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Many proposed and realized spintronic devices involve spin injection and accumulation at an
interface between a ferromagnet and a non-magnetic material. We examine the electric field, voltage
profile, charge distribution, spin fluxes, and spin accumulation at such an interface. We include the
effects of both screening and spin scattering. We also include both the spin-dependent chemical
potentials µ↑,↓ and the effective magnetic field ~H∗ that is zero in equilibrium. For a Co/Cu interface,
we find that the spin accumulation in the copper is an order of magnitude larger when both chemical
potential and effective magnetic field are included. We also show that screening contributes to the
spin accumulation in the ferromagnet; this contribution can be significant.

PACS numbers: 75.70.Cn, 72.25.-b, 75.47.-m, 75.76.+j

I. INTRODUCTION

Although electronic current has been studied since the
early 19th Century, spin current has been studied only
much more recently. In particular, spin transport across
interfaces between metals and ferromagnets has been an
important topic since the discovery of giant magnetore-
sistance (GMR),1,2 the principle behind the predominant
method of reading stored data. The magnetic read-head
of a hard drive contains a thin non-magnetic layer sand-
wiched between two ferromagnetic layers.

A theory for spin current and electrical potential at
a metal/ferromagnet interface is given by Johnson and
Silsbee3 (JS); an appendix of that work is devoted to
electric currents crossing such interfaces, and it consid-
ers the effect of the interfaces on spin fluxes and on elec-
trical voltage. Detailed theories for electrical currents
crossing metal/ferromagnet multilayers (that is, series of
interfaces) are given by Valet and Fert4 (VF), which in-
cludes solutions for the electric field and spin fluxes, and
by Hershfield and Zhao5 (HZ). However, none of these
theories considers semiconductors, and each makes a dif-
ferent assumption, not made by the present work, about
some part of the magnetoelectrochemical potential (first
defined by JS and discussed in detail below). JS neglects
the chemical potentials µ↑ and µ↓, HZ neglects the effec-

tive magnetic field6 ~H∗ (discussed below), and VF takes
the chemical potential to be spin-independent.

The present work revisits the problem of spin trans-
port across the interface between a non-magnetic mate-
rial (NM) and a ferromagnet (FM), and calculates the
electric field, voltage, charge density, spin fluxes, and
spin accumulation. The results also apply to FM/FM
and NM/NM interfaces. We show that inclusion of both
~H∗ and µ↑ and µ↓ are necessary to predict the spin ac-
cumulation near the interface. For copper, neglecting
either contribution decreases the spin accumulation by
about a factor of ten. Further, this work includes the
surface screening mode (called the charge mode by HZ),
neglected by JS and VF, and ultimately neglected by HZ,
which for large screening lengths (semiconductors) plays

an important role in determining the spin current and the
spin accumulation. Including the screening mode permits
the electric field and potential to be continuous across the
interface. Previous works allow the field and potential to
be discontinuous. Reference 7, which extends VF by cal-
culating the spin accumulation when the non-magnetic
material is semiconducting, also neglects screening.8

Section II briefly discusses the equations that govern
spin-dependent transport in solids. Section III finds the
deviations from equilibrium due to the screening mode,
the spin-diffusion mode, and a bulk response associated
with the applied electric current. Section IV discusses the
bulk and boundary conditions at an isolated interface.
Section V compares the assumptions of the present work
to those of previous theories. Section VI gives the electric
field, voltage, charge density, spin fluxes, and spin accu-
mulation near a Co/Cu interface. Section VII provides
a brief summary and conclusion. Appendix A shows de-
tailed calculations for the spin-diffusion mode, the results
of which are given in Sec. III, and App. B explicitly gives
the boundary conditions discussed in Sec. IV.

II. TRANSPORT EQUATIONS

We use superscripts I and II or NM and FM to denote
adjacent materials. When developing bulk equations that
apply separately within each material, we omit the su-
perscript, and reintroduce it when discussing materials
in contact (or when discussing properties specific to a
FM or a NM).

A. Fundamental Relations

Within each material, the number and current densi-
ties n↑,↓ and j↑,↓i are related by9,10

∂tn↑ + ∂ij↑i = S, ∂tn↓ + ∂ij↓i = −S. (1)

Here S is the rate at which down-spins flip to up-spins.
We consider the total electric current density J = −ejtot
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to be a known uniform constant, and continuous across
an interface. For current along x across an isolated in-
terface (in the yz-plane) between materials I and II, we

have jtot = j
(I)
↑x + j

(I)
↓x = j

(II)
↑x + j

(II)
↓x .

We take M̂ , the direction of the magnetization ~M , to
be fixed. Since the electron g-factor is negative, for ma-
jority carriers defined to have up-spins, then M̂ is aligned
with the down-spins.

We take µ̄ to be the magnetoelectrochemical potential,
defined for up- and down-spin electrons as3,10

µ̄↑ = µ↑ − eφ+
gµB

2
µ0
~H∗ · M̂, (2)

µ̄↓ = µ↓ − eφ−
gµB

2
µ0
~H∗ · M̂, (3)

where µ↑ and µ↓ are the respective chemical potentials
of up- and down- spin carriers, e > 0 is the magnitude of
the electron charge, φ is the electrical potential, g is the
dimensionless g-factor (with |g| ≈ 2 for electrons), µB is
the Bohr magneton (with units of J/T ), and µ0 is the
permeability of free space11 (with units of N/A2). In the

simplest case, ~H∗ is the difference of the external field
~H0 and the uniform exchange field ~Hint (with ~Hint ‖ M̂).

