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We consider quantum tunneling of magnetization (QTM) in single-molecule magnets (SMMs) 

possessing idealized C3 symmetry. We do so by mapping the spectrum of a Mn3
III  SMM 

obtained via diagonalization of a multi-spin (three s = 2 spins) Hamiltonian onto that of a 

giant-spin model with spin S = 6. Rotation of the easy axes of the MnIII atoms away from the C3 

axis leads to the emergence of the Ô4
3   (≡ 1

2 [Ŝz , Ŝ+
3 + Ŝ−

3]) operator in the giant-spin model. This 

unfreezes odd-k QTM resonances and generates three-fold patterns of Berry-phase interference 

minima in all resonances, including k = 0, which shifts from zero longitudinal field. 
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Single-molecule magnets (SMM) have attracted considerable interest during the past two 

decades due to landmark experiments demonstrating molecular-level magnetic bistability1 and 

quantum tunneling of magnetization (QTM) at low temperatures.2 These properties, together 

with the tremendous control that synthetic chemists have been able to exert over the material 

parameters that govern these processes, have placed SMMs as ideal platforms for understanding 

fundamental quantum phenomena in nanoscale magnets.3 This letter has been motivated by 

recent studies of a [NE4]3[Mn3Zn2(salox)3O(N3)6Cl2] SMM (hereafter Mn3).4-7 The molecule 

possesses exact C3 point group symmetry, with a triangular core comprised of three 

ferromagnetically coupled MnIII (s = 2) ions. The resultant spin S = 6 ground state experiences a 

relatively high barrier to magnetization relaxation (Ueff ~ 50 K). Importantly, clear evidences of 

quantum mechanical selection rules have been observed in QTM measurements.6  

The Mn3 SMM provides an ideal opportunity to explore the consequences of a trigonal 

spin topology in terms of the resultant QTM (for which information in the literature is scarce8), 

akin to earlier work on biaxial9 and tetragonal systems.10 We do so via numerical comparisons 

between the giant-spin approximation (GSA) and multi-spin (MS) formalism. The GSA treats the 

total spin S associated with the ground state of a molecule to be exact. For Mn3, this results in 

2S + 1 (= 13) multiplet states that can be described by the following effective spin Hamiltonian: 

 Ĥ = DŜz
2 + B4

0Ô4
0 + B4

3Ô4
3 + B6

6Ô6
6 + μBB ⋅ g ⋅ Ŝ  (1)           

The first four terms characterize the so-called zero-field splitting (zfs) anisotropy. The final term 

represents the Zeeman interaction, with B denoting the local field and g  the Landé g-tensor. 
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The (2S + 1) dimension of the Hamiltonian matrix imposes a restriction on the total number of 

zfs operators, Ôp
q , where p (≤ 2S) is even, representing the order of the operator, and q (≤ p) 

denotes the rotational symmetry about the zero-field quantization axis (z); the Bp
q  parameterize 

these interactions. Here, we consider only 2nd and 4th order axial (p = 2, 4; q = 0) terms, and the 

leading trigonal ( Ô4
3) and hexagonal ( Ô6

6) operators. The first term in Eq. (1) is the dominant 2nd 

order axial anisotropy (where D = 3B2
0 ) that gives rise to the energy barrier between “spin up” 

and “spin down” states. 

The advantage of the GSA lies in the fact that one need only deal with a few parameters 

and a small Hamiltonian matrix. However, the GSA ignores the internal degrees of freedom 

within the molecule, thus completely failing to capture the underlying physics in cases where the 

total spin can fluctuate.7,11-14 A more physical model, which takes into account the zfs tensors of 

individual ions and the coupling between them, is given by the MS Hamiltonian:  

       Ĥ = ŝi ⋅ Ri
T ⋅ Di ⋅ Ri ⋅ ŝi

i
∑ + Jij ŝi ⋅ ŝ j

j>i
∑ + μBB ⋅ g ⋅ ŝi

i
∑       (2) 

