditionally perform another unconventional analysis with
which the aspect ratio of the spatial winding numbers
squared is fixed. Remarkably, while from ρs12L we can-
not obtain a numerical value for ν which agrees with the
established O(3) result using the conventional finite-size
scaling method, we are able to reach a result from the
same observable consistent with ν = 0.7112(5) by em-
ploying our unconventional method of fixing the aspect
ratio of spatial winding numbers squared. Although for
anisotropic systems and for the observables ρsiL with
i ∈ {1, 2}, one can argue theoretically that the uncon-
ventional method we use is the correct approach for per-
forming finite-size scaling, still, we can arrive at a correct
value for ν from ρs22L using the conventional method.
Further, since the conventional method has successfully
led to correct determination of some critical exponents
for anisotropic systems10,15,25, it will be desirable to ex-
amine the results obtained from these two methods in a
more detailed manner.

This paper is organized as follows. First, the
anisotropic Heisenberg model and the relevant observ-
ables studied in this work are briefly described after
which we present our numerical results. In particular,
both the results obtained from the conventional and un-
conventional finite-size scaling methods are discussed in
detail. A final section then concludes our study.

II. MICROSCOPIC MODEL AND

CORRESPONDING OBSERVABLES

The Heisenberg model considered in this study is de-
fined by the Hamilton operator

H =
∑

〈xy〉

J ~Sx · ~Sy +
∑

〈x′y′〉

J ′ ~Sx′ · ~Sy′ , (1)

where J and J ′ are antiferromagnetic exchange couplings
connecting nearest neighbor spins 〈xy〉 and 〈x′y′〉, re-
spectively. Figure 1 illustrates the model described by
Eq. (1). To study the critical behavior of this model
near the transition driven by the anisotropy, in particu-
lar, to determine the critical point as well as the critical
exponent ν, the spin stiffnesses in the 1- and 2-directions
which are defined by

ρsi =
1

βL2
〈W 2

i 〉, (2)

are measured in our simulations. Here β is the inverse
temperature and L again refers to the spatial box size.
Further 〈W 2

i 〉 with i ∈ {1, 2} is the winding number
squared in the i-direction. In addition, the second Binder
ratio Q2, which is defined by

Q2 =
〈(mz

s)
2〉2

〈(mz
s)

4〉
, (3)

is also measured in our simulations as well 1. Here
mz

s is the z-component of the staggered magnetization

~ms =
1
L2

∑

x(−1)x1+x2 ~Sx. By carefully investigating the
spatial volume and the J ′/J dependence of ρsiL as well
as Q2, one can determine the critical point and the crit-
ical exponent ν with high precision.

III. DETERMINATION OF THE CRITICAL

POINT AND THE CRITICAL EXPONENT ν

In this section, the critical exponent ν as well as the
critical point are determined by fitting the Monte Carlo
data to their expected finite-size scaling ansatz. First of
all, Let us focus on our results obtained by performing
the conventional finite-size scaling.

A. Results from the conventional finite-size scaling

analysis

To study the quantum phase transition, we have car-
ried out large scale Monte Carlo simulations using a loop
algorithm. Further, to calculate the relevant critical ex-
ponent ν and to determine the location of the critical

1 Notice the conventional definition of Q2 in the literature is given
by Q2 = 〈(mz

s)
4〉/〈(mz

s )
2〉2.
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observable L ν (J ′/J)c χ2/DOF

