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The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)2 exhibits a field-induced quantum phase
transition that is formally analogous to Bose-Einstein condensation. Here we present results of
systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this
compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some
remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic
excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the
experimental signature of single-ion two-magnon bound states is shown to be fully consistent with
theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate
phase.

PACS numbers: 75.40.Gb,76.30.-v,75.10.Jm

I. INTRODUCTION

The organic compound NiCl2-4SC(NH2)2 (known as
DTN) is a gapped quasi-one-dimensional antiferromag-
net with easy-plane anisotropy dominating the exchange
coupling. At zero temperature, DTN undergoes a
phase transition at a critical field H1 ∼ 2.1 T above
which nonzero spontaneous magnetization develops in
the ground state and the spectrum of magnetic excita-
tions becomes gapless. The system may then be thought
of as a spin fluid formally described as a gas of hard-
core bosons and the field-induced transition at H1 corre-
sponds to Bose-Einstein condensation. A further transi-
tion occurs at a second critical field H2 ∼ 12.6 T above
which the ground state is a fully ordered ferromagnetic
state. The field-induced quantum phase transitions de-
scribed above have already attracted considerable ex-
perimental interest through standard magnetometry, in-
elastic neutron scattering, specific heat measurements,
etc., followed by theoretical calculations based on suit-
able Heisenberg models1.

In particular, Zvyagin et al.2,3 have carried out de-
tailed ESR measurements of magnetic excitations in a
wide field range up to 25 T which includes the critical
fields H1 and H2. The resulting picture was found to be
generally consistent with early theoretical predictions4.
In short, in the low-field region H < H1 the ground state
carries zero azimuthal spin (Sz = 0) while magnon exci-
tations with Sz = ±1 are separated by a gap which is un-
ambiguously observed in the ESR spectrum through the
expected ∆Sz = 1 transitions. In the high-field region,
H > H2, the ESR spectrum is dominated at low tem-
perature by ∆Sz = 1 transitions between a fully ordered
ferromagnetic ground state and magnons that again ac-
quire a nonzero energy gap. At finite temperature, a new

feature appears in the ESR spectrum and corresponds to
a ∆Sz = 1 transition between a magnon and a single-ion
two-magnon bound state, a fact anticipated theoretically
sometime ago4. A direct ∆Sz = 2 transition between the
ordered ground state and a single-ion bound state is also
observed. The physical picture becomes more involved
in the intermediate field region H1 < H < H2 but some
progress has already been reported in recent literature5,6.
Our current task is to clarify some remaining dis-

crepancies between theory and experiment. Thus
we have carried out afresh a new set of ESR ex-
periments performed in a frequency range 50-700
GHz using a tunable-frequency submillimeter-wave ESR
spectrometer7 equipped with Backward Wave Oscilla-
tors as radiation sources and a 25 T resistive magnet.
A transmission-type probe with a sample in the Fara-
day geometry was employed (with the light propagation
vector directed along the applied magnetic field H and
the tetragonal c axis of the sample). High-quality sin-
gle crystals of DTN with a typical size of about 3× 3× 5
mm3 (from a new batch, grown from aqueous solutions of
thiourea and nickel chloride) were used. A silicon-based
Dow Corning High Vacuum Grease 976 V was used to
fix samples inside the probe. Particular attention was
paid to measuring the temperature dependence of the ob-
served ESR modes, especially in order to unambiguously
resolve the contribution of two-magnon bound states in
the high-field region H > H2.
The main body of the paper is devoted to a theoretical

analysis carried out in two steps. In Sec. II we adopt
a quasi-one-dimensional Heisenberg model to calculate
important features of the ESR spectrum through a sys-
tematic strong-coupling expansion carried to third order.
The general structure of the calculated spectrum agrees
with experiment but important information concerning
the relative intensity of the observed modes is practi-
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FIG. 1: (color online). Frequency-field dependence of mag-
netic excitations in DTN, with a uniform magnetic field H

applied along the tetragonal c axis. Blue symbols denote ex-
perimental data taken at T=1.7 K and red symbols at T=4.3
K. Note that the mode E was observed in the Voight config-
uration (with the light propagation vector directed perpen-
dicular to the applied magnetic field)2,3 while the rest of the
modes were observed in the Voight as well as in the Faraday
geometry. Solid lines correspond to results of calculations
presented in Sec. II and are deliberately continued as dashed
lines into the intermediate region H1 < H < H2. The loca-
tion of critical fields H1 = 2.1 T and H2 = 12.6 T is indicated
by vertical dashed lines.

