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Structural and vibrational properties of α-MoO3 are studied employing two recently proposed
methodologies for incorporating van der Waals (vdW) contributions in density-functional-theory
(DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem. 27, 1787 (2006)] and
optB88 vdW-DFT [J. Klimes̆ et al., J. Phys.: Condens. Matter 22 022201 (2010)] methods are
shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional
DFT methods. Calculated vibrational frequencies agree with measurements to within 5 and 10
percent for modes involving bonded and non-bonded interactions in this compound, respectively.

The α-MoO3 compound is a layered oxide that has
attracted interest for a range of applications includ-
ing catalysis1, and cathode materials for lithium-ion
batteries2 and electrochemical supercapacitors3. As
shown in Fig. 1, the crystal structure of α-MoO3 is com-
posed of sheets of distorted, edge-shared MoO6 octahe-
dra. Each octahedron contains three symmetry-distinct
oxygen ions, which occupy 4c Wyckoff positions in the
Pbnm orthorhombic space group4. The MoO3 sheets are
stacked along the b lattice direction of the orthorhombic
unit cell, and are weakly bonded across a region com-
monly referred to as the ”van-der-Waals gap”.

Due to the technological interest in α-MoO3, it has
been the topic of several previous theoretical studies,
based on electronic density-functional theory (DFT)
within the local-density (LDA)5 and generalized-gradient
(GGA) approximations6, GGA plus Hubbard-U correc-
tions for onsite Coulomb interactions6, and Hartree-
Fock (HF) with a DFT-based correction for electron
correlation7. Theoretical calculations and X-Ray pho-
toemission experiments8, establish a mixed ionic and co-
valent character for the Mo-O bonding within the sheets,
characterized by a strong degree of hybridization between
Mo 4d and O 2p electrons9. The interactions between the
MoO3 sheets are governed by both electrostatic and van
der Waals (vdW) contributions as discussed in Ref. 10.

Due to the fact that vdW interactions are not accu-
rately described by traditional GGA and LDA calcula-
tions, the equilibrium spacing between the MoO3 sheets
is not accurately predicted by these methods (see be-
low). For studies of the electronic-structure and bonding
properties of α-MoO3, a practical solution to this prob-
lem has been to fix the b lattice constant at the exper-
imentally measured value6,8. This approach is not fea-
sible, however, for computational studies of defects and
processes where large variations in the interlayer spac-
ing may arise. An example is lithium-ion intercalation,
where variations in Li content are coupled with large ex-
pansions in the interlayer spacing11. For applications of
this type, a method with computational efficiency com-
parable to DFT is required, which accurately character-

FIG. 1. (Color Online) Structure of the orthorhombic α-
MoO3 compound. (a) Mo (purple) and O (red) octahedra
are illustrated, as well as the vdW gap (green layer). (b)
Symmetry-distinct oxygen ions in the MoO6 octahedron are
labeled O1, O2 and O3. (c) The conventional unit cell.

izes both the equilibrium bond lengths and bond stiff-
nesses of the host α-MoO3 compound. In the present
work we assess the accuracy of recently proposed vdW
corrected DFT-based methods for this purpose, through
a comparison between theoretical results and experimen-
tal measurements for equilibrium lattice constants, bond
lengths and vibrational frequencies.

Several approaches have been developed for describ-
ing van der Waals interactions within the framework of
DFT12. In the present work we focus on two classes
of approaches that feature computational requirements
comparable to traditional DFT methods. The first is
the DFT-D approach13, in which the contribution to
the totally energy associated with dispersion interac-
tions is described by a classical pair potential with the
Cij/R

6
ij form. Three generations of the method have

been developed14, using different approaches for calcu-
lating the Cij coefficients. The first uses an average of
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empirical coefficients from different hybridization states
for each atom, while in the second (DFT-D2), the PBE0
hybrid method15 is used to obtain atomic ionization en-
ergies and polarizabilities in the determination of Cij . In
both methods these coefficients are obtained from mix-
ing rules, using values tabulated in terms of the chemical
identity of the atoms i and j alone. The DFT-D3 method
makes use of time-dependent DFT14 to calculate the Cij

coefficients through the averaged dipole polarizability as
a function of frequency. Furthermore, it interpolates be-
tween results for different local environments to capture
differences due to bonding geometry. In this method the
Cij coefficients are derived taking into account structural
information as well as the chemical identity of the atoms.