ρs22L 48 ≤ L ≤ 96 0.7150(28) 2.51951(8) 1.0

ρs22L
⋆ 48 ≤ L ≤ 96 0.7095(32) 2.51950(8) 0.9

ρs22L 48 ≤ L ≤ 136 0.7120(16) 2.51950(3) 1.1

ρs22L 60 ≤ L ≤ 136 0.7120(18) 2.51950(3) 1.1

ρs22L 66 ≤ L ≤ 136 0.7125(20) 2.51950(4) 1.1

ρs22L
⋆ 48 ≤ L ≤ 136 0.7085(16) 2.51950(3) 0.9

ρs22L
⋆ 60 ≤ L ≤ 136 0.7087(17) 2.51950(3) 0.9

ρs22L
⋆ 66 ≤ L ≤ 136 0.7096(19) 2.51950(4) 0.9

ρs12L 24 ≤ L ≤ 80 0.689(3) 2.5194(4) 1.2

ρs12L
⋆ 24 ≤ L ≤ 80 0.683(4) 2.5194(3) 1.1

ρs12L 48 ≤ L ≤ 136 0.701(3) 2.5194(3) 1.6

Q2 48 ≤ L ≤ 136 0.7116(50) 2.51952(8) 1.4

Q⋆
2 48 ≤ L ≤ 136 0.7050(48) 2.51950(8) 1.3

TABLE I: The numerical values for ν and (J ′/J)c calculated
from ρs22L, ρs12L and Q2. All results are obtained using a
second order Taylor series expansion of Eq. (5), except those
with a star, which are determined using an expansion to third
order. The confluent correction ω is included in the fit explic-
itly only for ρs12L.

point in the parameter space J ′/J , we have employed
the technique of finite-size scaling for certain observables.
For example, if the transition is second order, then near
the transition the observable ρsi2L for i ∈ {1, 2} and
Q2 should be described well by the following finite-size
scaling ansatz229–33

OL(t) = gO(tL
1/ν , Lz/β, r) + L−ωgOω

(tL1/ν , Lz/β, r)

= gO(tL
1/ν , Lz/β, r) ×

(

1 + L−ωg′Oω
(tL1/ν , Lz/β, r)

)

(4)

where OL stands for Q2 and ρsiL with i ∈ {1, 2}, L is
the lattice size in the 1-direction, t = (jc − j)/jc with
j = (J ′/J), ν is the critical exponent corresponding to
the correlation length ξ, ω is the confluent correction
exponent, z is the dynamical critical exponent which is
1 for the phase transition considered here and r is the
ratio of the lattice size in the 1- and 2-direction. Further,
gO, gOω

and g′Oω
appearing above are smooth functions

of the variables tL1/ν , L/β and r. Using the full ansatz
Eq. (4) for finite-size scaling will certainly introduce more
unknown parameters, hence might lead to difficulty in
estimating the errors accurately3. As a result, in practice

2 In addition to the confluent correction appeared in Eq. 4, there

are also other corrections to scaling proportional to L−2ω , L−ω′

,
and so on.

3 For example, using the full ansatz Eq. (4), a fit of the unconven-
tional finite-size scaling (which will be introduced later) to ρs1L
leads to ν = 0.71(5).

one would carry out the analysis closes to the critical
point so that g′Oω

in Eq. (4) can be approximated by a
constant. Specifically the following ansatz

OL(t) = (1 + bL−ω)gO(tL
1/ν , Lz/β, r), (5)