Here, ŝi  are spin operators associated with the uncoupled s = 2 MnIII ions. The diagonal 

matrices, Di , parameterize the 2nd order zfs in the local coordinate frame of each MnIII ion, with 

Dxx ,i = −Dyy ,i = ei and Dzz ,i = di , where di (≡ 3B2
0 )  and ei (≡ B2

2 )  are the respective axial and 

rhombic zfs parameters. The local coordinate frames are then transformed into the molecular 

frame by means of rotation matrices, Ri , specified by Euler angles iθ , iϕ  and iψ . The second 

term represents the isotropic exchange between the ith and jth spins, with Jij parameterizing the 

strength of this coupling on each bond, and the final term is the Zeeman interaction. 
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Mn3 is particularly attractive in the context of the present investigation. The dimension of 

the MS Hamiltonian matrix for three s = 2 spins is just [(2s + 1)3]2 = 125 × 125. The high (C3) 

symmetry then reduces the number of interaction parameters to just a single exchange constant, J, 

and identical d and e values for each ion. Two of the Euler angles are known from x-ray studies,5 

and all other important parameters have been determined from EPR and QTM measurements.4-7 

Lastly, the structure contains no solvent molecules. This is rare among SMMs13 and removes the 

source of disorder.15 Consequently, exceptional spectroscopic data (QTM and EPR) are available 

against which one can test theoretical models. 

In this letter we focus on the transverse zfs operators in the GSA (q > 0), particularly Ô4
3 , 

which we show to be responsible for several fascinating results. The effects of q > 0 zfs terms 

typically manifest themselves at energy scales that are orders of magnitude smaller than those of 

the axial (q = 0) terms. We thus focus on the tunneling gaps at avoided level crossings, as these 

are dominated by the transverse terms in Eq. (1). Due to symmetry restrictions (q = 3n for C3 

symmetry, where n is an integer), non-zero tunneling gaps are limited to level crossings with 

Δm = 3n, where m is the projection of the total spin onto the C3 (z-) axis. All such gaps, Δmm' , 

have been labeled in Fig. 1 for QTM resonances k ≤ 3, where k (= m + m′) denotes an avoided 

crossing between pairs of levels with spin projections m and m′ (an overbar denotes negative m). 

Published zfs parameters were employed for simulations involving Eq. (2), i.e., d = -4.2 K and e 

= 0.9 K.6 Meanwhile, the exchange constant J (= −10 K) was set to a larger absolute value to 

isolate the ground state from excited multiplets, thus simplifying analysis of higher-lying gaps. 
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The Euler angles were set to ϕ1 = 0, ϕ2 = 120o and ϕ3 = 240o (all ψi = 0) to preserve C3 symmetry, 

while θi (= θ) was allowed to vary in order to examine its influence on QTM selection rules. 

We first consider the situation in which the Jahn-Teller (JT) axes of the three MnIII ions 

are parallel to the C3 axis, i.e., θ = 0. In the top section of Table 1, we give the magnitudes of 

even-n tunneling gaps involving pairs of levels with Δms = 3n,deduced via diagonalization of 

Eq. (2) in the absence of a transverse field, HT (⊥z). The odd-n, HT = 0 gaps are identically zero, 

as can be seen from their dependence on HT (Fig. 1 inset): the power-law behavior indicates no 

contribution from zfs interactions. Consequently, one expects only even-n zfs terms of the form 

Bp
3nÔp

3n  in the GSA: those satisfying this requirement have six-fold rotational symmetry about 

the C3 axis, i.e., a higher symmetry than the real molecule (further explanation is given below). 

To compare models for the θ = 0 case we calculated the non-zero tunneling gaps, setting 

03
4 =B , D = −1.096 K and B4

0 = −2.18 ×10−5K in Eq. (1). In the absence of a transverse field, 

the n = 2 gaps Δ33 and Δ24 are proportional to 6
6B , while the n = 4 gap, Δ66, is proportional 

to ( )26
6B . This can be traced to the order of perturbation at which the gaps appear, e.g., by 

treating the ms = ±3 states as a two-level system, we find that Δ33 = B6
6 −3 Ô6

6 +3 = 60480B6
6  

based on a first order perturbation calculation.16 The best overall agreement between the two 

models is obtained by setting 6 7
6 4.3 10 KB −= ×  (Table 1). Small differences may be due to our 

neglect of higher-order six-fold terms such as B8
6Ô8

6 , B10
6 Ô10

6 , etc. 