cally impossible to obtain within this essentially three-
dimensional (3D) model. Thus, in Sec. III, we carry out
such calculations within a strictly one-dimensional (1D)
model through exact diagonalization on finite chains and
a corresponding simulation of the relevant dynamic sus-
ceptibilities. We are then able to analyze important fea-
tures of the observed ESR spectrum over a wide field
range including the intermediate region H1 < H < H2.
Our main conclusions are summarized in Sec. IV.

II. THREE-DIMENSIONAL MODEL

The essential features of the observed ESR spectrum
are illustrated in Fig. 1 together with some theoreti-
cal predictions derived from a spin S = 1 Heisenberg
Hamiltonian1,2:

H =
∑

i,ν

Jν(Si·Si+eν ) +
∑

i

[D(Sz
i )

2 + gµBHSz
i ] (1)

where i denotes a generic site of a 3D lattice and eν
with ν = {x, y, z} count nearest neighbors. The exchange
constants Jν = {Jx, Jy, Jz} may depend on the spe-
cific lattice direction and are assumed to be significantly
smaller than the easy-plane anisotropy (Jν << D). Ac-
tually, DTN is thought to be described by the quasi-one-
dimensional limit of Eq. (1) defined from Jx = Jy ≪
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FIG. 2: (color online). A schematic view of the energy-
momentum dispersions of magnetic excitations in an S = 1
Heisenberg chain with strong easy-plane (D > 0) anisotropy
for two typical fields H < H1 (left) and H > H2 (right). Note
that the ESR transitions denoted by A, B, C, E and F occur
at k = 0, whereas transition G occurs at k = π. Two-particle
continua are not shown for simplicity.

Jz ≪ D, but the required theoretical analysis is essen-
tially three-dimensional. Finally, an external magnetic
field with strength H is applied in a direction perpendic-
ular to the easy-plane.
At zero field (H = 0) the ground state carries zero az-

imuthal spin (Sz = 0) and the magnon spectrum consists
of two degenerate branches with Sz = ±1 and energy-
momentum dispersion ω = ω(k) calculated through a
systematic 1/D expansion8 carried to third order:

ω(k) = D + 2
∑

ν

Jνcoskν

+
1

D

[

3
∑

ν

J2
ν − 2(

∑

ν

Jνcoskν)
2

]

+
1

D2

[

2
∑

ν

J3
ν + 4(

∑

ν

Jνcoskν)
3

+
5

2

∑

ν

J3
ν coskν − 7(

∑

µ

J2
µ)(

∑

ν

Jνcoskν)

− 2(
∑

µ

Jµcoskµ)(
∑

ν

J2
ν coskν)

]

(2)

For nonzero but sufficiently low fields the Sz = 0
ground state remains unaffected while the degeneracy of
the Sz = ±1 magnon states is lifted (Fig. 2, left) to yield
a twofold dispersion:

ω±(k) = ω(k)± gµBH (3)

The ESR spectrum consists of two branches correspond-
ing to ∆Sz = ±1 transitions between the ground state
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and k = 0 magnons (modes A and B in Fig. 1). Thus
the observed resonance frequencies are predicted to be:

ωA = ω0 + gµBH, ωB = ω0 − gµBH (4)

where ω0 = ω(k = 0) is calculated from Eq. (2). Also
note that the dispersion ω(k) of Eq. (2) exhibits a
nonzero gap throughout the Brillouin zone, the smallest
gap occurring at k = (π, π, π). Therefore, the magnon
frequencies of Eq. (3) remain positive throughout the
zone as long as H < H1 where H1 is a critical field de-
fined from:

gµBH1 = ∆ , ∆ = ω[k = (π, π, π)] , (5)

where the smallest gap ∆ is again calculated from Eq.
(2) now applied for k = (π, π, π). A corollary of the
preceding discussion is that ∆ < ω0.
When the field H exceeds its critical value H1 level