More generally, in addition to ~H0 we must include the

magnetic dipole field ~Hdip, the crystalline anisotropy field
~Han, and the non-uniform exchange field ~Hex (propor-

tional to ∇2 ~M):12

~H∗ = ~H0 + ~Hdip + ~Han + ~Hex − ~Hint. (4)

We have ~H∗ = ~0 in equilibrium.13 For this to hold,

with ~M0 the equilibrium magnetization we have ~Hint ∼
~M − ~M0 (see Eq. (40) of Ref. 3), so that in equilibrium
~Hint = 0 for both ferromagnets and non-magnetic materi-
als. With this definition, the up- and down- spin chemical
potentials implicitly depend on the exchange interaction
(and thus are spin-dependent), because modifying the
exchange interaction while maintaining equilibrium does

not change ~Hint or ~H∗.
By irreversible thermodynamics (see, for example, the

general treatments in Refs. 14, 15, and 16, or the spin-
related treatments of Refs. 9 and 10), the non-negativity
of the rate of entropy production implies that the fluxes
can be written in terms of thermodynamic forces, i.e.,
gradients of intensive thermodynamic quantities. Thus,

j↑i = −σ↑
e2
∂iµ̄↑ − L↑↓∂iµ̄↓, (5)

j↓i = −L↓↑∂iµ̄↑ −
σ↓
e2
∂iµ̄↓, (6)

where σ↑ and σ↓ are the respective electrical conductiv-
ities of electrons of up- and down- spin, and the coeffi-
cients L↓↑ = L↑↓ by the Onsager principle. We have im-
plicitly neglected temperature gradients, which can also
contribute to spin fluxes.17–20 Neglecting the off-diagonal
coefficients L↓↑ = L↑↓, we have

j↑i = −σ↑
e2
∂iµ̄↑, j↓i = −σ↓

e2
∂iµ̄↓. (7)

The non-negativity of the rate of entropy production
gives9,10

S = −α (µ̄↑ − µ̄↓) . (8)

Here α ≥ 0 (with units of a density of states per second) is
related to a characteristic spin-flip time (or, equivalently,
to a characteristic spin-flip length).

We are interested in steady-state solutions, so that
∂tn↑ = 0 = ∂tn↓. Taking the gradient of Eq. (7) and
employing Eqs. (1) and (8) then gives two coupled differ-
ential equations for µ̄↑ and µ̄↓,

−σ↑
e2
∂2i µ̄↑ = −α (µ̄↑ − µ̄↓) , (9)

−σ↓
e2
∂2i µ̄↓ = α (µ̄↑ − µ̄↓) . (10)

On applying appropriate boundary conditions, Eqs. (9)
and (10) give µ̄↑ and µ̄↓.

B. Linearized Relations

We are interested not only in µ̄↑ and µ̄↓, but also in
n↑ and n↓ – in particular, the difference of their devia-
tions from equilibrium δn↑ − δn↓, i.e., the spin accumu-
lation (which is proportional to the “out-of-equilibrium
magnetization” or “nonequilibrium magnetization” dis-
cussed by VF and HZ). Near equilibrium, we can lin-
earize the deviations (denoted by δ) from equilibrium of
the chemical and magnetic contributions to the magne-
toelectrochemical potentials: the chemical potential de-
viations can be written as

δµ↑ =
∂µ↑
∂n↑

δn↑, δµ↓ =
∂µ↓
∂n↓

δn↓, (11)

and the deviation in the effective magnetic field at fixed
~H0 can be written as

δ ~H∗ · M̂ =
µ0δ ~M

χ
· M̂ =

µ0µB
χ

(δn↑ − δn↓), (12)

where χ is the magnetic susceptibility for an isotropic
material (defined by χij = χδij). Thus Eqs. (2) and (3)
give

δµ̄(↑,↓) =
δn(↑,↓)

N(↑,↓)
− eδφ± (δn↑ − δn↓)

2Nχ
, (13)

where we define

N↑ ≡
∂n↑
∂µ↑

, N↓ ≡
∂n↓
∂µ↓

, Nχ ≡
χ

gµ2
Bµ0

, (14)

each of which has units of a density of states.
There are thus three unknowns (δn↑, δn↓, and δφ).

Eqs. (9) and (10) give two coupled differential equations,
and Gauss’s law provides a third:

∂2i δφ =
e

ε0ε
(δn↑ + δn↓) . (15)

For the bulk response and each of the surface mode, we
must find δn↑, δn↓, and δφ.
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III. STATIC BULK RESPONSE AND SURFACE
MODES

We now study the static bulk response and surface
modes of the system. For brevity we write surface so-
lutions to have the form e−x/` where ` is some length,
although for the material on the left side of the interface
one should use ex (because the deviations must decay as
x→ −∞). In general, each surface solution has the form
e±(xint−x)/` where xint is the position of the interface, but
we take the interface to be at xint = 0.

The electric field ~E and voltage φ are continuous every-
where. (We call these “Maxwell conditions.”) To ensure
this, we include the surface screening mode. JS, VF, and
HZ neglect screening and do not satisfy these conditions.

We first discuss the bulk response associated with the
electric current, which has a simpler structure than the
surface modes associated with screening and with spin-
diffusion.

A. Bulk Respone (dc)

We consider a system with a uniform constant electric
current. The (bulk) response associated with this cur-
rent, which can be thought of as a “dc mode” (dc), is
characterized by a constant uniform electric field (which
in principle differs for each material). We define this field
as

δ ~Edc ≡ E0dc x̂, (16)

where E0dc is a constant determined by applying bound-
ary conditions. The potential associated with this mode
is

δφdc = −E0dcx+ V0dc , (17)

where V0dc is another constant (with units of V) deter-
mined by applying boundary conditions. By Gauss’s Law
there is no overall (bulk or surface) charge associated
with this mode, as expected. Further,

δµ̄↑dc = δµ̄↓dc = −eδφdc = eE0dcx− eV0dc . (18)

Equation (7) gives

j↑dc = −σ↑E0dc

e
, j↓dc = −σ↓E0dc

e
. (19)

Because σ↑ does not necessarily equal σ↓ (e.g., as for
ferromagnets), there may be a non-zero spin current as-
sociated with the dc mode.