The second class of approaches considered in this work
is the so-called van der Waals density functionals (vdW-
DF)18, in which the vdW contribution to the total en-
ergy is described through modifications to the corre-
lation energy functional within DFT. Specifically, the
DFT exchange-correlation functional is divided into three
parts: Exc = Elc + Enl + Ex, where Elc is a local corre-
lation energy described within the local density approxi-
mation, Enl is the nonlocal correlation energy, and Ex is
a semi-local exchange functional. The Enl contribution
is given by the integral: Enl = 1

2

∫
drdr’n(r)φ(r, r’)n(r’),

over electron densities, n at r and r’ , multiplied by an
integration kernel, φ, which is derived from the adiabatic-
connection theorem through a series of approximations18.
We consider three different exchange functionals for use
with the vdW-DF approach, as reported in the literature.
These are revPBE as in the original vdW-DF18, PW86 as
in vdW-DF219, and optB8820, a new exchange functional
based on the B88 exchange functional21. RevPBE and
optB88 are both paired with the same Enl, while the Enl

used with PW86 has a changed parameter which relates
how the length scale in Enl is set by a corresponding
GGA calculation. In vdW-DF2 and vdW-DF this pa-
rameter comes from energy expansions appropriate for
molecules or a slowly varying electron gas, respectively.

All the calculations performed in this work made use
of the projector-augmented-wave (PAW) method22, as
implemented in the Vienna ab initio simulation pack-
age (VASP)23. The wavefunctions were expanded in a
plane wave basis with an energy cutoff of 600 eV. For
calculations of the structure of the MoO3 compound
we made use of the orthorhombic unit cell shown in
Fig. 1(c), and sampled the Brillouin zone employing
a 7×5×7 mesh, using the Methfessel-Paxton scheme24

with a smearing width of 0.1 eV. The PAW potentials
employed in this work are those labeled “Mo” and “O”
in the VASP PAW-PBE library. Internal coordinates
were relaxed until energy and atomic forces converged to
within 0.01 meV/atom and 0.005 eV Å−1, respectively.
The equilibrium lattice parameters were computed us-
ing conjugate-gradient minimization with the calculated
stress tensors. Vibrational frequencies were obtained
from a frozen-phonon approach. Based on several numer-
ical tests the convergence of the results presented below

TABLE I. A comparison of lattice constants (in the unit of
Å) of α-MoO3 calculated in the current and previous calcula-
tions, and measured experimentally. The asterisk superscript
denotes calculated results where the b lattice parameter was
fixed at the experimentally measured value.

Method a b c

DFT

LDA5 3.729 13.036 3.478

PW916 3.965 14.673 3.721

HF7 3.910 14.271 3.680

PBE∗8 4.023 13.855 3.755

DFT-D DFT-D2 3.931 13.881 3.711

vdW-DF
vdW-DF 4.054 14.855 3.728

vdW-DF2 4.043 14.691 3.753

optB88 3.941 14.078 3.732

Exp
Ref. 28 (T=300 K) 3.962 13.860 3.697

Ref. 29 (T=300 K) 3.963 13.865 3.693

Ref. 29 (T → 0 K) 3.958 13.750 3.700

is estimated to be 0.02Å for a and c, 0.05Å for b, and
within 6 % for the vibrational frequencies.

For the DFT-D calculations we employed the D2
method, with values of the dispersion coefficients (Cij)
given in Ref. 25, and a value of s6 = 0.75. We also ex-
plored a modification of the DFT-D2 method, in which
we employed Grimme’s DFT-D3 codes14 to calculate the
Cij coefficients, based on the experimentally-determined
geometry of the α-MoO3 compound. These coefficients
were then used in the VASP DFT-D2 implementation
with s6 = 1 as in DFT-D3 for the n = 6 two body
interaction14. This modified DFT-D2 method led to a
decreased level of agreement with experiment relative to
the original D2 method and will not be discussed further.
In the vdW-DF calculations we employed the VASP im-
plementation developed by Klimes̆ et al.26, which makes
use of an algorithm for efficiently evaluating the integral
for Enl due to Pérez and Soler27.