where b is some constant, is frequently used when apply-
ing the finite-size scaling technique. While Eq. (5) is only
valid for large box sizes and close to the critical point, to
present the main results of this study we find it is suffi-
cient to employ Eq. (5) for the data analysis. Notice that
for square lattices, one will intuitively neglect the effect
of r in Eq. (5). From Eq. (5), one concludes that the
curves for OL corresponding to different L, as functions
of J ′/J , should intersect at the critical point (J ′/J)c for
large L. To calculate the critical exponent ν and the
critical point (J ′/J)c, in the following we will apply the
finite-size scaling formula, Eq. (5) with r = 1, to the ob-
servables ρs12L, ρs22L as well asQ2. Without loss of gen-
erality, we have fixed J = 1 in our simulations and have
varied J ′. Additionally, the box size used in the simula-
tions ranges from L = 16 to L = 136. To reach a lattice
size as large as possible, we use βJ = 2L for each L in
our simulation. As a result, the temperature dependence
in Eq. (5) drops out. Figure 2 shows the Monte Carlo
data for ρs12L, ρs22L and Q2 as functions of J ′/J . The
figure clearly indicates that the phase transition is most
likely second order since for all the observables ρs12L,
ρs22L and Q2, the curves of different L tend to inter-
sect near a particular point in the parameter space J ′/J .
The most striking observation from our results is that the
observable ρs12L receives a much more severe correction
than ρs22L. This can be understood from the trend of
the crossing among these curves for different L near the
transition (figure 3). Therefore one expects that a bet-
ter determination of ν can be obtained by applying the
finite-size scaling ansatz Eq. (5) to ρs22L. Before present-
ing our results, we would like to point out that data from
large volumes are essential in order to determine the crit-
ical exponent ν accurately as was emphasized in25. We
will use the strategy employed in25 for our data analysis
as well. Let us first focus on ρs22L since this observable
shows a good scaling behavior. Notice from figure 3, the
trend of crossing for different L of ρs22L indicates that
the confluent correction is negligible for lattices of larger
size. Therefore one expects that a result consistent with
the theoretical prediction can be reached with b = 0 in
formula (5) if data from large L are taken into account in
the fit. Indeed with a Taylor expansion of Eq. (5) up to
second order in tL1/ν as well as letting b = 0 in Eq. (5),
we arrive at ν = 0.7120(16) and (J ′/J)c = 2.51950(3)
using the data of ρs22L with 48 ≤ L ≤ 136. In obtain-
ing the results ν = 0.7120(16) and (J ′/J)c = 2.51950(3),
we have performed bootstrap sampling on the raw data
and have carried out a large number (around 1000) of fits
with a variant input for the unknown parameters34. The
inclusion of higher order terms in the Taylor series and
eliminating data of smaller L in the fits leads to com-
patible (and consistent) results with what we have just
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obtained. The results of ν and (J ′/J)c we obtain from
ρs22L are shown in the first 8 rows of table 1. As in-
dicated in table 1, the numerical values of ν determined
from ρs22L are consistent with the most accurate Monte
Carlo result ν = 0.7112(5) in the O(3) universality class.
Further, the critical points we calculate from the same
observable ρs22L agrees with the known results in the
literature14 as well. The errors for (J ′/J)c and ν shown
in table 1 are determined by the standard deviations of
the corresponding results from the fits. While the boot-
strap method ocassionally would lead to underestimated
errors, the bootstrap means we reach in table 1 provide
a convincing evidence that our ν calculated from ρs22L
agrees nicely with the expected ν = 0.7112(5). Notice
the ansatz we use to fit the observable ρs22L contains
either 5 or 6 unknown parameters which is reasonable.
Still, one would like to see whether a value for ν consis-
tent with its theoretical prediction can be obtained using
fewer fitting coefficients. Interestingly, using the data of
ρs22L very close to (J ′/J)c, we arrive at ν = 0.710(7) by
employing a Taylor expansion of Eq. (5) up to first order
in tL1/ν with a fixed (J ′/J)c = 2.51950 and b = 0. The
new fit we carry out contains only 3 unknown parame-
ters. Hence we conclude that indeed our data of ρs22L
can be described well by the expected O(3) value for ν.

Having determined ν = 0.7120(16) using the observ-
able ρs22L, we turn to the calculations of ν based on the
observables ρs12L and Q2. First of all, we would like
to reproduce the unexpected result ν = 0.689(5) found
in14. Indeed, using the Monte Carlo data of ρs12L with
L ranging from L = 24 to L = 80 (the size of L = 80
is similar to the largest lattice (L = 72) used in14 in
obtaining ν = 0.689(5)), we arrive at ν = 0.689(3) and
(J ′/J)c = 2.5194(4), both of which are statistically con-
sistent with those determined in14. Further, the ω de-
termined from above fit is ω = 0.52(6). Finally a nu-
merical value for ν consistent with its theoretical predic-
tion ν = 0.7112(5) could never have been obtained us-
ing the available data for ρs12L. Interestingly, the ω in
Eq. (5) obtained from our fits for ρs12L are in the range
[ 0.52, 0.57 ], and therefore are smaller than the expected
value ω ∼ 0.78. This implies that either the correction to
scaling for ρs12L is indeed large, hence the calculations
of ν using ρs12L with a subleading correction might be
contaminated due to the enhanced correction, or the de-
termination of ω from the fits is influenced by higher
order terms. As a result, it will be interesting to ex-
amine whether a numerical value of ν consistent with its
theoretical expectation can be determined from ρs12L by
simulating lattices larger than those used here. Finally,
for the observable Q2, using the leading finite-size scal-
ing ansatz (i.e. letting b = 0 in Eq. (5)), we are able
to reach a value for ν which agrees even quantitatively
with ν = 0.7112(5). However, the uncertainty of ν cal-
culated from Q2 is more than twice as large as that of
ν determined from ρs22L. The results for ν and (J ′/J)c
calculated from our finite-size scaling analysis on ρs12L
and Q2 are summarized in table 1 as well.
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FIG. 2: Monte Carlo data of ρs12L (top), ρs22L (middle),
and Q2 (bottom).