B. Screening Mode (Q)

One solution to Eqs. (9), (10) and (15) has δµ̄↑ = 0 =
δµ̄↓ so that j↑ = 0 = j↓. This mode is therefore entirely

static (neither spin current nor charge current), corre-
sponding to electric screening and characterized only by
charge and potential gradients. We therefore designate it
the “screening mode,” and use the subscript Q to denote
its properties.21

Note that for metals the screening mode is not well-
described by the present type of theory, but is instead
associated with Friedel oscillations.22–24 The following
treatment of screening is more appropriate for doped
semiconductors.

By Eq. (13), setting δµ̄↑Q − δµ̄↓Q = 0 − 0 = 0 relates
the up- and down-spin concentrations,

N↓ (N↑ +Nχ) δn↑Q = N↑ (N↓ +Nχ) δn↓Q , (20)

and setting δµ̄↑Q + δµ̄↓Q = 0 + 0 = 0su gives

δφQ =
1

2e

(
δn↑Q
N↑

+
δn↓Q
N↓

)
. (21)

Define

Nα ≡ N↑ +N↓ + 2Nχ, (22)

with units of a density of states. Substitution of Eq. (20)
into Eq. (21) then yields

N↑(N↓ +Nχ)δφQ =
Nα
2e
δn↑Q . (23)

Substitution of Eqs. (20) and (23) into Gauss’s Law,
Eq. (15) then gives

Nα∂
2
i δn↑Q =

2e2

ε0ε
[N↑ (N↓ +Nχ) +N↓ (N↑ +Nχ)] δn↑Q .

(24)

With the definitions

`2Q ≡
ε0ε

2e2
Nα
N2
β

, (25)

N2
β ≡ 2N↑N↓ +Nχ (N↑ +N↓) , (26)

Eq. (24) can be written as

∂2i δn↑Q =
1

`2Q
δn↑Q . (27)

For χ→∞ and ε→ 1, Eq. (25) gives `2Q = ε0/[e
2(N↑+

N↓)], which agrees with Ref. 5.
We now define the quantity V0Q such that

δn↑Q ≡ 2e
N↑
Nα

(N↓ +Nχ)V0Qe
−x/`Q , (28)

which satisfies Eq. (27). Then Eq. (20) gives

δn↓Q = 2e
N↓
Nα

(N↑ +Nχ)V0Qe
−x/`Q , (29)

δρQ = −e
(
δn↑Q + δn↓Q

)
= −2e2

N2
β

Nα
V0Qe

−x/`Q = −ε0ε
`2Q

V0Qe
−x/`Q , (30)
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and Eq. (21) gives

δφQ =V0Qe
−x/`Q . (31)

The screening mode can lead to a nonzero spin accu-
mulation, defined by

∆nσ ≡ δn↑ − δn↓. (32)

Equations (28) and (29) give

∆nσQ
= 2

Nχ
Nα

(N↑ −N↓)eV0Qe−x/`Q , (33)

which is nonzero in a ferromagnet, where N↑ 6= N↓.

C. Spin Mode (S)

The second solution to Eqs. (9), (10) and (15) is more
complicated than the screening mode. It is characterized
by a nonzero spin current jσ ≡ j↑− j↓ 6= 0. We therefore
designate it the “spin mode,” and use the subscript S to
denote it.5 Following Ref. 5 we also use Q (for charge) to
denote the screening mode. (The reader is thus warned
that S refers to spin, not to screening.)

We now give the solution for the characteristic length,
the spin concentrations, the electrical potential, and the
spin accumulation associated with this mode. The details
of the analysis are given in Appendix A.

Define the up- and down-spin associated lengths `↑S
and `↓S , which satisfy

`2↑S ≡
σ↑
αe2

, `2↓S ≡
σ↓
αe2

. (34)

The decay length associated with the spin mode, vari-
ously called the “spin-flip” or “spin-diffusion” length, `sf ,
is then given by25,26

1

`2sf
=

1

`2↑S
+

1

`2↓S
. (35)

We also define

NS ≡
ε0ε

e2`2sf
, C ≡ `2sf

`2↑S
− `2sf
`2↓S

, (36)

where NS has units of a density of states and C is di-
mensionless. With V0S a constant to be determined by
boundary conditions, the deviations in the electrical po-
tential and up- and down- spin concentrations are then

given by

δφS =

[
Nχ (N↑ −N↓) + CN2

β

NSNα − 2N2
β

]
V0Se

−x/`sf

≡ ξV0Se−x/`sf , (37)

δn↑S = N↑eV0Se
−x/`sf

×

{
−2NχN↓ +NS [Nχ + C (N↓ +Nχ)]

NSNα − 2N2
β

}
, (38)

δn↓S = N↓eV0Se
−x/`sf

×

{
2NχN↑ +NS [−Nχ + C (N↑ +Nχ)]

NSNα − 2N2
β

}
. (39)

For a non-magnetic material, the dimensionless coeffi-
cient ξ → 0.