Table I compares the current results for the equilib-
rium lattice constants with those obtained by DFT-based
approaches in previous calculations and experimental
measurements. The temperature-dependent experimen-
tal data reported in Ref. 29 shows an anomalously large
thermal expansion coefficient for the b lattice parame-
ter. In what follows, we will therefore assess the level
of agreement between experiment and theory using the
extrapolations of the measured lattice constant values to
zero temperature presenting in Ref. 29. The LDA results,
taken from Ref. 5, feature theoretical lattice constants
that are smaller than these measured values by 6 per-
cent for a and c, and about 5 percent for b, respectively.
For calculations where the value of the b lattice constant
is unconstrained, it is seen that GGA (PW91) predicts
values for a and c that agree to within 1 percent of the
measured values, while the calculated b lattice constant is
roughly 7 percent larger. The Hartree-Fock based results
from Ref. 7 give values that are 1 and 0.5 percent smaller
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TABLE II. Calculated Mo-O bond lengths (in units of Å) ob-
tained by the DFT-D2 and optB88 methods are compared
with previous calculations and experimental results. The la-
beling of the bonds in the first column corresponds to the
notation introduced in Fig. 1(c).

DFT-D2 optB88 PBE8 Exp28 Exp29

dMo-O1 1.702 1.705 1.703 1.68 1.63

dMo-O2 1.771 1.778 1.761 1.74 1.74

d∗
Mo-O2 2.187 2.188 2.278 2.25 2.24

dMo-O3 1.954 1.964 1.975 1.95 1.96

d∗
Mo-O3 2.397 2.394 2.340 2.31 2.30

than measured values for a and c, and 4 percent larger
for b, respectively. Thus, the previous LDA, GGA and
HF calculations give rise to predictions for the interlayer
spacing that are accurate to no better than 4 percent in
comparison with experimental measurements.

We consider next the vdW-corrected DFT results ob-
tained here. The PBE-based DFT-D2 method is seen to
provide an excellent level of agreement with experiment
for each of the three lattice constants, with the calcu-
lated values being 0.5 percent larger for a, 0.3 percent
larger for c, and 1 percent larger for b. The vdW-DF
results are found to vary significantly between the orig-
inal vdW-DF implementation, and the vdW-DF2 and
optB88 parametrizations. The original vdW-DF func-
tional gives lattice constants that are uniformly larger
than the measured values, by 1, 4 and 0.7 percent for a,
b and c, respectively. The vdW-DF2 approach leads to a
slightly worse prediction for each of the lattice constants
relative to the original vdW-DF. Of the three vdW-DFs
considered in this work, the best level of agreement be-
tween experiment and calculations is obtained with the
optB88 functional. This approach gives rise to predic-
tions for a and c within 0.8 percent of measurements,
and the b lattice constant is 2 percent larger than the ex-
perimental value. The improved accuracy of the optB88
functional obtained here for α-MoO3 is similar to that
found for metallic, covalent and ionically bonded solids in
Ref. 26, where the improvements of the optB88 functional
for solids relative to the original vdW-DF and vdW-DF2
methods is attributed to a smaller exchange enchance-
ment factor for small reduced gradients.

Overall, the best level of agreement between experi-
ment and theory for the lattice constants is obtained with
the DFT-D2 and optB88 vdw-DF methods. In what fol-
lows we further assess the accuracy of these two methods,
focusing on results for bond lengths and vibrational fre-
quencies. Table II lists the bond lengths obtained from
the present calculations, previous calculations8, and ex-
perimental measurements. The results obtained by the
DFT-D2 and vdW-DF methods show excellent agree-
ment with available experimental data, as well as pre-
vious PBE calculations, with the exception of d∗

Mo−O2

and d∗
Mo−O3

where the vdW-corrected calculations are

TABLE III. Experimentally measured vibrational frequencies
(in units of cm−1) in α-MoO3 are compared to calculated re-
sults obtained with the DFT-D2 and optB88 methods. The
first three rows list the Mo-O bonding stretching vibrations
and the next two the interlayer interaction vibration frequen-
cies. The labels for the modes are taken from Ref. 30.