crossing occurs and the azimuthal spin of the ground
state no longer vanishes but increases with increasing
field. Thus the system enters an intermediate phase
through a field-induced quantum phase transition. The
magnon spectrum is expected to be gapless in the inter-
mediate phase but its detailed structure is now difficult
to calculate. A systematic 1/D expansion is not feasible
while semiclassical methods are generally inaccurate at
strong anisotropy. Hence we postpone further discussion
of the intermediate phase until Sec. III where a numerical
calculation is carried out within a strictly 1D model.
The theoretical model of Eq. (1) becomes again

tractable for sufficiently strong fields where the ground
state is a completely ordered ferromagnetic state (Fig.
2, right). The energy-momentum dispersion of single-
magnon states is then given by

ǫ(k) = gµBH −D − 2(Jx + Jy + Jz)

+ 2(Jxcoskx + Jycosky + Jzcoskz) (6)

The lowest gap of this dispersion occurs at k = (π, π, π)
and is equal to gµBH −D − 4(Jx + Jy + Jz). Thus the
ordered state is stable when the field exceeds a critical
value given by

gµBH2 = D + 4(Jx + Jy + Jz) (7)

Therefore, for H > H2, the ESR spectrum should be
dominated by ∆Sz = 1 transitions between the com-
pletely ordered ferromagnetic state and k = 0 magnons.
The resonance frequency is then calculated from

ωC = ǫ(k = 0) = gµBH −D (8)

and is found to be independent of the exchange constants.
The physical picture is actually more involved for H >

H2 thanks to the appearance of an interesting class of
two-magnon bound states. An exact calculation of such
states is possible in the 1D model through an elementary
Bethe Ansatz9. The two-magnon spectrum contains a
“single-ion bound state” whose energy-momentum dis-
persion extends well above the two-magnon continuum

and was argued to be relevant for the analysis of the
ESR spectrum observed in large-D systems4.
However, a Bethe Ansatz is not applicable to the 3D

model studied in this section. Thus we resort to a more
direct method developed long time ago by Wortis10 for
the calculation of two-magnon bound states in ferromag-
nets with arbitrary lattice dimension. The method is here
generalized to account for easy-plane anisotropy with
strength D and is employed in conjunction with the 1/D
expansion when analytical treatment is no longer feasible.
Thus we were able to calculate the energy-momentum
dispersion of the single-ion mode E = E(k) to third or-
der in the 1/D expansion.
We defer for the moment discussion of a k = 0,

∆Sz = 2 transition between the ordered ground state
and a single-ion bound state. Instead, we turn our atten-
tion to ∆Sz = 1 transitions between single magnons and
single-ion bound states. These are absent at zero temper-
ature but may occur with nonvanishing intensity at finite
temperature. The corresponding resonance frequencies
are then given by ω(k) = E(k) − ǫ(k) where k extends
over the entire Brillouin zone. Hence, at sufficiently low
but nonzero temperature, resonance frequencies are ex-
pected to be observed throughout a band ωF < ω < ωG

where the lower frequency is calculated to third order:

ωF = E(k = 0)− ǫ(k = 0)

= gµBH +D − 4(Jx + Jy + Jz)

+
2

D
(J2

x + J2
y + J2

z ) +
1

D2
(J3

x + J3
y + J3

z ) (9)

whereas the upper frequency is given by

ωG = E[k = (π, π, π)] − ǫ[k = (π, π, π)]

= gµBH +D (10)

which is an exact result independent of the exchange con-
stants, in analogy with the resonance frequency ωC of Eq.
(8).
To summarize, the single-ion (FG) band is absent at

zero temperature but acquires nonvanishing intensity at
finite temperature. As was argued in Ref. 4 and further
discussed in Sec. III of the present paper, the inten-
sity is expected to display a characteristic double peak
as a function of frequency at fixed external field, or as
a function of field at fixed frequency. Therefore, both
frequencies ωF and ωG are associated with the single-ion
bound state and are relevant for the analysis of actual
experiments. In this respect, it is worth mentioning that
the absorption corresponding to mode G was initially ob-
served in previous experiments3. This absorption was in-
terpreted as an artifact originating in the superficial layer
of DTN crystals attacked by a GE-varnish solvent used
to fix the sample within the sample holder.
However, our theoretical analysis suggests that the G

mode is actually an inseparable partner in a doubly-
peaked FG band associated with the single-ion bound
state. Indeed, our current experiment supports such an
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FIG. 3: (color online). ESR transmittance spectra in DTN
taken at frequency 647 GHz for three representative temper-
ature values. Vertical line C indicates the location of the
calculated single-magnon resonance, while F and G are the
calculated boundaries of the single-ion (FG) band. Note that
experiments were performed in magnetic fields up to 25 T
and thus the single-magnon (C) resonance is not shown in
this figure.