The spin mode leads to a nonzero spin accumulation;
Equations (38) and (39) give

∆nσS
= eNχV0Se

−x/`sf

×

{
−4N↑N↓ +NS [N↑ +N↓ + C (N↑ −N↓)]

NSNα − 2N2
β

}
, (40)

so that ∆nσS
is nonzero for both ferromagnets and non-

magnetic materials. For the latter, Eq. (40) simplifies
to

∆n(NM)
σS

=
N↑NχeV0S
N↑ +Nχ

e−x/`sf . (41)

The spin-carrier currents associated with the spin
mode are given by

δj↑S = −δj↓S =

(
σ↑σ↓
σ↑ + σ↓

)
V0S
e`sf

e−x/`sf . (42)

The total electric current −eδjtot = −e(δj↑ + δj↓) = 0
for the spin mode, but there is a nonzero spin current
δjσ ≡ δj↑ − δj↓, given by

δjσS
= 2

(
σ↑σ↓
σ↑ + σ↓

)
V0S
e`sf

e−x/`sf . (43)

D. Description Near Interface

A full description of the region near an interface in-
volves the combination of both surface modes (S and Q)
derived above, and the bulk constant current (dc) mode.
For the potential, electric field, charge density near an
interface located at x = xint, from Eqs. (37), (A14), (30),
(31), (16), and (17) we have, with four unknowns per
material (E0dc , V0dc , V0Q , and V0S ) to be determined by
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boundary conditions,

δφ = ξV0Se
±(x−xint)/`sf + V0Qe

±(x−xint)/`Q

− E0dc(x− xint) + V0dc , (44)

δE = ∓ξV0S
`sf

e±(x−xint)/`sf ∓
V0Q
`Q

e±(x−xint)/`Q + E0dc ,

(45)

δρ = −ε0ε

(
ξV0S
`2sf

e±(x−xint)/`sf +
V0Q
`2Q

e±(x−xint)/`Q

)
.

(46)

The top (bottom) sign corresponds to the material on
the left (right) of the interface.

The contributions to the total electric current from the
surface modes is zero, as expected, so that Eq. (19) gives
the electric current to be everywhere given by

J = −ejtot = − (σ↑ + σ↓)E0dc . (47)

The spin mode does contribute to the nonconserved spin-
up, spin-down, and total spin currents, which, combining
Eqs. (42) and (19), are given by

j↑ = −σ↑E0dc

e
+

(
σ↑σ↓
σ↑ + σ↓

)
V0S
e`sf

e±(x−xint)/`sf , (48)

j↓ = −σ↓
e
E0dc −

(
σ↑σ↓
σ↑ + σ↓

)
V0S
e`sf

e±(x−xint)/`sf , (49)

jσ = −
(
σ↑ − σ↓

e

)
E0dc +

(
2σ↑σ↓
σ↑ + σ↓

)
V0S
e`sf

e±(x−xint)/`sf .

(50)

There is no contribution from V0Q because there are no
carrier currents associated with the charge mode.

For the spin accumulation, Eqs. (41), (40), and (33)
yield

∆nσ =eNχξV0Se
±(x−xint)/`sf

×

{
−4N↑N↓ +NS [N↑ +N↓ + C (N↑ −N↓)]

Nχ (N↑ −N↓) + CN2
β

}

+ 2e
Nχ
Nα

(N↑ −N↓)V0Qe±(x−xint)/`Q . (51)

For a non-magnetic material this simplifies to

∆n(NM)
σ =

N↑NχeV0S
N↑ +Nχ

e±(x−xint)/`sf . (52)

IV. BOUNDARY AND BULK CONDITIONS

For an isolated interface at xint = 0 (see Fig. 1) be-
tween materials I (at x < 0) and II (at x > 0), in general
there are eight unknowns (E0dc , V0dc , V0Q , and V0S for

each of materials I and II). There are eight conditions:27

(i-ii): the potential φ and field ~E are continuous across
the interface – Maxwell conditions;

FIG. 1. An isolated interface between a ferromagnet (dark
gray, at x < 0) and a non-magnetic material (light gray, at
x > 0). This work considers an electric current density Jx̂,
and magnetization of the FM along ±ẑ.

(iii): the electric current −e(j↑+j↓) is continuous across
the interface – charge conservation;

(iv): the spin current is assumed continuous across the
interface (although we take both up- and down-
spin currents to be continuous, this is only a single
condition since condition (iii) constrains their sum)
– assumption of no surface spin-scattering;

(v-vi): the up- and down-spin currents across the in-
terface are directly proportional to the discontinu-
ity in up- and down-spin magnetoelectrochemical
potential across the interface3,9,10,28 – irreversible
thermodynamics;

(vii): the total electric current −e(j↑ + j↓) is a known
constant; and

(viii): there is an arbitrary constant voltage (which we

define by setting the voltage V
(II)
0dc
≡ 0).

Conditions (i)-(vi) are boundary conditions and (vii)
and (viii) are bulk conditions. They are explicitly cal-
culated in Appendix B.

For a multilayer (a series of k interfaces between k+ 1
materials), each additional interface adds another of each
of the boundary conditions (i)-(vi), so that in general
there are 6k + 2 conditions.

V. COMPARISON TO PREVIOUS THEORIES

As noted above, the theories of Johnson and Silsbee
(JS), Valet and Fert (VF) and Hershfield and Zhao (HZ)
neglect the screening mode, and therefore cannot have
field and potential continuity at the interface. Further,
JS neglects the chemical potentials µ↑ and µ↓ and HZ

neglects the internal magnetic field ~H∗. The discrepancy
between predicted spin accumulation, found below, par-
ticularly in a non-magnetic material, demonstrates that
inclusion of all parts of the magnetoelectrochemical po-
tential is essential for calculating the spin accumulation
in a non-magnetic material, even to within an order of
magnitude. For comparison of Eq. (41) to the spin ac-
cumulation predicted for these other works W = HZ and
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W = JS, we define the dimensionless factor ζ
W

as[
∆n(NM)

σS

]
W

= ζ
W

∆n(NM)
σS

. (53)

Note that ζ
W

= 1 for the present work. We show be-
low that if one of ζ

HZ
or ζ

JS
is near unity (and therefore

agrees with the present work), then the other diverges,
so that at least one of the assumptions gives results that
significantly disagree with the present work.