After obtaining a result for ν which agrees quantita-
tively with ν = 0.7112(5), one naturally would like to
see whether one can determine other exponents such as
β consistent with their expected theoretical values us-
ing the relevant observables. For example, at critical
point the observable 〈(mz

s)
2〉 should scale as L−2β/ν

for large L. Interestingly, using our data of 〈(mz
s)

2〉 at
J ′/J = 2.5194 we arrive at β/ν = 0.5300(18). Our value
for β/ν is between the expected β/ν = 0.518(1) and the
result of β/ν = 0.545(4) obtained in14, implying that ei-
ther the correction to scaling for 〈(mz

s)
2〉 is large (like

that for ρs12L), or the determination of β/ν is very sen-
sitive to the exact location of (J ′/J)c.
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FIG. 3: Crossing of ρs12L (top), ρs22L (middle), and Q2

(bottom) for different L near the transition.

B. Results from the unconventional finite-size

scaling method

While in previous sections, with the observables ρs22L
and Q2 we are able to obtained numerical values of ν
consistent with the established O(3) result ν = 0.7112(5)
using the conventional finite-size scaling method, it is
a surprising observation that comparing to ρs22L (and
Q2 as well), ρs12L receives a much severe correction. In
particular, although our results are consistent with the
scenario that there is a large correction to scaling for the
phase transition considered here as suggested in26, it is
unusual that we cannot reach a result for ν that agrees
with ν = 0.7112(5) even with lattices as large as 1362.
This unexpected result leads one to wonder whether the
conventional finite-size scaling carried out so far is the
correct approach for the determination of the critical
exponents and critical points of an anisotropic system.

Indeed a closer look of Eq. (5), one realizes that with
sufficient low temperature so that the finite temperature
dependence in Eq. (5) drops out, the correct finite-size
scaling for an anisotropic system is to fix the aspect ratio
of winding numbers squared. The idea of this unconven-
tional method can be justify rigorously as follows. To
simplify our demonstration, let us neglect the confluent
correction 4. Notice that for anisotropic systems, the rel-
evant aspect ratio r in (5) is the one expressed in phys-
ical units. Specifically, the finite-size scaling ansatz for
anisotropic systems takes the form

OL(t) = gOL

(

tL
1/ν
1 ,

L1

ξ1

ξ2
L2

)

, (6)

where ξi (Li) with i ∈ {1, 2} is the correlation length (box
size) in the 1- and the 2-direction, respectively. From
above equation, one realizes that for anisotropic systems,
the correct procedure for performing the finite-size scal-
ing is to fix the anisotropic aspect ratio (L1/ξ1)(ξ2/L2).
Further, with the following relation

〈W 2
1 〉

〈W 2
2 〉

= g12

(

tL
1/ν
1 ,

L1

ξ1

ξ2
L2

)

, (7)

one can solve for the anisotropic aspect ratio
(L1/ξ1)(ξ2/L2), which is then given by

L1

ξ1

ξ2
L2

= h

(

tL
1/ν
1 ,

〈W 2
1 〉

〈W 2
2 〉

)

. (8)

For any given renormalization group invariant quantity
which satisfies the scaling properties

OL(t) = gOL

(

tL
1/ν
1 ,

L1

ξ1

ξ2
L2

)

, (9)

employing Eq. (8) will lead to

OL(t) = fOL

(

tL
1/ν
1 ,

〈W 2
1 〉

〈W 2
2 〉

)

. (10)

As a consequence, the proposal of fixing the aspect ratio
of spatial winding numbers squared in the simulations for
anisotropic systems is correct.
After having justified the correctness of the unconven-

tional finite-size scaling we propose here, we would like to
introduce how this idea is employed in practice. First of
all, one performs a trial simulation to determine a fixed
value for the ratio of spatial winding numbers squared
which is denoted by wf and will be used later in all cal-
culations. Second, instead of fixing the aspect ratio of
box sizes L1 and L2 in the simulations as in conventional
finite-size scaling studies, one then varies the variables
L1, L2 and J ′/J in order to satisfy the condition of a

4 All the functions appeared in our derivation are smooth functions
of their arguments.
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J ′/J L1 L2 wf/w (ρs1)in ρs1

0.53 96 96 0.9558(33) 0.008188(22) 0.008198(7)

0.53 96 94 0.9549(32) 0.008391(21) 0.0084098(74)