Next we consider the situation in which the JT axes are tilted θ = 8.5o away from the C3 

axis, as is the case for Mn3.5 Both even- and odd-n HT = 0 tunneling gaps are generated in this 
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situation, i.e., odd QTM resonances become allowed. This may be understood within the 

framework of the GSA as being due to the emergence of zfs interactions possessing three-fold 

rotational symmetry about the molecular C3 axis, i.e., Bp
3nÔp

3n  with n = 1 and p > 3; the leading 

term is B4
3Ô4

3 . We begin by considering Δ12 (k = 1) and Δ03  (k = 3), which depend only on 

B4
3Ô4

3  to first order. A perturbation analysis gives Δ12 = 132B4
3  and Δ03 = 368B4

3 . By 

comparing with MS simulations [Eq. (2)], we obtain B4
3 = 4.77 ×10−4  K. The remaining gaps 

are then evaluated via diagonalization of Eq. (1) using the optimum B6
6  and B4

3 parameters. 

Excellent agreement is once again achieved (see Table 1). Minor deviations may, in principle, be 

corrected by introducing higher-order transverse terms such as B6
3Ô6

3 . 

The emergence of the B4
3Ô4

3  interaction clearly signifies a lowering of the symmetry of 

the zfs Hamiltonian upon tilting the JT axes. To understand this one needs to consider both the 

symmetry of the molecule and the intrinsic symmetry of the zfs tensors of the individual ions. 

Considering only 2nd order zfs, the Hamiltonian of a single MnIII ion possesses D2h symmetry, 

with three mutually orthogonal C2 axes. When the JT axes are parallel (θ = 0), the local z-axis of 

each MnIII coincides with the molecular C3 axis. The resultant zfs Hamiltonian then possesses 

C3 × C2 × Ci = C6h  symmetry (see Fig. 2a), requiring B4
3 = 0 ; the additional Ci symmetry arises 

from the time-reversal invariance of Eq. (1) that guarantees an identical spectrum upon inversion 

of the total field (or, in the classical limit, inversion of the total spin). In contrast, when the JT 

axes are tilted, the C2 and C3 axes do not coincide. The rotational symmetry then reduces to 

three-fold and, hence, B4
3Ô4

3  is allowed; the symmetry in this case is C3 × Ci = S6
 (see Fig. 2b). 
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The preceding arguments may be reinforced via group theoretic considerations without 

involving an exact expression of the Hamiltonian. When the external magnetic field is applied 

along the molecular z-axis, the C6h symmetry reduces to C6, and the 13 basis functions of the 

S = 6 Hilbert space fall into six distinct one-dimensional irreducible representations.17 By 

investigating how these basis functions behave under a C6 rotation, we can sort them as follows: 

|−6〉, |0〉, |+6〉 ∈ Γ1; |−2〉, |+4〉 ∈ Γ 2; |+2〉, |−4〉 ∈ Γ 3; |−3〉, |+3〉 ∈ Γ 4; |+1〉, |−5〉 ∈ Γ 5; |−1〉, |+5〉 ∈ 

Γ 6; where Γ 1… Γ 6 are the six irreducible representations following the Bethe notation.17 

Because the Hamiltonian operator belongs to the totally symmetric representation, m Ĥ m'  is 

non-zero only when m  and m'  belong to the same representation.18 As can be seen, such 

states have smΔ = 3n, with n even, which is the criterion for state mixing in C6 symmetry. 

When the symmetry of the zfs Hamiltonian is reduced to S6 (C3 upon application of B//z) the 

basis functions fall into three different irreducible representations: |0〉, |±3〉, |±6〉 ∈ Γ1; |+4〉, |+1〉, 

|−2〉, |−5〉 ∈ Γ2 and |+5〉, |+2〉, |−1〉, |−4〉 ∈ Γ3. Here, the selection rule for mixing is Δms = 3n , 

again in agreement with the above calculations. 