A. Neglecting ~H∗ and the Screening Mode

Neglecting the last term (proportional to ~H∗ · M̂) in
Eq. (13), as in HZ,5 is equivalent to taking χ→∞ (and
therefore Nχ → ∞) in the present results. Under this
assumption, Nα → 2Nχ and N2

β → Nχ(N↑+N↓). Equa-

tions (37)-(39) then simplify to

δφHZ
S =

[
N↑ −N↓ + C(N↑ +N↓)

2 (NS −N↑ −N↓)

]
V0Se

−x/`sf , (54)

δnHZ
↑S = N↑eV0Se

−x/`sf
[
−2N↓ +NS(1 + C)

2 (NS −N↑ −N↓)

]
, (55)

δnHZ
↓S = N↓eV0Se

−x/`sf
[

2N↑ +NS(−1 + C)

2 (NS −N↑ −N↓)

]
. (56)

HZ neglect the screening mode, so the spin-diffusion
mode is the only surface mode, and it gives a spin ac-
cumulation of

∆nHZ
σ = eV0Se

−x/`sf

×
{
−4N↑N↓ +NS [N↑ +N↓ + C (N↑ −N↓)]

2 (NS −N↑ −N↓)

}
. (57)

Direct comparison can be made to the results of the
present work in the non-magnetic material. With ζW
defined by Eq. (53), we have

ζHZ = (1 +N↑/Nχ). (58)

Using Tables I and II, we find ζHZ ≈ 0.0986 for Cu. (Cu is
a diamagnet, therefore it has Nχ < 0; for a paramagnet,
where Nχ > 0, the underestimation of spin accumula-
tion for the HZ assumptions is less striking, although it
remains significant.) For the ferromagnet, the spin ac-
cumulation due to the screening mode is neglected, and
the spin accumulation due to the spin mode agrees with
the present work to within the precision of the present
calculations. Hence, the assumptions made by HZ seem
appropriate for ferromagnets but not for nonmagnetic
materials.

B. Neglecting µ↑, µ↓ and the Screening Mode

JS neglects the chemical potentials µ↑ and µ↓ in
Eq. (13), which is equivalent to taking N↑,↓ → ∞ in

TABLE I. Bulk and interfacial properties of cobalt and cop-
per, and well-known constants. Here, A is the area of the
interface, and R is the spin-dependent interface resistance.
†Value is for the (100) orientation. ‡The susceptibility of
Cobalt is field-dependent, with 70 ≤ χCo ≤ 250 (see Table 2.2
of Ref. 29); we take an intermediate value.

Quantity Value Units Ref

σCo
↑ 2.47 × 107 Ω−1-m−1 30

σCo
↓ 0.913 × 107 Ω−1-m−1 30

σCu
↓ , σCu

↑ 8.35 × 107 Ω−1-m−1 30

`Co
sf 59 × 10−9 m 30

`Cu
sf 450 × 10−9 m 30

NCo
↑ 5.10 × 1046 J−1–m−3 30

NCo
↓ 19.7 × 1046 J−1–m−3 30

NCu
↑ , NCu

↓ 3.89 × 1046 J−1–m−3 30

AR
Cu/Co
↑ 0.31 × 10−15 Ω–m2 31†

AR
Cu/Co
↓ 2.31 × 10−15 Ω–m2 31†

χCo ≈ 100 29‡

χCu −0.932 × 10−5 32

µB 9.27 × 10−24 J–T−1

µ0 4π × 10−7 N – A−2

ε0 8.85 × 10−12 A–s–V−1–m−1

e 1.6 × 10−19 C

g ≈ 2

the present work. It also neglects the screening mode.
Various properties of the spin mode are now calculated
under these assumptions.

Equation (37) gives

δφJSS = −C
2
V0Se

−x/`sf . (59)

Further, Eqs. (38) and (39) give

δnJS↑S =

(
Nχ
2
− CNS

4

)
eV0Se

−x/`sf , (60)

δnJS↑S = −
(
Nχ
2

+
CNS

4

)
eV0Se

−x/`sf , (61)

so that the spin accumulation is given by

∆nJSσ = NχeV0Se
−x/`sf . (62)

Direct comparison can be made to the results of the
present work in the non-magnetic material. With ζW
defined by Eq. (53), we have

ζ
JS

= (1 +Nχ/N↑). (63)

Using Tables I and II, we find ζ
JS
≈ −0.109 for Cu. Thus,

the JS assumptions seem inappropriate for determining
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TABLE II. Bulk and interfacial properties of cobalt and cop-
per, calculated from the results of the present work (and Ta-
ble I). Here α is found from Eq. (A4).

