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Abstract 

In a standard Kohn-Sham density functional calculation, the total energy of a crystal at zero 
temperature is evaluated for a perfect static lattice of nuclei, and minimized with respect to the lattice 
constant. Sometimes a zero-point vibrational energy, whose anharmonicity expands the minimizing or 
equilibrium lattice constant, is included in the calculation or (as here) used to correct the experimental 
reference value for the lattice constant to that for a static lattice. A simple model for this correction, 
based on the Debye and Dugdale-MacDonald approximations, requires as input only readily-available 
parameters of the equation of state, plus the experimental Debye temperature. However, due in 
particular to the rough Dugdale-MacDonald estimation of Grüneisen parameters for diatomic solids, this 
simple model is found to overestimate the correction by about a factor of two for some solids in the 
diamond and zinc-blende structures. Using the quasi-harmonic phonon frequencies calculated from 
density functional perturbation theory gives a more accurate zero-point anharmonic expansion (ZPAE) 
correction. The error statistics for the lattice constants of various semilocal density functionals for the 
exchange-correlation energy are however little changed by improving the ZPAE correction. The Perdew-
Burke-Ernzerhof generalized gradient approximation (GGA) for solids (PBEsol) and the revised Tao-
Perdew-Staroverov-Scuseria (revTPSS) meta-GGA, the latter implemented here selfconsistently in BAND, 
applied to a test set of 58 solids, remain the most accurate of the functionals tested, with mean absolute 
relative errors below 0.7% for the lattice constants. The most positive and most negative revTPSS 
relative errors tend to occur for solids where full nonlocality (missing from revTPSS) may be most 
important. 

 

 

I. Introduction 

The equilibrium lattice constant of a solid1 can be measured accurately (e.g., by X-ray diffraction) at 
low temperature and extrapolated to absolute zero, where it becomes a fundamental ground-state 
property. All properties of a solid depend upon the lattice constant, and some such as ferromagnetism, 
ferroelectricity or epitaxy can be very sensitive to it. The Kohn-Sham density functional theory2 (DFT) in 
principle predicts the ground-state energy and density of electrons in the presence of a static external 
potential, and has long been used to calculate the equation of state or energy per unit cell of a solid as a 
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function of lattice constant for a given crystal structure. The equilibrium lattice constant is then the one 
that minimizes the energy. The accuracy of the predicted lattice constant is a test of the accuracy of the 
approximate density functional that must be employed for the exchange-correlation energy. 

The simplest calculation of the lattice constant assumes a perfect static lattice. If the nuclei were fully 
classical particles, they would form such a lattice at zero temperature3. But in quantum mechanics all 
systems undergo fluctuation in their ground state. The nuclear fluctuation in a solid is crystal vibration 
and exists even at zero temperature. For a periodic solid, the vibration has normal modes which are 
quantized as phonons1. Although the zero-point energy of the vibration is minor compared to the kinetic 
energy of the electrons and the Coulomb energy in the system, its anharmonicity (dependence of 
frequency or zero-point energy on lattice constant) can expand the equilibrium lattice constant by 1% or 
more for light atoms like Li, and by much less for heavy atoms. Typically, as here, the uncorrected lattice 
constant from density functional theory is compared to an experimental value corrected to the static-
lattice case. 

The DFT in the formulation of Kohn and Sham gives the ground state static-lattice energy as a 

functional of the electron density )(rn  or its up- and down-spin components:  

3[ , ] ( ) ( ) [ ] [ , ]S XC nnE T n n d rn r r U n E n n Vυ↑ ↓ ↑ ↓= + + + +∫ .                                                                  (1) 

Those five terms represent the non-interacting kinetic energy of the electrons, the Coulomb interaction 
between electrons and nuclei, the Hartree energy of electron-electron repulsion, the exchange-
correlation energy of the electrons, and the nucleus-nucleus repulsion. The first three terms can be 
calculated exactly from energy-minimizing occupied orbitals for a given set of nuclear positions, while 
the exchange- correlation energy can only be approximated in practice. 

Semi-local approximations to the exchange-correlation energy are widely used for solids, because 
they are often nonempirical and are computationally fast in comparison with all other methods. Because 
of the slowly varying density in many sp-bonded solids near equilibrium, the semi-local functionals can 
work well4, although they can make larger errors for other solids in which there are important long-
range van der Waals interactions or in which electrons are shared over stretched bonds4. In this paper, 
we test five different nonempirical local and semi-local functionals belonging to different levels of a 
ladder of approximations: the local density approximation (LDA)2,5, the Perdew-Burke-Ernzerhof (PBE)6, 
and PBEsol7 (PBE for solids) which belong to the generalized gradient approximation (GGA) level6,8,9, and 
the Tao-Perdew-Staroverov-Scuseria (TPSS)10 and revised or revTPSS11 which belong to the meta-GGA 
level. The early and simple local spin density approximation (LSDA) gives too short lattice constants for 
solids and over-estimated atomization energies. The PBE GGA predicts reasonable but too long lattice 
constants and improves atomization energies. The TPSS meta-GGA predicts lattice constants only a little 
smaller than those of PBE, but gives better atomization energies for molecules than PBE does. While PBE 
is a general-purpose GGA for atoms, molecules, and solids, the PBEsol7,12,13 GGA has a diminished 
gradient dependence14 designed specifically for solids and solid surfaces near equilibrium. The revTPSS 
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meta-GGA, which takes insights from the PBEsol construction, gives lattice constants as accurate as 
those of PBEsol while keeping the atomization energies as accurate as those of TPSS. 