An important consequence of the preceding analysis is the demonstration of the existence 

of odd k QTM resonances, i.e., a quite realistic parameterization of Eq. (2) generates zfs terms in 

the GSA containing odd powers of Ŝ+  and Ŝ− . This dispels the notion that odd QTM 

resonances cannot be generated via zfs interactions.19 These ideas ought to apply quite generally, 

e.g., the disorder potential associated with the distortion of a symmetric molecule likely contains 

zfs terms (e.g. ) that unfreeze odd QTM resonances. It remains to be seen whether this can Ô4
3
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account for the absence of selection rules in SMMs such as Mn12.19 We note also that these 

arguments do not apply to zero-field (k = 0) QTM in half-integer spin systems, which is strictly 

forbidden according to Kramers’ theorem.8 

We conclude by focusing on the dependence of the tunneling gaps generated by Ô6
6  and 

Ô4
3  as a function of the transverse field (HT) and its orientation within the xy-plane. The 

influence of the former is rather straightforward: the C6h symmetry (see Fig. 2a) guarantees a 

six-fold azimuthal modulation of the tunneling gaps in all allowed resonances (not shown), 

regardless of whether a longitudinal field, HL (//z), is present; Ô6
6  also generates hexagonal 

Berry-phase interference (BPI) patterns (due to quenching of the tunneling6,9,10) upon rotation of 

HT within the xy-plane (not shown).  

By contrast, the influence of Ô4
3  is quite fascinating. In order to simplify the discussion, 

Figs. 2c and 3 were generated with B6
6 = 0. We first examine the dependence of Δ66 (k = 0) and 

Δ36 (k = 3) for a fixed value of HT (see Fig. 2c). As anticipated, Δ36 exhibits a three-fold 

modulation which rotates 60o upon inversion of HL (dashed curves), as required on the basis of 

the time-reversal invariance of Eq. (1), i.e., Δ36 is invariant to inversion of the total field. The 

figure does not convey the fact that it was also necessary to vary HL in order to exactly locate the 

gap minima, i.e., HT influences the exact HL locations of the resonances, a behavior that is well 

documented for k > 0 resonances observed for other SMMs. The corresponding modulation of HL 

also exhibits a three-fold pattern (not shown) for either polarity. 

The behavior of Δ66 is yet more intriguing. One might expect a six-fold behavior given 
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the requirement that the spectrum be invariant under inversion of HT. However, this assumes that 

HL = 0. In fact, application of a transverse field causes a shift of the k = 0 resonance away from 

HL = 0, as illustrated in Fig. 2d. Only a very weak modulation of Δ66 is observed upon rotation 

of a 0.2 T transverse field; the modulation pattern is indeed six-fold (solid curve in Fig. 2c). 

However, the corresponding modulation of HL exhibits a three-fold pattern (dotted and 

dash-dotted curves in Fig. 2c). One way to interpret this result is to view the  operator as 

generating an effective internal longitudinal field, HL
 *, under the action of an applied transverse 

field; HL
 *

 is then responsible for the shift of the k = 0 resonance from HL = 0. Indeed, one can 

see this from inspection of the form of the Ô4
3  = 1

2 Ŝz, Ŝ+
3 + Ŝ−

3⎡⎣ ⎤⎦( ) operator, which, unlike even-q 

interactions, contains an odd power of Ŝz , akin to the Zeeman interaction with H//z. An 

alternative view may be derived from the S6 surface depicted in Fig. 2b, where one sees that the 

hard/medium directions do not lie within the xy-plane, contrary to the case for the C6h surface in 

Fig. 2a (or quite generally for any even-q operator20). In other words, the classical hard plane is 

not flat, but corrugated with a 120o periodicity. Consequently, application of a longitudinal field 

is required in order to insure that the total field is within the hard plane when rotating HT. 