0.545 90 94 0.9594(35) 0.016862(33) 0.016835(15)

0.545 90 90 0.9539(36) 0.017651(35) 0.017676(17)

0.535 98 98 0.9591(28) 0.011707(28) 0.0117297(124)

0.54 96 96 0.9592(29) 0.014838(37) 0.014846(13)

0.525 96 96 0.9503(41) 0.0072255(225) 0.0072579(66)

TABLE II: Comparison between interpolated and original val-
ues of ρs1 for several data points. The data points which are
used for interpolation are obtained from the simulations with
L1 × (L2 + 2) (except the last row which is obtained from a
simulation with (L1 + 2) × L2). The inverse temperature β
for these data points are fixed to βJ = 800.

fixed ratio of spatial winding numbers squared. This step
involves a controlled interpolation on the raw data points.
In practice, for a fixed L2 one performs simulations for a
sequence L1 = L2, L2 ± 2, L2 ± 4, . . . . The criterion of a
fixed ratio of spatial winding numbers squared is reached
by tuning the parameter J2/J1 and then carrying out a
linear interpolation based on (w/wf )

(−1/2) for the desired
observables, here w refers to the ratio of spatial winding
numbers squared of the data points other than the trial
one. Notice that it is natural to use L2 in the finite-size
scaling ansatz Eq. (10) both for the analysis associated
with ρs1 and ρs2. Although we have argue that our pro-
posal of fixing the aspect ratio of spatial winding numbers
squared is correct, it is desirable to examine the validity
of this unconventional finite-size scaling method. For this
purpose, we consider the quantum transition induced by
dimerization for the Heisenberg model with a ladder pat-
tern anisotropic couplings (figure 4). For b ∼ 0.95(22) in
Eq. (4), we obtain a good data collapse for the observ-
able (ρs1)inL2, here the subscript “in” means the data
points are the interpolated one. To make sure that the
step of interpolation leads to accurate results, we have
carried out several trial simulations and have confirmed
that the interpolated data points are reliable as long as
the ratio is kept small (table 2). On the other hand, for
b = 1.30(18) in Eq. (4), a good data collapse is also ob-
tained for the observable ρs1L1, here ρs1 are the raw data
determined from the simulations directly. Figure 5 shows
a comparison between the data collapse obtained by us-
ing the unconventional (upper panel) and the conven-
tional methods (lower panel). For obtaining figure 5, we
have fixed ν = 0.7112, ω = 0.78, and (J/J ′)c = 0.52367,
which are the established values for these quantities. As
one sees in figure 5, the quality of data collapse using the
unconventional method is as good as that obtained with
the conventional one, thus confirming the validity of the
idea to fix the ratio of winding numbers squared in order
to studying the critical theory of a second order phase
transition.

As demonstrated above, in general for a fixed L2, one

J

J’

FIG. 4: Heisenberg model with a ladder pattern of anisotropy.
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FIG. 5: Comparison between the results of data collapse us-
ing the new unconventional finite-size scaling method (up-
per panel) described in the text and the conventional method
(lower panel) for the ladder anisotropic Heisenberg model.
The result in the upper panel is obtained from simulations
with box sizes (L2 − 6)×L2, (L2 − 4)×L2, ..., (L2 +4)×L2

for various values of J2/J1 if the interpolations from such
simulations are reliable.

can vary L1 and J ′/J in order to reach the criterion of
a fixed aspect-ratio of spatial winding numbers squared
in the simulations. Before we proceed further, we would
like to point out that to employ the unconventional finite-
size scaling of a fixed aspect ratio of spatial winding
numbers squared in the simulations, one needs to ob-
tain the ground-state values for the considered observ-
ables. This is because otherwise the ratios of temporal
and each of the spatial winding number squared need
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to be fixed as well, which would then complicate the
analysis5. Therefore, instead of using our Monte Carlo
data obtained earlier using the relation β = 2L in the
simulations, we have carried out another set of simula-
tions employing the condition β = 5L in our calculations
so that all the observables considered here take their
ground-state values. After completing our new simula-
tions, we proceed as follows. First of all, we calculate the
ratio 〈W 2

1 〉/〈W
2
2 〉 for the data point at J ′/J = 2.5196

and L = 40 which we denote by wf . After obtaining
this number, a linear interpolation for ρs1 of other data
points based on (w/wf )