A simple model for the contribution of zero-point anharmonic expansion to the lattice constant of a 
solid was proposed in Ref. 15, and used in Refs. 16-20 to test various density functionals. Ref. 18 
introduced the large test set of 58 solids which we shall use here. The more accurate but more 
computationally demanding phonon model for the zero-point anharmonic contribution has been used, 
e.g., in Refs. 21 and 22. Ref. 22 compared the simple and phonon models for a test set about half the 
size of ours, including some solids in the diamond and zinc-blende structures, and reached conclusions 
similar to but less analyzed than those we shall reach here. In particular, we shall show that the simple 
model is reasonably accurate except in the diamond and zinc-blende structures, where its error arises 
mainly from the Dugdale-MacDonald model for the Grüneisen parameter, and less from the Debye 
model for the vibrational energy. Our work was well underway before we learned of Ref. 22.  

Refs. 17-19 employed a non-selfconsistent implementation of the meta-GGA’s. Ref. 23 implemented 
the revTPSS meta-GGA selfconsistently in VASP, and Ref. 20 applied selfconsistent revTPSS to a carbon 
monoxide molecule on transition-metal surfaces. Here we have implemented revTPSS selfconsistently in 
the solid state code BAND. 

 

II. The ZPAE correction: from simple model to phonon model 

The widely-used zero-point anharmonic expansion (ZPAE) method gives the lattice-constant 
correction to a DFT calculation at zero temperature. In the simple model, the zero point energy is given 
by the Debye model1, and the volume expansion of it is given by the Dugdale-MacDonald model24. The 
inputs of the simple model are the Debye temperature, the bulk modulus, and the first derivative of the 
bulk modulus with pressure. The first two quantities can be found from accurate experimental values18 
for the low-temperature specific heat and compressibility. For the first derivative of the bulk modulus, 
which is not given so accurately by experiment, we use theoretical TPSS values, as was done in Ref. 16.  

The derivation of the simple model is given with telegraphic brevity in Appendix A of Ref. 15. Here we 
will show how to derive the simple model correction, starting from Eq. (A1) of that appendix, where all 
quantities are “per atom”.  We begin with the total energy per atom, 

0 3( ) ( ) ( )
2

v v vε ε ω= + ħ
is the volume per atom, which for the solids we shall consider is equal to 2/3a ݒ  (2)                                                                                                                                       .  for the bcc and CsCl 

structures, 4/3a  for the fcc structure, and 8/3a for the rocksalt, diamond, and zinc-blende structures. 

Here a is the cube-side lattice constant. ߝ଴ሺݒ) is the ground state energy given by a DFT calculation 

without zero-point energy correction. The phonon zero-point energy per atom is  
ଷଶ ћ߱, where ߱ is an 

average phonon frequency.  
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The Taylor expansion to second order of  ߝሺݒ) around 0v  is  

0 2
0 0 0 0

3( ) ( ) ( ) ( ) ( )
2 2

v v v v v v vαε ε ω β= + − + + −ħ
,                                                                                   (3) 

where ݒ଴ is the equilibrium volume calculated from the DFT method. In Eq. (3), the first two terms on 
the right arise from the DFT calculation, and the second two from the zero-point vibrational energy.    

Here ߙ ൌ ௗమఌబௗ௩మ ቚ௩బ ൌ ஻బ௩బ  , where ܤ଴  is the equilibrium bulk modulus. For the zero-point energy, the 

average frequency ߱ is nearly linear in volume around the equilibrium volume, and ߚ ൌ ଷଶ ћ ௗఠௗ௩ ቚ௩బ. Since 

the Grüneisen parameter at equilibrium is  ߛ଴ሺݒ) ൌ െ ௩ఠ ௗఠௗ௩ ቚ௩బ, we find  ߚ ൌ െ ଷଶ ଴ߛ ћఠబ௩బ . 

Because the derivative of ε with respect to v  is equal to zero at the real equilibrium position, from Eq. 
(3) we have ߙሺݒ-ݒ଴) ൅ ߚ ൌ 0.  So the correction to the DFT-calculated volume is  

0
0 0

0

3( )
2

v v v
B
ωβ γ

α
Δ = − = − = ħ

.                                                                                                                      (4)  

So far, the volume correction is derived without serious approximation. When we choose the Grüneisen 

parameter as ߛ଴ሺݒ) ൎ ଵଶ ሺܤଵ െ 1)  from the Dugdale-MacDonald model24 (where 1B is the pressure 

derivative of the bulk modulus at equilibrium), and combine it with the Debye approximation ћ߱ ൌଷସ ݇஻߆஽ (where ߆஽ is the Debye temperature), we get the simple model 

1
0 0 0 0

3 9 ( 1)
16

B Dkv a B
v a B v

ΘΔ Δ= = −
.                                                                                                      (5) 

The underlying picture of the Debye and Dugdale-MacDonald approximations is a crystal with one atom 
per primitive cell. They may work, but less reliably, when there is more than one. The Dugdale-
MacDonald model has a correct limit: The anharmonic effects vanish for a harmonic crystal ( ).11 =B                                     

To see how well the simple model works, we compare the simple model to our phonon model. In the 
phonon model, the zero-point energy is calculated from the average frequency of lattice vibration using 

the Quantum Espresso (QE) code instead of the Debye model. It is ߝ௩௜௕ ൌ ׬ యమћ ௚ሺఠ)ௗఠಮబ׬ ௚ሺఠ)ௗఠಮబ , where ݃ሺ߱) is the 

density of phonon states. ׬ ݃ሺ߱)݀߱ஶ଴  is the number of modes of vibration per primitive cell. For a 

monatomic crystal ׬ ݃ሺ߱)݀߱ஶ଴ ൌ 3, and for a diatomic structure ׬ ݃ሺ߱)݀߱ஶ଴ ൌ 6. 