interpretation, as shown in Fig. 3 where the transmit-
tance measured at fixed frequency f = 647 GHz displays
a characteristic double peak as a function of the applied
field. Also note that the double peak is uneven with most
power absorbed for frequencies near the G boundary, an
experimental fact that will be shown to be consistent
with a numerical calculation of power absorption in Sec.
III. Another important feature of Fig. 3 is the appar-
ent vanishing of intensity at relatively low temperatures
(e.g., T = 1.5 K), an experimental fact that is consis-
tent with our interpretation of the FG resonance band as
the result of transitions between excited states; namely,
transitions between single magnons and single-ion two-
magnon bound states (Fig. 2, right). The overall picture
suggested by Fig. 3 is robust in the high-field region
(H > H2) and extends into the intermediate and low-
field region (H < H2) as shown in Fig. 4 and further
discussed in Sec. III.
Finally, we return briefly to the possibility of a ∆Sz =

2 transition between the ordered ground state and a k =
0 single-ion bound state, which would lead to a resonance
frequency

ωE = E(k = 0) = ωF + ωC (11)

but zero intensity thanks to the axial symmetry adopted
in our theoretical models. However, crystal symmetry is
compatible with some deviations from strict axial sym-
metry which apart from a tiny field misalignment may
render mode E observable. In fact, such a mode was
previously observed in DTN with a sample in the Voigt
geometry2,3 and is included in Fig. 1.
The remainder of this section is devoted to a brief

discussion concerning the choice of suitable parameters.
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FIG. 4: (color online). ESR transmittance spectra for three
characteristic frequencies and a wide field range up to 25 T.
Note that the specific choice of frequencies is such that all
possible modes appear in the figure.

The simplest possibility is to fit the zero-field magnon
dispersion given by Eq. (2) to the dispersion measured
via inelastic neutron scattering1. A good fit is obtained,
see Fig. 5, with the choice of parameters8

D = 7.72 K, Jx = Jy = 0.2 K, Jz = 1.86 K (12)

In particular, ω0 = ω(k = 0) = 257 GHz, in fair agree-
ment with the experimental value ω0 = 267 GHz inde-
pendently obtained through ESR. Consequently, the the-
oretically predicted branches A and B in the ESR spec-
trum agree with experiment if we further choose a gyro-
magnetic ration g = 2.22. The critical field calculated
from Eq. (5) is H1 = 2.08 T, in excellent agreement with
the experimental value H1 = 2.1 T.
Thus the preceding choice of parameters yields a suf-

ficiently accurate description of the low-field region H <
H1. But such a choice leads to poor quantitative predic-
tions in the high-field region H > H2. For example, the
critical field H2 calculated from Eq. (7) is H2 = 11.24
T, to be compared with the experimental H2 = 12.6 T.
Similarly, the exact magnon branch ωC of Eq. (8) sub-
stantially disagrees with experiment when D = 7.72 K.
Instead, an excellent fit of mode C is obtained using

the parameters2

g = 2.22, D = 8.9 K (13)

We adopt these values and fix the remaining (exchange)
constants via a least-square fit of the zero-field dispersion
of Eq. (2) to the experimental dispersion, see Fig. 5, to
obtain

Jx = Jy = 0.34 K, Jz = 1.82 K (14)

which are significantly different from Jx = Jy = 0.18 K
and Jz = 2.2 K obtained in Ref. 2 using a self-consistent
semiclassical method to calculate the zero-field magnon
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FIG. 5: DTN dispersion of magnetic excitations at zero field
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Eq. (2) and parameters taken from Eq. (12) (dashed lines)
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dispersion. Here, to be consistent, we employ the pa-
rameters of Eq. (13) and Eq. (14) to calculate the crit-
ical fields H1 = 2.30 T and H2 = 12.68 T which are in
rough agreement with the experimental H1 = 2.1 T and
H2 = 12.6 T. We also employ the same parameters to
calculate the branches of the ESR spectrum shown by
straight lines A, B, C, F, G, E in Fig. 1, which are again
in rough agreement with experiment. A schematic repre-
sentation of the ESR transitions that correspond to the
above modes is given in Fig. 2.