Symmetry Assignment DFT-D2 optB88 Exp31 Exp30 Exp31

A1g vO=Mo 1006 996 996 - -

B1g vOMo2 801 796 820 - -

B3g vOMo3 640 632 666 - -

B2u Lattice 54 63 - 58 53

B3u modes 50 42 - 46 44

smaller and larger than measurements by approximately
0.06 and 0.09 Å, respectively.

We consider next a comparison of calculated and ex-
perimentally measured vibrational frequencies. A com-
parison between the present calculations and measured
values for the frequencies of the infrared and Raman-
active modes presented in Ref. 32 shows average agree-
ment at the level of 3 percent for both DFT-D2 and
optB88 methods. In Table III we give representative
comparisons for the stretching modes of Mo-O bonds
(first three rows), as well as the modes illustrated in
Fig. 2, involving O-O bonds across the vdW gap. As
shown in Table III, the DFT-D2 method overestimates
the frequency of the Mo-O1 stretching mode by about 1
percent, while giving predicted values of the Mo-O2 and
Mo-O3 stretching modes that are about 3 percent smaller
than measurements. In comparison, the optB88 method
gives rise to predictions of Mo-O1 stretching mode which
is in good agreement with the most recent experiment31,
and the Mo-O2 and Mo-O3 stretching modes are about
3 and 5 percent smaller than the experimental observa-
tions, respectively. Similar calculations have been per-
formed within the GGA+U framework6, where calcu-
lated frequencies for the three Mo-O stretching modes
are reported as 1023, 898 and 711 cm−1, respectively.

FIG. 2. (Color Online) Two typical low-frequency vibration
modes for α-MoO3 between adjacent layers: (a) Lattice Mode
(B2u) and (b) Rigid Layer Mode (B3u).

The strength of the non-bonded interactions between
the sheets can be assessed through the frequencies of the
two modes illustrated in Fig. 2. These are referred to
as the lattice mode (B2u) and rigid-layer mode (B3u) by
Py and Maschke30. The lattice mode has partial shear
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character, but the rigid-layer mode involves only relative
displacements that are normal to the vdW gap. Both
modes probe the strength of the force constants between
ions spanning the vdW gap. The computed vibrational
frequencies based on DFT-D2 and optB88 methods are
shown in Table III to agree with experimental measure-
ments to within 10 percent30,31. This is an encourag-
ing level of accuracy, suggesting that the DFT-D2 and
optB88 methods represent reasonably well the competi-
tion between electrostatic and vdW forces underlying the
interatomic interactions across the vdW gap in α-MoO3.

To demonstrate the utility of the vdW-corrected DFT
approaches more broadly, we end with results for the
effect of Li-ion intercalation on the lattice constants in
α-MoO3. Li-ion intercalation into the vdW gap of α-
MoO3 leads to a pronounced expansion of the b lattice
constant11, which can be sufficient to cause fracture of
the host material. An important parameter for mod-
eling such phenomena is the solute expansion coefficient
α ≡ ∂ln b/∂x, where x is the mole fraction of Li ions. Us-
ing the DFT-D2 and optB88 methods, we obtain α =0.66
and 0.7, respectively. We emphasize that the calculation
of intercalation-induced strains requires a method such
as the vdW-corrected DFT methods considered here,
which accurately describe the equilibrium bond lengths
and force constants across the vdW gap.

In summary, vdW-corrected DFT methods have been
applied to the calculation of the structure and vibrational
frequencies of the α-MoO3 compound. The DFT-D2 and
optB88 methods yield calculated lattice parameters and
bond lengths that agree with experimental measurements
to within 0.8 and 1.6 percent, respectively. The calcu-
lated frequencies for stretching of Mo-O bonds agree with
experimental measurements to within 5 percent, and for
the modes that probe the force constants across the vdW
gap the frequencies are predicted with an accuracy of ap-
proximately ten percent. The present results show an
encouraging level of accuracy in the application of vdW-
corrected DFT methods for characterizing both bonded
and non-bonded interatomic interactions in α-MoO3.
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