Also, we can calculate the Grüneisen parameter at equilibrium ߛ଴ሺݒ) from its definition using the curve 

of zero-point energy versus lattice constant. ߛ଴ሺݒ) ൌ െ ଵଷ ௔బఌೡ೔್బ ௗఌೡ೔್ௗ௔ , where ܽ଴ is the equilibrium lattice 
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constant calculated from the DFT method and ߝ௩௜௕଴  is the zero-point energy at ܽ଴ .  
ௗఌೡ೔್ௗ௔  can be 

evaluated around the equilibrium lattice constant. 

 

III. Results and discussion 

a. Calculation of the zero-point phonon correction 

A set of 58 cubic solids18 was considered (Table I). The phonon zero-point energy was calculated as a 
function of lattice constant. The computations were realized using the Quantum Espresso (QE) code25. 
The PBE functional was used in our phonon calculation, with PBE pseudopotentials26. The QE code uses 
density functional perturbation theory (DFPT)27 to calculate the interatomic force constants from first 
principles, which leads to the phonon frequencies. The first Brillouin zone was sampled with the 
12*12*12 k mesh for most solids. 6*6*6 q-points were used for calculating the dynamic matrix, which 
gives the phonon frequencies at a specified q point in the Brillouin zone. Then the density of phonon 
states is calculated from a 15*15*15 mesh, which is interpolated from the 6*6*6 q points.  

The QE code uses a plane-wave basis with pseudopotentials. For the elements Rb and Hf, the 
pseudopotentials are not provided on the QE web site, so we do not calculate the phonon zero-point 
energy of Rb, Hfc and HfN, which are in our set of solids. For solid VN and NbN, the rocksalt phase is not 
stable at zero temperature28, and for them we found non-positive phonon frequencies in our calculation, 
which confirms that instability. So we do not report phonon values for VN and NbN, either. 

In Table I we present the zero-point energy, Grüneisen parameter, and lattice-constant correction, 
using the simple model and the phonon model respectively. Experimental Debye temperature, lattice 
constants and bulk moduli were used (from Ref. 18), which we list in our supplementary information.  
The pressure derivative of the bulk modulus was calculated from the TPSS functional.  

Table I.  Columns one and two are zero-point energy per atom. 
ଷଶ ћ߱஽ ൌ ଽ଼ ݇஻߆஽ is from the simple 

model and  
ଷଶ ћ߱଴ is from the phonon model, respectively. The unit is eV.  Columns three and four are 

the Grüneisen parameter. ߛ஽ெ is from the Dugdale-MacDonald model and  ߛ଴ is from the curve of 
phonon zero-point energy versus lattice constant. Columns five and six are the lattice constant 
correction as a percentage of the experimental lattice constant using the simple model and using the 
phonon correction. The Strukturbericht symbols (in parentheses) are used for the structures as follows: 
A1=fcc; A2=bcc; A4=diamond; B1=rocksalt; B2=CsCl; B3=zinc blende. The two numbers in parentheses 
are: (number of atoms per primitive cell, number of atoms per conventional cubic cell). 

Solid  3 2 Dωħ  0 3 2 ωħ DMγ 0γ
.ௌெܽ௘௫௣௧ܽ߂ ሺ%) 

.௣௛௢௡௢௡ܽ௘௫௣௧ܽ߂ ሺ%)
Li(A2) (1,2) 0.0333 0.0406 1.2755 0.9434 0.831 0.748 

Na(A2) (1,2) 0.0153 0.0146 1.3223 1.5435 0.382 0.425 
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K(A2) (1,2) 0.0088 0.0090 1.1779 1.4180 0.210 0.259 