In our opinion, a completely satisfactory quantitative
agreement with experiment should not be expected for
two reasons. First, crystal symmetry of DTN allows,
in principle, inclusion of several more terms of unknown
strength in the effective Heisenberg Hamiltonian of Eq.
(1) such as Dzyaloshinskii-Moriya interactions between
neighboring Ni sites5. Second, even within the limits of
model of Eq. (1), accurate quantitative predictions may
be difficult to obtain within the limited third-order 1/D
expansion, while similar uncertainties may arise in the
context of sophisticated semiclassical methods2. Never-
theless, we believe that the overall qualitative picture is
substantially correct.

III. ONE-DIMENSIONAL MODEL

Yet there are several questions that are difficult to set-
tle within the essentially 3D model of Eq. (1), such as
the calculation of intensities of the various ESR modes,
the structure of the spectrum in the intermediate phase,
etc. But the essential features of the observed spectrum
are already accounted for by a relatively simple 1D model
which is further employed in the present paper to discuss
the remaining questions.

In order to establish consistency with the earlier work4

we first restrict the main results of Sec. II to the 1D
model through the formal substitution

Jx = Jy = 0, Jz = J (15)

For instance, the Heisenberg Hamiltonian of Eq. (1) now
reads

H =

N
∑

n=1

[J(Sn · Sn+1) +D(Sz
n)

2 + gµBHSz
n] (16)

where the summation extends over the N sites of a 1D
lattice assumed to be periodic.
The zero-field magnon dispersion of Eq. (2) reduces to

ω(k) = D

[

1 +
2J

D
cosk +

J2

D2
(1 + 2sin2k)

+
J3

D3
[2sin2k −

1

2
(1 + 8sin2k)cosk]

]

(17)

and agrees with an early calculation within the 1D
model11. Recently, several more terms beyond the
third order have become available12,13. However, for
anisotropy strengths of current interest, the third-order
result (17) proves to be sufficiently accurate.
In particular, the ESR modes A and B may be calcu-

lated from Eq. (4) now applied with

ω0 = ω(k = 0) = D

(

1 +
2J

D
+

J2

D2
−

J3

2D3

)

(18)

Similarly, the critical field H1 is given by Eq. (5) applied
with

∆ = ω(k = π) = D

(

1−
2J

D
+

J2

D2
+

J3

2D3

)

(19)

Analogous results may be obtained for sufficiently strong
fields in the region H > H2 where the ground state is
a fully ordered ferromagnetic state. The single-magnon
dispersion of Eq. (6) reduces to

ǫ(k) = gµBH −D − 2J(1− cosk) (20)

whose lowest gap occurs at k = π and is equal to gµBH−
D − 4J . Therefore, the upper critical field is given by

gµBH2 = D + 4J, (21)

which agrees with the 1D reduction of Eq. (7). For
H > H2, the domimant resonance frequency ωC arises
from ∆Sz = 1 transitions between the ordered state and
k = 0 magnons:

ωC = ǫ(k = 0) = gµBH −D (22)

which is exact and coincides with the 3D result of Eq.
(8).
The dispersion of the single-ion two-magnon bound

state can be calculated exactly within the 1D model4,9

but a third-order approximation is sufficient for our pur-
poses:

E(k) = 2gµBH +D

[

−
4J

D
+ (

2J2

D2
+

J3

D3
)cos2

k

2

]

(23)
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Thus a ∆Sz = 1 transition between a k = 0 magnon
and a k = 0 single-ion two-magnon bound state yields a
resonance frequency

ωF = E(k = 0)− ǫ(k = 0)

= gµBH +D

[

1−
4J

D
+

2J2

D2
+

J3

D3

]

(24)

which agrees with the 1D reduction of Eq. (9), whereas
a transition between a k = π magnon and a k = π single-
ion bound state yields