Finally, Fig. 3 shows the patterns of BPI minima for k = 0 (a) and k = 3 (b), generated 

purely from the B4
3Ô4

3  interaction. The k = 0 pattern in (a) is hexagonal. However, the polarity 

of the compensating longitudinal field, HL (represented by color and +/- symbols), alternates 

between successive minima. Therefore, on this basis, one concludes that the BPI minima exhibit 

a three-fold rotational symmetry. In contrast, the k = 3 BPI minima exhibit obvious trigonal 

Ô4
3
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patterns, regardless of the behavior of the compensating HL field. Observation of these BPI 

patterns in Mn3 is complicated by several factors, including strong avalanches6 and the existence 

of two molecular orientations (with parallel C3 axes);4,5 we note that it may be possible to select 

and study one species via hole-burning.21 The primary motivation for the present theoretical 

study is to stimulate future measurements on Mn3 or one of several other SMMs known to 

possess C3 symmetry.8 
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k n Δ GSA gap – Eq. (1) (K) MS gap – Eq. (2) (K) Ratio (GS/MS) 

Jahn-Teller axes parallel to the molecular z-axis 

0  2 33Δ  22.60 10−×  22.66 10−×  0.98 

0 4 66Δ  61.10 10−×  61.05 10−×  1.05 

2 2 42Δ  22.37 10−×  22.35 10−×  1.01 

Jahn-Teller axes tilted θ = 8.5o away from the molecular z-axis 

0 2 33Δ  22.76 10−×  22.91 10−×  0.95 

0 4 66Δ  61.26 10−×  61.25 10−×  1.01 

1 3 54Δ  54.68 10−×  54.19 10−×  1.12 

1 1 21Δ  26.33 10−×  26.31 10−×  1.00 

2 2 42Δ  22.45 10−×  22.61 10−×  0.94 

3 3 63Δ  8.66 ×10−5 57.53 10−×  1.15 

3 1 03Δ  11.76 10−×  11.76 10−×  1.00 

 

Table 1: Comparison of tunneling gaps obtained from the MS and GSA models for resonances k 

= 0, 1, 2 and 3, for the two cases θ = 0 (top) and θ = 8.5o  (bottom). 
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Figure captions 

Fig. 1. (color online) Zeeman diagram for a spin S = 6 multiplet with easy-axis anisotropy [D < 0 

in Eqn. (1)] and H//z. All possible non-zero tunneling gaps for C3 symmetry are labeled 

according to the scheme discussed in the main text. The inset shows the HT dependence of the 

odd-n tunneling gaps. 

 

Fig. 2. (color online) Potential energy surfaces corresponding to the Ô6
6  (a) and Ô4

3  (b) GSA 

operator equivalents. (c) k = 0 (solid curve) and k = 3 (dashed curves) ground state tunneling 

gaps as a function of the orientation of HT (= 0.2 T) within the xy-plane, calculated using Eqn. (1) 

with 6
6 0B = . The data have been normalized and offset to aid viewing: Δ 36  oscillates from 

3.65 to 3.90 × 10-6 K (~6%) and 66Δ  from 4.065 to 4.074 × 10-9 K (~0.2%). The inner curves 

correspond to the HL field (dotted ⇒ HL > 0, dash-dotted ⇒ HL < 0) needed to compensate for 

the shift of the k = 0 resonance upon application of HT as illustrated in (d): for HT = 0.2 T, HL 

oscillates about zero with an amplitude of 6.3×10−7 T and a three-fold (S6) periodicity. 

 

 

Fig. 3. (color online) Contour plots of 66Δ  (a) and Δ 36  (b) as a function of HT, calculated 

using Eqn. (1) with 6
6B  = 0. A compensating HL field was required in (a) that alternates between 

positive (+) and negative (-) values. Both figures display BPI minima (dark spots) that exhibit 

three-fold symmetry when the variation of HL is also taken into account. 
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Liu et al., Figure 1 

  



 

16 
 

 

 

Liu et al., Figure 2 
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Liu et al., Figure 3 