Rb(A2) (1,2) 0.0054 0.7946 0.085 

Ca(A1) (1,4) 0.0223 0.0209 1.0250 1.2406 0.154 0.175 

Sr(A1) (1,4) 0.0143 0.0103 1.2114 1.2543 0.135 0.101 

Ba(A2) (1,2) 0.0107 0.0095 0.7823 0.6839 0.076 0.059 

V(A2) (1,2) 0.0368 0.0325 1.3295 1.7719 0.116 0.137 

Nb(A2) (1,2) 0.0267 0.0272 1.3480 1.7514 0.063 0.084 

Ta(A2) (1,2) 0.0233 0.0217 2.0261 2.1602 0.072 0.072 

Mo(A2) (1,2) 0.0436 0.0391 1.6008 1.8187 0.088 0.090 

W(A2) (1,2) 0.0388 0.0376 1.2070 1.0957 0.050 0.044 

Fe(A2) (1,2) 0.0456 0.0450 2.1346 1.8522 0.264 0.226 

Rh(A1) (1,4) 0.0465 0.0367 2.1495 2.4203 0.145 0.129 

Ir(A1) (1,4) 0.0407 0.0302 2.0015 2.3073 0.087 0.074 

Ni(A1) (1,4) 0.0436 0.0436 1.9287 1.6726 0.220 0.191 

Pd(A1) (1,4) 0.0266 0.0293 2.3443 2.4352 0.117 0.134 

Pt(A1) (1,4) 0.0233 0.0251 2.1693 2.5823 0.065 0.083 

Cu(A1) (1,4) 0.0333 0.0353 2.0179 1.9153 0.216 0.218 

Ag(A1) (1,4) 0.0218 0.0237 2.4210 2.2937 0.154 0.158 

Au(A1) (1,4) 0.0160 0.0195 2.4176 2.5853 0.068 0.089 

Al(A1) (1,4) 0.0415 0.0411 1.7924 1.8695 0.305 0.316 

C(A4) (2,8) 0.2162 0.1894 1.3584 0.8113 0.624 0.327 

Si(A4) (2,8) 0.0625 0.0610 1.6134 0.9063 0.271 0.149 

Ge(A4) (2,8) 0.0363 0.0338 1.9000 1.2914 0.215 0.136 

Sn(A4) (2,8) 0.0194 0.0215 2.0703 1.4068 0.119 0.089 

Pb(A1) (1,4) 0.0102 0.0099 2.0798 2.4276 0.078 0.088 

LiF(B1) (2,8) 0.0710 0.0681 1.6392 1.3975 1.104 0.903 

LiCl(B1) (2,8) 0.0409 0.0339 1.8958 2.1750 0.703 0.668 

NaF(B1) (2,8) 0.0477 0.0526 1.7637 1.8814 0.714 0.840 

NaCl(B1) (2,8) 0.0311 0.0298 1.8997 1.9916 0.542 0.545 

MgO(B1) (2,8) 0.0917 0.0762 1.5496 1.6760 0.494 0.444 

MgS(B1) (2,8) 0.0630 0.0399 1.3654 1.7913 0.326 0.271 

CaO(B1) (2,8) 0.0628 0.0894 1.7341 1.5286 0.365 0.458 

TiC(B1) (2,8) 0.0911 0.0840 1.6262 1.4557 0.335 0.276 

TiN(B1) (2,8) 0.0734 0.0823 1.6270 1.8301 0.242 0.305 

ZrC(B1) (2,8) 0.0679 0.0691 1.4781 1.4324 0.200 0.197 

ZrN(B1) (2,8) 0.0679 0.0622 1.6413 1.7809 0.206 0.205 

HfC(B1) (2,8) 0.0536 1.5300 0.145 

HfN(B1) (2,8) 0.0590 1.3706 0.159 

VC(B1) (2,8) 0.0590 0.0783 1.5643 1.9402 0.181 0.297 
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VN(B1) (2,8) 0.0732 1.6391 0.269 

NbC(B1) (2,8) 0.0738 0.0714 1.6240 1.7236 0.191 0.196 

NbN(B1) (2,8) 0.0708 1.6364 0.203 

FeAl(B2) (2,2) 0.0498 0.0520 1.5321 1.6112 0.248 0.273 

CoAl(B2) (2,2) 0.0485 0.0539 1.5767 1.5645 0.215 0.237 

NiAl(B2) (2,2) 0.0390 0.0455 1.6301 1.8242 0.170 0.222 

BN(B3) (2,8) 0.1648 0.1718 1.3297 0.8454 0.536 0.355 

BP(B3) (2,8) 0.0955 0.1003 1.4024 0.8298 0.403 0.250 

BAs(B3) (2,8) 0.0776 0.0818 1.5245 1.1868 0.336 0.276 

AlP(B3) (2,8) 0.0570 0.0538 1.4979 0.9866 0.301 0.187 

AlAs(B3) (2,8) 0.0283 0.0435 1.6012 1.1949 0.144 0.166 

GaN(B3) (2,8) 0.0582 0.0778 1.7133 0.9759 0.235 0.179 

GaP(B3) (2,8) 0.0431 0.0344 1.8919 1.1896 0.247 0.124 

GaAs(B3) (2,8) 0.0333 0.0322 1.7991 1.1947 0.188 0.121 

InP(B3) (2,8) 0.0311 0.0377 1.8653 1.2787 0.173 0.144 

InAs(B3) (2,8) 0.0239 0.0266 1.9688 1.1212 0.156 0.099 

SiC(B3) (2,8) 0.1194 0.1084 1.4656 0.9086 0.402 0.226 
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Fig. 1 The green line is the ratio of the zero-point energy approximated by the Debye model to that 
computed from the phonon average frequency. The red line is the ratio of the lattice constant 
correction ( ) calculated by the simple model to that of the phonon model.  