(−1/2) is performed in order to
reach the criterion of a fixed ratio of spatial winding
numbers squared in the simulations. The w appearing
above is again the corresponding 〈W 2

1 〉/〈W
2
2 〉 of other

data points. Here a controlled interpolation similar to
what we have done in studying the ladder anisotropic
Heisenberg model is performed as well. Further, since
large volumes data is essential for a quick convergence
of ν as suggested in25, we make sure the set of interpo-
lated data chosen for finite-size scaling analysis contains
sufficiently many points from large volumes as long as
the interpolated results are reliable. A fit of the inter-
polated (ρs1)inL data to Eq. (5) with ω being fixed to
its O(3) value (ω = 0.78) leads to ν = 0.706(7) and
(J/J)c = 2.5196(1) for 36 ≤ L ≤ 64 (figure 6). The
value of ν we calculate from the fit is in good agree-
ment with the expected O(3) value ν = 0.7112(5) and
the critical point (J ′/J)c = 2.5196(1) we obtain is con-
sistent with that found in14 as well. Letting ω be a
fit parameter results in consistent ν = 0.707(8) and
(J ′/J)c = 2.5196(7) with ω ∼ 0.71. Further, we al-
ways arrive at consistent results with ν = 0.706(7) and
(J ′/J)c = 2.5196(1) from the fits using L > 36 data.
The numerical values of ω we reach from these fits range
from 0.7 to 0.9 and are of considerable large uncertain-
ties (comparable to the obtained ω themselves). Without
a subleading correction term, we are not able to reach
a good fit. These results indicate that while our data
points of (ρs1)inL indeed receive correction, their qual-
ity is not precise enough to determine ω accurately. To
avoid any bias, we also perform another analysis for the
raw ρs1L data with the same range of L and J ′/J as
we did for the interpolated data. By fitting this set of
original data points to Eq. (5) with a fixed ω = 0.78,
we arrive at ν = 0.688(7) and (J ′/J)c = 2.5197(1) (fig-
ure 7), both of which again agree quantitatively with
those determined in14. Similarly, applying this uncon-
ventional finite-size scaling to ρs2 would lead to a nu-
merical value of ν consistent with ν = 0.7112(5). For
instance, the ν determined by fitting (ρs2)inL to Eq. (5)
is found to be ν = 0.706(7), which agrees quantitatively

5 Interestingly, using ρs22L calculated with β = 2L in the simula-
tions, we arrive at ν = 0.7065(50) by employing the unconven-
tional finite-size scaling introduced above.

2.516 2.518 2.52 2.522

J’/J

1.71

1.8

1.89

1.98

2.07

(ρ
s1

) in
L

(J’/J)c = 2.5196(1)

ν = 0.706(7)

χ2
/d.o.f. = 0.5

FIG. 6: Fit of interpolated (ρs1)inL data to Eq. (5). While
the circles are the numerical Monte Carlo data from the sim-
ulations, the solid curves are obtained by using the results
from the fit.

2.516 2.518 2.52 2.522 2.524
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1.8

1.89

1.98

2.07

ρ s1
L

(J’/J)c = 2.5197(1)

ν = 0.688(7)

χ2
/d.o.f. = 0.9

FIG. 7: Fit of original ρs1L data to Eq. (5). While the circles
are the numerical Monte Carlo data from the simulations, the
solid curves are obtained by using the results from the fit.

with the predicted O(3) value (figure 8). Finally we
would like to make a comment regarding the choice of
wf . In principle one can use wf determined from any
L and from any J ′/J close to (J ′/J)c. However it will
be desirable to choose wf such that the set of interpo-
lated data used for analysis includes as many data points
from large volumes as possible. Using the wf obtained at
J ′/J = 2.5191 (J ′/J = 2.5196) with L = 40 (L = 44), we
reach the results of ν = 0.704(7) and (J ′/J)c = 2.5196(1)
(ν = 0.705(7) and (J ′/J)c = 2.5196(1)) from the fit with
a fixed ω = 0.78. These values for ν and (J ′/J)c agree
with what we have obtained earlier. Indeed as we will
demonstrate in another investigation, the critical expo-
nent ν determined by the idea of fixing the ratio of spatial
winding number squared in the simulations is indepen-
dence of the chosen reference point.