Quantity Value Units

σCu ≡ σCu
↑ + σCu

↓ 16.7 × 107 Ω−1-m−1

g↑ 3.23 × 1015 Ω−1-m−2

g↓ 0.433 × 1015 Ω−1-m−2

NCo
χ 4.63 × 1053 J−1–m−3

NCu
χ −4.32 × 1046 J−1–m−3

NCo
S 9.93 × 1040 J−1–m−3

NCu
S 1.71 × 1039 J−1–m−3

NCo
α 9.26 × 1053 J−1–m−3

NCu
α −0.851 × 1046 J−1–m−3

NCo
β

2
1.15 × 10101 J−2–m−6

NCu
β

2 −3.31 × 1092 J−2–m−6

αCo 74.8 × 1057 J−1–m−3–s−1

αCu 8.05 × 1057 J−1–m−3–s−1

`Co
↑S 114 × 10−9 m

`Co
↓S 69.0 × 10−9 m

`Cu
↑S , `

Cu
↓S 636 × 10−9 m

`Co
Q 0.0373 × 10−9 m

`Cu
Q 0.0667 × 10−9 m

CCo −0.460

CCu 0

ξCo 0.524

ξCu 0

the spin accumulation in non-magnetic materials, partic-
ularly those that are diamagnetic.

Note that Eqs. (58) and (63) preclude simultaneously
having ζ

JS
≈ 1 and ζ

HZ
≈ 1.

VI. CO/CU INTERFACE

For an isolated interface (as in Fig. 1), Appendix B
uses each of the above conditions to find an explicit equa-
tion for the eight unknowns and writes the unknowns in
terms of dimensionless variables. We now present numer-
ical results for the spin fluxes (see Fig. 2), voltage, elec-
tric field, charge density, and spin accumulation, for a
cobalt/copper interface, with material parameters given
by Tables I and II.

Figures 3a-3c show that, outside of a screening length
`Q of the interface, the electrical potential, field and
charge nearly coincide for the present work and HZ, with
JS showing discrepancies near the interface in the ferro-
magnet (x < 0). However, the present work significantly

FIG. 2. The spin-up and spin-down carrier fluxes δj↑ and δj↓,
and the total flux δjtot and spin flux δjσ, given by Eqs. (47)-
(50), with the (uniform) total flux normalized to unity, near
an interface between cobalt (x < 0) and copper (x > 0) vs. x
(in nm). The grey dotted line marks 0.5, that is, half of the
total current.

differs from JS and HZ within a screening length of the
interface, as seen in Figs. 3d-3f. Figures 3d and 3e show,
for the present work, the continuity of the electrical po-
tential and field at the interface. They also show, for HZ
and JS, the discontinuities in the potential and field (due
to scale, these field discontinuities are more obvious in
Fig. 3b than in Fig. 3e). Figure 3f shows, for the present
work, the charge density due to screening. For physical

consistency, ~E and φ must be continuous at the interface,
so that HZ and JS must have both an infinitesimally thin
charge layer and an infinitesimally thin dipole layer at the
interface.

We conclude that outside of the charge screening
length `Q (which is very short for metals), the present
work and HZ are equally valid for calculating electrical
potential, field, and charge, but JS differs significantly.

Figure 4 shows the spin accumulation for the present
work, HZ, and JS. In the non-magnetic material (x >
0), as shown analytically in Eqs. (58) and (63), Fig. 4a
shows that both HZ and JS differ from the present work
by an order of magnitude, with JS having the opposite
sign. Fig. 4b shows that the spin accumulation in the
ferromagnet (x < 0) differs for the present work and HZ;
outside of this length, Fig 4a shows that they coincide.
However, the spin accumulation for JS is six orders of
magnitude larger (and not shown). This is because JS, by
assuming that ∂µ↑,↓/∂n↑,↓ = 0, effectively takes N↑,↓ →
∞ so that N↑,↓ � Nχ, whereas Tables I and II show that
the opposite is true for cobalt.

VII. SUMMARY & CONCLUSION

Using irreversible thermodynamics, we predict the spin
accumulation at an interface between two materials when
electric current is driven across the interface. Although
we have numerically studied a FM/NM interface, the the-
ory also applies to FM/FM and NM/NM interfaces.

We find that both the chemical potentials and the effec-
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FIG. 3. The dimensionless electrical potential, field, and
charge density (given by Eqs. (44)-(46)) in arbitrary units
near an interface between cobalt (x < 0) and copper (x > 0)
vs. x (in nm). Within 1 µm (a,b,c), and within 1 nm (d,e,f),
of the interface. Solid line – present work; dashed line – JS;
dotted line – HZ. HZ coincides closely with the present work
except within a screening length of the interface. JS gives
somewhat different results in the cobalt within a spin-diffusion
length of the interface.

tive magnetic field must be included to predict the spin
accumulation in a non-magnetic material – in fact, for
Cu the spin accumulation changes by an order of mag-
nitude on neglect of either contribution. However, for
ferromagnets neglecting the effective magnetic field may
be appropriate – numerically the results are essentially
unchanged for Co near a Co/Cu interface.

By including the screening surface mode neglected in
previous works, we find an additional term in the spin ac-
cumulation for ferromagnets. For Co near a Co/Cu inter-
face, this term decreases the spin accumulation by ∼ 10%
within a charge-screening length of the interface. Al-
though this length is on the order of 1-10 Å for metals (a

length scale negligible in the present macroscopic theory),
for ferromagnetic semiconductors this length scale should
be much larger. Note that spin injection from a fer-
romagnetic semiconductor into a non-magnetic material
has been observed by Refs. 33 and 34. To test this spin
accumulation due to screening, one may apply a small
current to an interface between, say, Ga(Mn)As and Cu.
Using the magneto-optical Kerr effect (MOKE), one may
measure the magnetization (and spin-polarization) at the
surface. We expect there to be two nonequilibrium mag-
netization contributions near the surface, one that decays
over the spin-diffusion length `sf and one that decays over
the screening length `Q associated with screening. The
latter effect should be more prominent in ferromagnetic
semiconductors.
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FIG. 4. The dimensionless spin accumulation, given by
Eqs. (51) and (52), in arbitrary units near an interface be-
tween cobalt (x < 0) and copper (x > 0) vs. x (in nm). The
spin accumulation is shown within approximately (a) 1 µm
and (b) 1 nm of the interface. Solid line – present work;
dashed line – JS; dotted line – HZ. In the FM (x < 0), HZ
nearly coincides with the present work (deviating only within
the charge-screening length of the interface, see inset), and the
JS-predicted spin accumulation is several orders of magnitude
larger and not shown. In the NM, neither approximation pre-
dicts a spin accumulation similar to the present work.
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Appendix A: Details of the Spin Mode

The details of the solution for the Spin Mode, whose
results are presented in Sec. III C, are now given.