In Figs. 1 and 2, we show the ratio of zero-point energy, the ratio of Grüneisen parameter, and the 
ratio of lattice-constant correction found from the simple model to that found from the phonon model. 
From Fig. 1 we see that the zero-point energy approximated by the Debye model is reasonably accurate. 
For the monatomic crystal (one atom per primitive cell: A1 and A2), the ratio of zero-point energy is on 
average bigger than 1. Except for Na and Au with ratios smaller than 0.9, the ratios for the other 
monatomic solids are all above 0.9. This is because the Debye model uses a linear approximation for the 
dispersion curve. However the real dispersion curve at large wavevector in a monatomic solid has 
smaller frequencies than those of the Debye model, which means that the zero-point energy is 
overestimated by the Debye model. For a diatomic crystal (two atoms per primitive cell: A4, B1, B2 and 
B3), the ratio of the zero-point energy is smaller than 1 on average. Except for LiF, MgO, MgS and GaP 
where the ratios are larger than 1.2, the others are all under 1.2 and many are under 1.0. For a crystal 
with two atoms per unit cell, the Debye model continues to use a linear (in the extended zone scheme) 
extrapolation of the small-wavevector average acoustic dispersion, even for the optical modes. But the 
optical modes might be better approximated by an Einstein model, in which frequency is independent of 
wavevector. Thus the Debye model will tend to underestimate the optical phonon zero-point energy 
when the actual frequency gap between optical and acoustic modes is large, and to overestimate it 
when this gap is small (as it is for LiF, MgO, MgS, and GaP).  
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Fig. 2 The blue line is the ratio of the Grüneisen parameter approximated by the Dugdale-MacDonald 
model to that of the phonon model, The red line is the ratio of the lattice constant correction ( ) 
calculated by the simple model to that of the phonon model. Note the similarity of the two curves, 
which shows that most of the error of the simple model arises from the Dugdale-MacDonald 
approximation. 

 

In Fig. 2, we see that the Grüneisen-parameter ratio also fluctuates around and close to 1, except in 
the A4 structure and B3 structure. For the solids of A4 and B3 structure, the Grüneisen parameter given 
by the Dugdale-MacDonald model is about 50% (or more) bigger than that given by the phonon model. 
Because of that, the lattice constant correction given by the simple model is overestimated for solids of 
the A4 and B3 structures. It appears that covalent-bonding non-close-packed structures do not follow 
the Dugdale-MacDonald model.  

b. Calculation of the lattice constants 

We modified the current version of BAND29--31, which implements revTPSS only non-selfconsistently, 
to implement it selfconsistently. For revTPSS, the exchange-correlation energy involves the kinetic 
energy density )(rτ , which is not an explicit functional of the density n( r ). So the exchange-correlation 

potential, r r , is not calculated directly. The partial integration method32 is used 
for calculating the matrix elements of the exchange-correlation potential. All orbitals are treated 
numerically in BAND. We have derived the partial derivatives for the revTPSS functional and tested their 
correctness by numerically differentiating the energy density with respect to those independent 
variables, including spin densities, gradients and kinetic energy density. Relativistic effects are included 
in the zero-order relativistic approximation (ZORA). 
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We note that lattice constants and bond lengths can be computed two different ways: By minimizing 
the total energy, and by zeroing out the Hellmann-Feynman forces and stresses, the results of the 
second approach being much more sensitive to the orbitals than those of the first. The results are 
expected to agree only at selfconsistency, so the agreement shown in Table II is a good test of 
selfconsistency. 

 

Table II Test of revTPSS selfconsistency employing the bond lengths (in Å) of the Li, N and Ca dimers. 
“energy” means calculating a revTPSS total energy for bond lengths separated by 0.01 bohr, fitting the 
result, and minimizing the fitted energy. “grad=0” means optimizing the geometry until the forces are 

less than 10 8−  hartree per bohr.  

Molecule  energy grad=0 difference݅ܮଶ 2.75687   2.75671   -0.00016ଶܰ 1.10069   1.10069   -0.00005ܽܥଶ 4.10702   4.10675   -0.00026
 

 The BAND program uses a mixed Slater-type and numerical-type orbital basis set. In our lattice 
constant calculation, the quadruple zeta plus quadrupole polarization basis set is used, which is the 
biggest basis set in the BAND code. The largest number of k -points (parameter 7) is used for solving the 
Kohn-Sham equations. There are 84 k -points for bcc and 196 k -points for fcc in the irreducible wedge. 
The lattice constants are calculated by fitting the energy curve using the stabilized jellium equation of 
state (SJEOS)15. The functionals LSDA, PBE, PBEsol and TPSS are evaluated with revTPSS orbitals. 

In Table III, the experimental lattice constants are corrected for ZPAE. The phonon-model correction 
is used when available. For the solids Rb, HfC, HfN, VN and NbN, as discussed earlier, the simple model is 
used. The theoretical lattice constants calculated by various functionals are compared to the 
experimental lattice constants corrected to the static-lattice case. The mean error (ME), the mean 
absolute error (MAE), the mean relative error (MRE, in percent), and the mean absolute relative error 
(MARE, in percent) are given for each functional. 

 

Table III  Theoretical lattice constants calculated from the BAND code using LSDA, PBE, PBEsol, TPSS, and 
revTPSS functionals. The revTPSS density is used for all calculations. The experimental lattice constants 
are corrected for ZPAE. For the solids Rb, HfC, HfN, VN and NbN, the simple model is used. For the other 
solids, the phonon correction is used. All lattice constants are given in Å. 