IV. DISCUSSIONS AND CONCLUSIONS

Above we have studied the critical behavior at the
phase transition induced by dimerization of the spin-1/2
Heisenberg model with a spatially staggered anisotropy.
Unlike the scenario suggested in14 that an unconventional
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FIG. 8: Fit of interpolated (ρs2)inL data to Eq. (5). While
the circles are the numerical Monte Carlo data from the sim-
ulations, the solid curves are obtained by using the results
from the fit.

universality class is observed, we conclude that indeed
this second order phase transition is likely in the O(3)
universality class. In the first part of our data analysis,
we employ the conventional finite-size scaling to calculate
ν and (J ′/J)c. Our observation of ρs22L being a good
observable for determining the critical exponent ν is cru-
cial for reading this conclusion by confirming the O(3)
critical exponent for this phase transition with high pre-
cision. While we do observed a large correction to scal-
ing for the observable ρs12L as proposed in26, the data
points of ρs22L show good scaling behavior. Specifically,
with ρs22L, we can easily reach a highly accurate numer-
ical value for ν consistent with the theoretical predictions
without taking the confluent correction into account in
the fit. The large correction to scaling observed for ρs12L
in principle should influence all observables. Hence the
most reasonable explanation for the good scaling behav-
ior of ρs22L shown here is that the prefactor b in Eq. (5)
for ρs22L is very small. As a result, we are able to de-
termine the expected numerical value for ν using data of
ρs22L with moderate lattice sizes. Still, a more rigorous
theoretical study such as investigating whether there ex-
ists a symmetry that protects ρs22L from being affected
by the large correction to scaling as suggested in26 will
be an interesting topic to explore. For example, in26

it is argued that the enhanced correction to scaling ob-
served for this phase transition might be due to a cubic
irrelevant term which contains one-derivative in the 1-
direction. The first thing one would like to understand
is whether the feature of this irrelevant term, namely it
contains one-derivative in the 1-direction, will lead to our
observation that the large correction to scaling has little
impact on ρs22L. While in this study we can reach a
value of ν consistent with ν = 0.7112(5), the β/ν we
calculate from 〈(mz

s)
2〉 is statistically different from the

established result of β/ν = 0.518(1) in the literature.
Our this finding indicates that either the correction to
scaling for the observable 〈(mz

s)
2〉 is indeed enhanced as

suggested in26, or there are some subtleties that one is
not aware of when employing the technique of finite-size
scaling.

After having demonstrated that the phase transition
considered in this study is likely governed by the O(3)
universality class prediction, we examine the finite-size
scaling ansatz Eq. (5) carefully due the puzzle of the
anomalously large correction to scaling for ρs12L shown
in figure 3. We argue theoretically that the correct strat-
egy of performing finite-size scaling for aniostropic sys-
tems is to fix the aspect ratio of spatail winding num-
bers squared. Indeed, with this unconventional finite-
size scaling strategy, even for the observable ρs1L which
receives the most severe correction to scaling, we are
able to reach a numrical value for ν that is consistent
quantitatively with the expected theorectial prediction
ν = 0.7112(5). It will be interesting to apply a similar
technique to other observables such as Binder ratios as
well. However, for Binder ratios, the correction from in-
terpolation will cancel out because of the definition of
these observables. Therefore to further test the uncon-
ventional finite-size scaling method proposed here might
require some new ideas. It is interesting to notice that
our arguments leading to Eq. (10) seems to imply that
setting r = 1 in Eqs. (4) and (5) when performing the
finite-size scaling analysis for anisotropic systems is con-
ceptually wrong. Still, since the conventional method
of using r = 1 in Eqs. (4) and (5) has successfully led
to correct determination of some critical exponents for
anisotropic systems10,15,25, it might be desirable to re-
examine these studies to some extent.
In summary, here we present convincing numerical ev-

idence to support that the phase transition considered in
this study is well described by the O(3) universality class
prediction, at least for the critical exponent ν which is
investigated in detail in this study. Further, whether the
good scaling of ρs22L observed here is a coincidence or is
generally applicable for quantum Heisenberg models with
a similar spatially anisotropic pattern, remains an inter-
esting topic for further investigation. Finally, while we
have argued convincingly that the correct strategy of car-
rying out finite-size scaling for anisotropic systems is to
fix the aspect ratio of spatial winding numbers squared,
it will be of great interesting to re-examine the critical
theories of other 2-d quantum Heisenberg models with
spatial anisotropies in a more sophisticated manner.
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