Equations (9)-(10) give, with δ denoting deviations
from equilibrium,

∂2i δµ̄↑S =
1

`2↑S

(
δµ̄↑S − δµ̄↓S

)
, (A1)

∂2i δµ̄↓S = − 1

`2↓S

(
δµ̄↑S − δµ̄↓S

)
. (A2)

Subtracting Eq. (A2) from Eq. (A1) gives

∂2i
(
δµ̄↑S − δµ̄↓S

)
=

1

`2sf

(
δµ̄↑S − δµ̄↓S

)
, (A3)

where `sf is defined by Eq. (35). On neglecting δ ~H∗ · M̂
and making the identification α→ (N↑/τ↑↓) = (N↓/τ↓↑),



10

Eq. (35) agrees with Ref. 5. We use Eqs. (34) and (35)
to find α, `↑S and `↓S in terms of `sf , σ↑, and σ↓, since
they are, in principle, measurable:

α =
σ↑σ↓

e2 (σ↑ + σ↓) `2sf
, (A4)

`↑S = `sf

√
σ↑ + σ↓
σ↓

, `↓S = `sf

√
σ↑ + σ↓
σ↑

. (A5)

Solving Eq. (A3) gives

δµ̄↑S − δµ̄↓S = eV0Se
−x/`sf , (A6)

where V0S , with units of electric potential, is unknown, to
be determined by boundary conditions. Since Eq. (A6)
shows the difference in up- and down-spin magnetoelec-
trochemical potentials to decay over the length `sf from
an interface – this length is called the “spin-flip” or
“spin-diffusion” length (and sometimes referred to as the
“SDL”). The length `sf may be measurable by employing
the Magneto-Optical Kerr Effect35,36 or the Inverse Spin
Hall Effect,37 or may be derived using GMR measure-
ments and theory.38

Substitution of Eq. (A6) into Eqs. (A1) and (A2) yields

δµ̄↑S =
`2sf
`2↑S

eV0Se
−x/`sf =

σ↓
σ↑ + σ↓

eV0Se
−x/`sf , (A7)

δµ̄↓S = − `
2
sf

`2↓S
eV0Se

−x/`sf = − σ↑
σ↑ + σ↓

eV0Se
−x/`sf . (A8)

Equations (A7) and (A8) give δµ̄↑S = −(`2↓S/`
2
↑S )δµ̄↓S =

−(σ↓/σ↑)δµ̄↓S , which agrees with Ref. 5. Substitution of
Eqs. (A7) and (A8) into Eq. (7) gives the up- and down-
spin carrier currents of Eq. (42).

We can now can write two independent relations be-
tween δn↑S , δn↓S , and δφS . Equations (A6) and (13)
give the difference of the spin potentials to be

δµ̄↑S − δµ̄↓S =

(
N↑ +Nχ
NχN↑

)
δn↑S −

(
N↓ +Nχ
NχN↓

)
δn↓S

=eV0Se
−x/`sf , (A9)

and Eqs. (A7), (A8), and (13) give the sum of the spin
potentials to be

δµ̄↑S + δµ̄↓S =
δn↑S
N↑

+
δn↓S
N↓
− 2eδφS = CeV0Se

−x/`sf .

(A10)

In conjunction with Gauss’s Law, Eqs. (A9) and (A10)
give the concentrations and electrical potential in the
spin mode. Specifically, we use Eq. (A9) to relate δn↑S
to δn↓S , then use Eq. (A10) to relate δn↑S to δφS . Thus
Eq. (15) can be written in terms of only δφS , which we
solve.

Equation (A9) gives

δn↓S =

[
N↓ (N↑ +Nχ)

N↑ (N↓ +Nχ)

]
δn↑S −

(
NχN↓eV0S
N↓ +Nχ

)
e−x/`sf .

(A11)

Substituting Eq. (A11) into Eq. (A10) multiplied by
(N↑/Nα)(N↓ +Nχ) gives

δn↑S =
N↑
Nα

eV0Se
−x/`sf [Nχ + C (N↓ +Nχ)]

+ 2e
N↑
Nα

(N↓ +Nχ) δφS . (A12)

Substitution of Eqs. (A11) and (A12) into Eq. (15) gives

∂2xδφS =
2N2

β

NSNα`2sf

×

{
δφS +

V0S
2

[
Nχ
N2
β

(N↑ −N↓) + C

]
e−x/`sf

}
. (A13)

The solution for δφS is given above as Eq. (37).
Substituting Eq. (37) into Eqs. (A12) and (A11) gives

the up- and down- spin concentrations of Eqs. (38) and
(39). Thus, the charge distribution δρ = −e (δn↑ + δn↓)
associated with the spin mode is

δρS =

[
Nχ (N↑ −N↓) + CN2

β

NSNα − 2N2
β

]
NSe

2V0Se
−x/`sf , (A14)

which is nonzero in a ferromagnet. (This result can also
be obtained by using Eq. (37) and Gauss’s Law.) Fur-
ther, subtraction of Eq. (39) from Eq. (38) yields the spin
accumulation of Eq. (40).