Solid LSDA PBE PBEsol TPSS revTPSS Expt. a− Δ   
  BAND BAND BAND BAND BAND   
Li 3.368  3.429  3.429  3.446  3.434  3.451  

Na 4.051  4.197  4.174  4.249  4.222  4.207  

K 5.050  5.281  5.220  5.369  5.325  5.211  

Rb 5.374  5.665  5.571  5.768  5.716  5.580  
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Ca 5.321  5.521  5.449  5.540  5.520  5.555  

Sr 5.779  6.013  5.911  6.023  6.001  6.042  

Ba 4.732  5.022  4.874  5.002  4.978  5.004  

V 2.924  2.997  2.958  2.975  2.968  3.024  

Nb 3.246  3.310  3.272  3.294  3.284  3.293  

Ta 3.298  3.347  3.320  3.329  3.317  3.299  

Mo 3.110  3.161  3.130  3.147  3.137  3.141  

W 3.122  3.170  3.141  3.153  3.139  3.161  

Fe 2.749  2.834  2.788  2.804  2.793  2.855  

Rh 3.749  3.827  3.777  3.800  3.780  3.793  

Ir 3.812  3.872  3.832  3.851  3.829  3.832  

Ni 3.419  3.517  3.461  3.475  3.455  3.509  

Pd 3.832  3.932  3.869  3.887  3.862  3.876  

Pt 3.895  3.971  3.920  3.943  3.916  3.913  

Cu 3.518  3.630  3.565  3.577  3.551  3.595  

Ag 4.001  4.150  4.055  4.086  4.051  4.063  

Au 4.039  4.147  4.074  4.103  4.069  4.061  

Al 3.982  4.037  4.014  4.011  4.008  4.019  

C 3.532  3.571  3.553  3.569  3.559  3.555  

Si 5.402  5.468  5.432  5.452  5.438  5.422  

Ge 5.624  5.764  5.679  5.723  5.680  5.644  

Sn 6.475  6.659  6.543  6.612  6.560  6.476  

Pb 4.882  5.040  4.935  4.981  4.939  4.912  

LiF 3.915  4.064  4.005  4.031  4.013  3.974  

LiCl 4.972  5.147  5.063  5.093  5.085  5.072  

NaF 4.502  4.700  4.630  4.706  4.675  4.570  

NaCl 5.466  5.695  5.606  5.705  5.671  5.565  

MgO 4.162  4.255  4.216  4.237  4.233  4.188  

MgS 5.127  5.228  5.184  5.228  5.222  5.188  

CaO 4.709  4.832  4.769  4.809  4.808  4.781  

TiC 4.260  4.332  4.293  4.328  4.316  4.318  

TiN 4.171  4.247  4.204  4.239  4.231  4.226  

ZrC 4.639  4.708  4.668  4.707  4.694  4.687  

ZrN 4.524  4.594  4.552  4.588  4.580  4.576  

HfC 4.571  4.655  4.609  4.646  4.624  4.631  

HfN 4.470  4.553  4.506  4.540  4.524  4.513  

VC 4.087  4.154  4.116  4.146  4.132  4.148  

VN 4.041  4.116  4.073  4.108  4.097  4.130  

NbC 4.425  4.484  4.449  4.481  4.465  4.461  
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NbN 4.355  4.422  4.381  4.417  4.404  4.383  

FeAl 2.811  2.868  2.840  2.850  2.842  2.881  

CoAl 2.793  2.851  2.823  2.832  2.822  2.854  

NiAl 2.832  2.892  2.862  2.872  2.862  2.881  

BN 3.581  3.624  3.605  3.621  3.615  3.594  

BP 4.491  4.548  4.520  4.544  4.529  4.527  

BAs 4.733  4.809  4.768  4.799  4.774  4.764  

AlP 5.433  5.504  5.468  5.492  5.482  5.450  

AlAs 5.631  5.728  5.676  5.702  5.682  5.649  

GaN 4.457  4.549  4.499  4.532  4.518  4.523  

GaP 5.392  5.506  5.439  5.488  5.460  5.441  

GaAs 5.607  5.751  5.664  5.716  5.675  5.641  

InP 5.829  5.963  5.882  5.949  5.918  5.858  

InAs 6.026  6.188  6.089  6.157  6.113  6.048  

SiC 4.329  4.378  4.356  4.366  4.357  4.348  

ME -0.064  0.043  -0.010  0.030  0.010  

MAE 0.064  0.049  0.028  0.040  0.030  

MRE (%) -1.478  0.894  -0.295  0.549  0.115  

MARE (%) 1.478  1.048  0.641  0.856  0.675  
 

From Table III, we can clearly see that the ME, MAE, MRE and MARE are all reduced from LDA to PBE 
GGA, then further reduced to the higher-level TPSS meta-GGA and revTPSS meta-GGA. PBEsol gives 
lattice constants as good as revTPSS. TPSS and PBE have very similar statistical errors, although TPSS is 
slightly better than PBE. LDA underestimates the lattice constants for nearly all the solids, as expected.   

Table IV shows the relative errors of the lattice constants, which are always negative for LSDA but not 
for the other functionals. When the relative errors of revTPSS are ordered from most positive to most 
negative, as in Table IV, several trends emerge: (1) The most positive errors tend to occur for ionic solids 
with large polarizable negative ions and for heavy alkali metals with large ionic cores, where the long-
range van der Waals attraction missing in revTPSS should reduce the error33. (2) The most negative 
errors occur for the 3d transition metals, where the very localized but overlapped 3d orbitals produce a 
density very different from the atomic and slowly-varying paradigms of the meta-GGA form. The 3d 
metals may require a non-van-der-Waals kind of full nonlocality also missing in revTPSS. Indeed the 
relative error becomes less negative from 3d to 4d to 5d, as the d orbitals become more diffuse. 
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Table IV. Relative errors (%) in lattice constants with respect to the ZPAE-corrected experimental values 
are listed here. They are ordered from the most positive value to the least positive value of revTPSS.  
Column two indicates the type of solid: SM=simple metal, TM=transition metal, II=ionic insulator, 
SC=semiconductor (A4 or B3 structures), AM=alloy metal.  