ωG = E(k = π)− ǫ(k = π) = gµBH +D (25)

which is exact (independent of J) and coincides with the
3D result of Eq. (10). Similar transitions occur for other
values of k throughout the Brillouin zone and lead to
a band of resonance frequencies in the region ωF < ω <
ωG. Although the intensity of such transitions vanishes at
zero temperature, nonzero intensity is expected to occur
at finite temperature, an issue to be discussed in detail
in the continuation of this section.
First, a digression concerning the choice of parame-

ters within the 1D model. Recall that the single-magnon
resonance frequency ωC given in Eq. (22) is an exact pre-
diction of the 1D as well as the 3D model; see Eq. (8).
Therefore, we adopt in this section the choice of the gy-
romagnetic ratio g and anisotropyD already made in Eq.
(13) and the only remaining parameter is the exchange
constant J or, equivalently, the dimensionless ratio J/D.
A semi-quantitative agreement with experiment is ob-
tained with the choice

g = 2.22, D = 8.9 K,
J

D
=

1

4
(26)

which will be adopted in all calculations presented in this
section. For convenience, we use rationalized variables
such that frequency f = ω/2π is measured in units of
D/2π~ = 185.45 GHz, magnetic field h = gµBH/D in
units of D/gµB = 6 T and temperature τ = T/D in
units of D = 8.9 K.
The main issue addressed in this section is an explicit

calculation of power absorption. In a typical ESR exper-
iment a microwave field of angular frequency ω is applied
in the basal plane along, say, the x-axis, in addition to
a uniform bias field H applied along the z-axis. The in-
tensity or power absorption per site is defined up to an
overall multiplicative constant by

I ∼ ωχ′′(ω)/N (27)

where the imaginary part of the susceptibility is given
by14

χ′′(ω) =
π

Z

∑

a,b

(e−βEb −e−βEa)|〈a|µx|b|〉|
2δ(Ea−Eb−ω)

(28)
Here sums extend over all eigenstates |a〉 of Hamiltonian
of Eq. (16), Ea are the corresponding eigenvalues, β =
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defined after Eq. (26).

1/T is the inverse temperature, and Z =
∑

a e
−βEa is

the total partition function. Finally, matrix elements in
Eq. (28) involve the total spin operator in the x-direction
µx =

∑

n S
x
n.

An analytical calculation of χ′′(ω) is out of question
except in very special limits4. We thus resort to a nu-
merical calculation based on Eq. (28) and a complete
diagonalization of the spin-1 Hamiltonian of Eq. (16)
defined on a finite periodic chains with size N as large
as 12. Actually, explicit results presented below were
obtained on a chain with N=10, whereas N=12 chains
were occasionally used for consistency checks. On a fi-
nite chain Eq. (28) yields a susceptibility that is a sum
of weighted δ-functions and is thus rather spiky. Hence
we adopted an empirical smoothing process to obtain an
intensity

I = I(f, h, τ) (29)

that is a reasonably smooth function of frequency f , mag-
netic field h, and temperature τ , measured in rationalized
physical units defined in the text following Eq. (26). Our
main task is then to analyze the calculated intensity as
a function of all three variables.
In Fig. 6 we present our results for the (colored) sur-

face I = I(f, h) at fixed temperature τ = 0.2 (T = 1.8
K) which is a typical relatively low temperature of ex-
perimental interest2. Superimposed in the same figure
are the analytical predictions for the two critical fields
h1 = 0.57 and h2 = 2 calculated from Eq. (19) and Eq.
(21) adapted to rationalized units, as well as correspond-
ing predictions for the resonance lines A, B for h < h1
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FIG. 7: (color online). Same as Fig. 6 but now focusing on
the low-frequency end of the intermediate phase h1 < h < h2.
Note the formation of a V-like structure with rapidly decreas-
ing intensity as one approaches the center of the intermediate
phase.

and C, F, G for h > h2 calculated earlier in this section.
Note that mode E (see Fig. 1) does not appear in Fig.
6 because it corresponds to a ∆Sz = 2 transition and its
intensity I vanishes within the strictly axially symmetric
model of Eq. (16). Several important facts have already
become apparent in Fig. 6 which we analyse in turn:

(a) We note that the magnon resonance lines A, B and C
roughly coincide with the maxima of the calculated
intensity as expected in the low-temperature region.
Nevertheless, the chosen temperature T = 1.8 K is
sufficiently high to account for the anticipated line
broadening which is also apparent in Fig. 6. Yet, this
temperature is too low to yield a significant signal for
the single-ion bound state, as shown in Fig. 6 where
the intensity practically vanishes in the FG region.