Appendix B: Boundary Conditions for Current
Crossing an Isolated Interface

Boundary conditions (i-viii) for an isolated interface
(that is, one that is effectively an infinite distance from
any other interface) through which an electric current is
passed are discussed in Sec. VI. They are here found
explicitly, in numerical order.

Conditions (i-ii): From Eqs. (44) and (45), continuity
of δφ and δE across the interface at xint = 0 gives

ξ(I)V
(I)
0S

+ V
(I)
0Q

+ V
(I)
0dc

= ξ(II)V
(II)
0S

+ V
(II)
0Q

+ V
(II)
0dc

, (B1)

−
ξ(I)V

(I)
0S

`
(I)
sf

−
V

(I)
0Q

`
(I)
Q

+ E
(I)
0dc

=
ξ(II)V

(II)
0S

`
(II)
S

+
V

(II)
0Q

`
(II)
Q

+ E
(II)
0dc

.

(B2)

Recall that ξ = 0 for a non-magnetic material.
Condition (iii): From Eq. (47), continuity of the elec-

tric current across the interface gives(
σ
(I)
↑ + σ

(I)
↓

)
E

(I)
0dc

=
(
σ
(II)
↑ + σ

(II)
↓

)
E

(II)
0dc

. (B3)

Condition (iv): Although the electric current is contin-
uous everywhere, in principle at the interface there may
be spin scattering, so that spin current is not continuous
across the interface. However, we neglect interfacial spin
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scattering (as is typical in this type of theory). We thus
take

j
(I)
↑ (0) ≡ j(II)↑ (0), j

(I)
↓ (0) ≡ j(II)↓ (0). (B4)

Using Eq. (48), the first of these can be written as

− σ(I)
↑ E

(I)
0dc

+

(
σ
(I)
↑ σ

(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
V

(I)
0S

`
(I)
sf

= −σ(II)
↑ E

(II)
0dc

+

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

`
(II)
sf

. (B5)

As discussed above, the second relation given in Eq. (B4)
is then automatically satisfied by condition (iii), which
constrain the sums of the up- and down-spin currents.

Conditions (v-vi): The spin currents across the inter-
face are given by3,9

j↑int = −g↑
e2

(∆µ̄↑)int, (B6)

j↓int = −g↓
e2

(∆µ̄↓)int, (B7)

were, (∆)int denotes the difference between the value just
on the right of the interface (x → 0+) and the value
just on the left (x → 0−). Since without the electric
field associated with the dc mode there is no steady-state
current, the currents are proportional to the differences
in δµ̄ rather than µ̄. We now find (∆δµ̄)int for each mode
and then substitute them into Eqs. (B6)-(B7).

The charge mode has δµ̄↑Q = 0 = δµ̄↓Q , so by

Eqs. (B6)-(B7) it does not affect the current crossing the
boundary. At the x = xint = 0 interface, Eqs. (A7) and
(A8) give

(∆δµ̄↑S )int

=

(
σ
(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
0S
−

(
σ
(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
0S
, (B8)

(∆δµ̄↓S )int

= −

(
σ
(II)
↑

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
0S

+

(
σ
(I)
↑

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
0S
.

(B9)

At the interface, Eq. (17) gives

(∆δµ̄↑dc)int = (∆δµ̄↓dc)int =− e
(
V

(II)
0dc
− V (I)

0dc

)
. (B10)

Substitution of Eqs. (B8)-(B10) into Eqs. (B6)-(B7)
yields

j↑int = −g↑
e

[
σ
(II)
↓ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

−
σ
(I)
↓ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

−
(
V

(II)
0dc
− V (I)

0dc

)]
,

(B11)

j↓int = −g↓
e

[
−

σ
(II)
↑ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

+
σ
(I)
↑ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

−
(
V

(II)
0dc
− V (I)

0dc

)]
.

(B12)

We take

j↑int ≡ j
(II)
↑ (0), j↓int ≡ j

(II)
↓ (0). (B13)

By Eq. (B4) one may equivalently use j↑int ≡ j
(I)
↑ (0) and

j↑int ≡ j
(I)
↓ (0). Respective substitution of Eqs. (48) and

(49) into Eqs. (B11) and (B12) gives

j
(II)
↑ (0) = −

σ
(II)
↑

e
E

(II)
0dc

+

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

e`
(II)
sf

= −g↑
e

[
σ
(II)
↓ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

−
σ
(I)
↓ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

−
(
V

(II)
0dc
− V (I)

0dc

)]
,

(B14)

j
(II)
↓ (0) = −

σ
(II)
↓

e
E

(II)
0dc
−

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

e`
(II)
sf

= −g↓
e

[
−

σ
(II)
↑ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

+
σ
(I)
↑ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

−
(
V

(II)
0dc
− V (I)

0dc

)]
.

(B15)

Condition (vii): The total electric current Japp is
known, so the total electric current in material I can be
written using Eq. (47) as

−
(
σ
(II)
↑ + σ

(II)
↓

)
E

(II)
0dc

= Japp. (B16)

Equation (B3) then guarantees that the total current in
material I also equals Japp.

Condition (viii): There is an arbitrary constant po-
tential. We set

V
(II)
0dc
≡ 0. (B17)

The eight conditions explicitly given by Eqs. (B1)-
(B3), (B5), and (B14)-(B17) are general for an isolated
interface between any two materials I and II, and their

solution gives the eight unknowns E
(I,II)
0dc

, V
(I,II)
0dc

, V
(I,II)
0Q

,

and V
(I,II)
0S

.