LSDA PBE PBEsol TPSS revTPSS
Rb SM -3.70 1.52 -0.16 3.37 2.44 

NaF II -1.50 2.84 1.31 2.98 2.29 

K SM -3.09 1.34 0.17 3.02 2.17 

NaCl II -1.76 2.35 0.74 2.52 1.92 

Sn SC -0.01 2.83 1.03 2.09 1.29 

InAs SC -0.37 2.32 0.67 1.80 1.08 

MgO II -0.63 1.58 0.66 1.17 1.06 

InP SC -0.48 1.80 0.42 1.57 1.04 

LiF II -1.47 2.26 0.79 1.45 0.98 

MgS II -1.18 0.78 -0.08 0.76 0.65 

Ge SC -0.36 2.12 0.61 1.40 0.63 

GaAs SC -0.61 1.95 0.41 1.33 0.59 

AlP SC -0.31 1.00 0.34 0.77 0.59 

BN SC -0.37 0.82 0.31 0.76 0.59 

AlAs SC -0.31 1.40 0.48 0.95 0.58 

Ta TM -0.03 1.48 0.65 0.91 0.57 

CaO II -1.52 1.06 -0.25 0.59 0.56 

Pb SM -0.60 2.61 0.47 1.41 0.56 

NbN II -0.64 0.88 -0.06 0.77 0.49 

Na SM -3.72 -0.25 -0.78 0.99 0.36 

GaP SC -0.91 1.20 -0.04 0.85 0.35 

Si SC -0.37 0.85 0.19 0.56 0.29 

LiCl II -1.97 1.48 -0.18 0.42 0.25 

HfN II -0.95 0.90 -0.15 0.60 0.24 

BAs SC -0.64 0.96 0.09 0.73 0.22 

SiC SC -0.44 0.69 0.18 0.41 0.21 

Au TM -0.56 2.10 0.32 1.03 0.20 

ZrC II -1.01 0.46 -0.40 0.44 0.16 

TiN II -1.30 0.49 -0.52 0.29 0.11 

C SC -0.66 0.44 -0.06 0.37 0.10 

NbC II -0.81 0.50 -0.28 0.44 0.10 

ZrN II -1.13 0.41 -0.51 0.28 0.09 

Pt TM -0.45 1.50 0.18 0.78 0.09 

BP SC -0.78 0.46 -0.15 0.39 0.05 
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TiC II -1.34 0.32 -0.59 0.23 -0.04 

Ir TM -0.53 1.04 -0.01 0.49 -0.09 

GaN SC -1.45 0.57 -0.53 0.21 -0.12 

Mo TM -0.98 0.63 -0.37 0.20 -0.15 

HfC II -1.30 0.51 -0.48 0.32 -0.15 

Al SM -0.94 0.45 -0.14 -0.21 -0.27 

Nb TM -1.44 0.52 -0.65 0.03 -0.29 

Ag TM -1.52 2.15 -0.18 0.57 -0.29 

Rh TM -1.15 0.91 -0.42 0.19 -0.35 

Pd TM -1.14 1.45 -0.17 0.29 -0.36 

VC II -1.47 0.15 -0.77 -0.03 -0.39 

Li SM -2.42 -0.63 -0.62 -0.15 -0.49 

Ba SM -5.45 0.36 -2.61 -0.05 -0.52 

Ca SM -4.21 -0.61 -1.92 -0.28 -0.63 

NiAl AM -1.69 0.40 -0.63 -0.30 -0.65 

W TM -1.23 0.31 -0.63 -0.25 -0.67 

Sr SM -4.36 -0.47 -2.17 -0.32 -0.68 

VN II -2.15 -0.33 -1.38 -0.54 -0.81 

CoAl AM -2.14 -0.11 -1.11 -0.79 -1.12 

Cu TM -2.16 0.98 -0.85 -0.51 -1.23 

FeAl AM -2.43 -0.45 -1.42 -1.07 -1.37 

Ni TM -2.57 0.21 -1.37 -0.99 -1.55 

V TM -3.30 -0.89 -2.17 -1.63 -1.86 

Fe TM -3.70 -0.72 -2.35 -1.78 -2.15 
 

 

In Table V, we show the ZPAE effect on the revTPSS lattice constants. The revTPSS lattice constants 
are compared with the corrected experimental lattice constant. For the phonon model correction, all 
statistical errors (ME, MAE, MRE and MARE) are smaller than for the simple-model correction.  

Table V Error statistics for the revTPSS lattice constant, compared with corrected experimental lattice 
constant using two different corrections, for the solids listed in Table I, excepting Rb, HfC, HfN, VN and 
NbN for the phonon model. 