(b) We examine the results of Fig. 6 in the intermediate
region h1 < h < h2 where analytical predictions are
practically absent. The most conspicuous feature is a
tail of line G with strong intensity in the intermediate
region, which persists even at very low temperature
where line G itself looses its intensity for h > h2.
Therefore, the G-tail corresponds to some sort of a
collective excitation that is robustly present in our
current experiment and requires further theoretical
investigation. On the other hand, mode F acquires a
tail into the intermediate region with intensity that
diminishes at low temperature and is thus invisible
in Fig. 6.

(c) We note that the magnon lines A, B and C also
acquire tails but with intensity that gradually van-
ishes as one approaches the center of the intermediate
phase. The structure of the tails becomes apparent in
Fig. 7 which focuses on the low-frequency end of the
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FIG. 8: (color online). Same as Fig. 6 but with intensity now
calculated at a much higher temperature τ = 2 (T = 18 K).
Note that we concentrate on the high-field region h > h2 = 2
(H > 12 T ) in order to emphasize the significant enhancement
of intensity in the FG band (especially near the G boundary)
which provides unambiguous evidence for the existence of a
single-ion two-magnon bound state.

intermediate phase. Thus we reveal a V-like struc-
ture with intensity that gradually vanishes as one ap-
proaches the center. This picture apparently contra-
dicts the result of Cox et al.6 who predict by a similar
calculation a Y-like structure with intensity that re-
mains finite and practically constant near the center.
On the other hand, our result is consistent with a
rounding of a V into a U structure predicted to oc-
cur in the presence of a small Dzyaloshinskii-Moriya
anisotropy treated by a semiclassical method5.

(d) As mentioned already, Fig. 6 as well as experi-
ment indicate absence of measurable intensity in the
single-ion (FG) band at the relatively low tempera-
ture τ = 0.2 (T = 1.8 K). However, the FG band
is significantly activated at higher temperature, as
demonstrated in Fig. 8 which displays the intensity
in the field region h > h2 = 2 (H > 12 K) and tem-
perature τ = 2 (T = 18 K). The calculated FG band
is highly populated at this temperature with most of
the intensity concentrated near the G boundary.

To understand the preceding result in some detail, we
depict in Fig. 9 the intensity as a function of frequency
at a fixed field h = 2.5 (H = 15 T) and selected val-
ues of temperature. At the lowest temperature τ = 0.1
(T = 0.9 K) considered in Fig. 9, the dominant feature
is the magnon resonance C while there is no sign for a
single-ion bound state. On the contrary, the FG band
is activated already at temperature τ = 0.5 (T = 4.5
K) employed in actual experiments2,3. The FG signal is
further enhanced at higher temperature, as is evident in
the τ = 1 (T = 9 K) and τ = 2 (T = 18 K) entries.
Also evident is the formation of a double peak in the
FG region, with the dominant peak occurring near the G



8

0 1 2 3 4 5 6

f

0

1

2

3

4

5

τ 
I(

f,
h,

τ)

C F G

0 1 2 3 4 5 6

f

0

1

2

3

4

5

C F G

0 1 2 3 4 5 6

f

1

2

3

4

5
τ 

I(
f,

h,
τ)

C F G

0 1 2 3 4 5 6

f

1

2

3

4

5

C F G

τ=0.1 τ=0.5

τ=1 τ=2

h=2.5 h=2.5

h=2.5 h=2.5

FIG. 9: Calculated normalized intensity I(f, h, τ ) scaled with
temperature τ , as a function of frequency f at a fixed field
h = 2.5 and four typical values of temperature τ . Vertical
lines C, F and G indicate the location of the single-magnon
resonance C and the boundaries of the single-ion (FG) band
calculated within the 1D model. Recall that f ,h and τ are all
measured in rationalized units defined after Eq. (26).

boundary while a peak of lower intensity develops near
the F boundary. The relative enhancement of the inten-
sity near the G boundary is likely due to the fact that it
involves transitions between k = π single magnons and
k = π single-ion bound states, where the magnon ac-
quires its lowest gap and is thus more heavily populated
at finite temperature than, say, k = 0 magnons.
The preceding theoretical findings are consistent with

experimental results of the type shown in Fig. 3, with
due attention to the fact that Fig. 3 depicts the trans-
mittance as a function of applied field at fixed frequency.
In any case, both theory and experiment suggest a dom-
inant peak near the G boundary followed by a secondary
peak (a knee) near the F boundary. The two peaks are
partners in a doubly-peaked FG band that cannot be
separated in any meaningful way. Thus it is difficult to
measure or calculate their relative intensity. Neverthe-
less, it is possible to calculate the total intensity of the
FG band:

IFG =

∫ b

a

I(f, h, τ)dh , (30)

where integration extends over a field interval a ≤ h ≤ b
chosen empirically so that it encompass the entire FG
band. The total intensity of Eq. (30) is depicted in
Fig. 10 as a function of temperature at fixed frequency
f = 647 GHz, together with experimental results ob-
tained by applying a similar integration process to data
of the type shown in Fig. 3. Taking into account that
intensity is displayed in “arbitrary units”, the qualitative
agreement between theory and experiment shown in Fig.
10 is satisfactory and fully consistent with our current
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FIG. 10: Total (integrated) intensity of the FG band as a
function of temperature at fixed frequency f = 647 GHz cal-
culated within the 1D model. Symbols denote experimental
data extracted from field integration of ESR spectra.

interpretation of the ESR signal of the single-ion two-
magnon bound state.

IV. CONCLUSIONS

As far as the general structure of the observed ESR
spectrum is concerned, the theoretical predictions of the
3D model of Eq. (1) and the 1D model of Eq. (16)
are qualitatively similar and in reasonable quantitative
agreement with experiment. But a detailed investigation
of the remaining discrepancies required a calculation of
the intensities of the various ESR modes, which is not
feasible within the 3D model. Thus most of our effort
was devoted to a detailed numerical calculation of inten-
sity within the 1D model. The main new results are the
following:
While there have been numerous theoretical predic-

tions for the occurrence of two-magnon bound states
in quantum spin systems, experimental observation has
been rather slow. Perhaps, the most interesting feature
of the ESR spectrum in large-D systems is the evidence
it provides for the existence of the so-called single-ion
two-magnon bound states. The original theoretical sug-
gestion was made some time ago4 and was thought to
explain ESR data obtained on a large-D compound ab-
breviated as NENC15–17. But a thorough experimental
investigation was carried out more recently in relation to
the title compound (DTN)2,3.
Our present investigation clearly suggests that the F

and G lines are inseparable partners in a doubly-peaked
FG band which originates in transitions between single
magnons and single-ion two-magnon bound states. In
fact, the G mode absorbs most of the intensity and is thus
far from extraneous. This mode is especially interesting
in relation to the fact that the corresponding resonance
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line ωG = gµBH + D is an exact theoretical prediction
both within the 3D model of Eq. (1) and the 1D model
of Eq. (16); see Eqs. (10) and (25).
Our numerical calculation also sheds light on the struc-

ture of the magnetic excitation spectrum in the interme-
diate phase H1 < H < H2 where analytical results are
practically absent. As is evident in Fig. 6, a tail of line G
with strong intensity survives in the intermediate region
even at low temperature where line G itself looses its in-
tensity forH > H2. Such a tail should thus be attributed
to a high-frequency collective excitation that appears in
the intermediate phase as a shadow of the single-ion two-
magnon bound state, an issue that deserves further the-
oretical attention.
Finally, the current calculation does not support the

occurrence of a low-frequency Y structure suggested by
Cox et al.6, even though they also employ the 1D model
of Eq. (16) to calculate the susceptibility χ′′(ω). In fact,
we find a V structure with rapidly decreasing intensity
near the center of the intermediate phase. As such the V
structure is expected to be especially vulnerable to small
perturbations that are ever present in effective Heisen-
berg models. This may explain the deformation of the V
into a U shape in the presence of a small Dzyaloshinskii-
Moriya anisotropy5.
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