 
  

Simple 
model 

Phonon 
model 

ME 0.011 0.009 

MAE 0.031 0.029 

MRE (%) 0.133 0.084 

MARE (%) 0.705 0.661 
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In our calculation, selfconsistent revTPSS meta-GGA is used. Selfconsistent meta-GGA is much more 
time consuming than selfconsistent LDA, especially for an all-electron calculation as in the BAND code. 
Sometimes, a non-selfconsistent calculation is effective and computationally necessary. We define the 
selfconsistency effect on the lattice constant in the following way: For a given energy functional, 
minimize energy versus lattice constant using the selfconsistent density for that functional and then the 
density for another functional, such as LDA, and see how much the lattice constant differs. The 
selfconsistency effect for the PBE GGA is very small, of order 0.001-0.002 Å, even for soft solids like Ca, 
Sr, Ba, and Rb. So we expect the selfconsistency effect to be small also for the revTPSS meta-GGA. For 
most of our solids, we can confirm this expectation, but not for the soft solids. The selfconsistency 
effects for the soft solids are shown in Table VI. We doubt if these effects are real, and suspect that they 
are simply a consequence of numerical error of revTPSS in BAND. We have not found such large revTPSS 
selfconsistency effects with VASP. Perhaps they are only a reflection of the additional numerical errors 
that can arise in an all-electron code like BAND when the curve of total energy vs. lattice constant is very 
flat. In any case, selfconsistency is still important for the determination of bond lengths, bond angles, 
and lattice constants via Hellmann-Feynman forces and stresses, etc. 

 

Table VI. Lattice constants calculated from the BAND and VASP code in revTPSS, selfconsistently and 
from the LDA density. The difference between them is presented as a possible measure of the 
selfconsistency effect, which is expected to be largest in soft solids like these with BAND, but not VASP.  
All lattice constants are given in Å. 

functional  revTPSS revTPSS  Difference revTPSS revTPSS Difference  
density  revTPSS LDA    BAND revTPSS LDA VASP 
Ca 5.516 5.509 0.007 5.504 5.504 0.000 

Rb 5.716 5.692 0.024 5.712 5.709 0.003 

Sr 5.995 5.976 0.019 6.007 6.003 0.004 

Ba 4.977 4.961 0.016 4.986 4.984 0.002 
 

In order to check the performance of these functionals in a dispersion-dominated interaction system, 
we show the lattice constants of graphite in Table VII. The in-plane lattice constant is fixed at the 
experimental value 2.464 Å and a search is made for the equilibrium inter-layer distance c/2, where c is 
the lattice constant. Due to its tendency of underestimate lattice constants, which compensates for the 
absence of long-range dispersion in graphite, LDA spuriously predicts the most precise lattice constant. 
As expected, PBE yields too large lattice constant while PBEsol puts the lattice constant between those 
of LDA and PBE. TPSS barely binds graphite, with the minimum at 10.0 Å on VASP code, which is about 5 Å smaller than that given in Ref. 18, and 8.8 Å on BAND code. This is probably because the TPSS calculations of Ref. 18 were non-selfconsistent and the binding curve of TPSS is very flat.  revTPSS 
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performs similarly to TPSS, showing that both are unable to capture the long-range part of the 
dispersion or van der Waals interaction.  

Table VII. The inter-layer equilibrium lattice constant (Å) of graphite, calculated from BAND and VASP.  
Functinals LDA PBE PBEsol TPSS revTPSS expt. 
c (BAND) 6.7 8.7 7.4 8.8 8.8 6.71 
c (VASP) 6.7 8.8 7.4 10.0 10.1 6.71 

 

   

IV. Summary  

In this work, the revTPSS meta-GGA is implemented selfconsistently in the BAND code. The lattice 
constants of 58 solids are calculated using the density functionals LSDA, PBE, PBEsol, TPSS and revTPSS. 
LSDA makes the largest errors for solids, which makes its excellent performance for the bond lengths of 
diatomic molecules34 all the more surprising. The meta-GGA revTPSS predicts the lattice constant as well 
as the GGA PBEsol, and better than the other functionals tested. The largest positive or negative relative 
errors of the revTPSS lattice constants tend to occur in those solids where some full nonlocality, absent 
in revTPSS, might be expected (section III). Overall, revTPSS appears to be the best of the semilocal 
functionals tested here, since it also produces more or less the most accurate atomization energies of 
molecules11, desorption energies of molecules from metal surfaces20, and surface energies of metals11,20.  

The experimental lattice constant is corrected for zero-point anharmonic expansion (ZPAE) in two 
different ways. The simple model gives reasonable results for most solids. But it overestimates the 
correction by about a factor of two for the diamond structure and zinc-blende structures. This simple 
model is based on the Debye model for the vibrational energy and the Dugdale-MacDonald model for 
the Grüneisen parameter. The underlying picture is thus that of a solid with one atom per primitive cell. 
The simple model can also work, but unreliably, for a solid with two atoms per unit cell, and in fact it 
fails for the covalent diamond and zinc-blende structures, where the Dugdale-MacDonald model is 
responsible for most of the failure.  We note that diamond and zinc-blende are open, covalent 
structures, and similar to each other. The phonon model in principle improves the zero-point energy and 
the Grüneisen parameter over the simple model. Compared to the simple model, the phonon model 
gives similar error statistics for lattice constants but requires more computational time, because the 
phonon calculation is expensive. But the phonon model gives the more accurate zero-point energy 
correction, and we favor it as the benchmark ZPAE lattice-constant correction. Moreover, the simple 
model requires a value for Bଵ, which is uncertain from experiment and even from calculation. 

When phonon-model corrections are unavailable, the simple-model corrections remain useful. 
However, greater accuracy can be achieved by empirically scaling the extreme right-hand side of Eq. (5) 
by a factor of 0.66, for the diamond and zinc-blende structures only. This factor zeroes out the mean 
relative error of the simple model for the solids in our data set with these two structures.  
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Although thermal expansion due to phonon excitation is not our interest here, it can also be 
addressed by the simple and phonon models. 
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