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Dissipation in a nano-mechanical resonator under the application of a nearly uniform strain field
is investigated using Molecular Dynamics (MD) simulations. Under the application of a uniform
strain field and in the frequency range studied, we expect Akhiezer damping to be the dominant
loss mechanism. The scaling of energy dissipation rate with frequency for the bulk case and a finite
sized nanostructure are studied and the results are explained by Akhiezer damping. The size effect
on the dissipation rate is also investigated. The results show a significant role of the surface on the
dissipation rate. An increase in the Q factor with a decrease in thickness of the structure is observed
for a certain range. Below some critical thickness, the trend reverses indicating multiple roles of the
surface contributing to the dissipation process.
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I. INTRODUCTION

Nano-resonators, with high resonant frequencies, find a variety of applications such as mass detectors for chemical
and biological sensing1, transducers, etc. Experimental studies have demonstrated that atomic scale resolution can
be achieved with these mass sensors2. The sensitivity of these mass sensors is limited by the quality factor3 Q, which
is defined as the ratio of the energy stored to the energy lost per unit period. A high Q factor or low dissipation
rate is required for the high sensitivity of these inertial sensors. Dissipation plays an important role in the stability
of nanoelectromechanical systems (NEMS)4. The Q factor is a design parameter required for predicting the dynamic
pull-in voltage of NEMS switches5.
The loss of energy in a mechanical resonator can result from different processes which can be classified into intrinsic

and extrinsic dissipation mechanisms. Fluid damping6 and clamping losses7,8 are two important extrinsic dissipation
mechanisms in a nano-resonator. In the case of an intrinsic dissipation mechanism, the ordered mechanical energy is
transformed into the disordered internal energy of the system. Thermo-elastic dissipation (TED)9–11 and Akhiezer
damping12 are two known intrinsic dissipation mechanisms in a single crystal structure. TED takes place due to the
spatial variation of the strain field in a structure, which results in a temperature gradient and, hence, heat flow leading
to entropy generation. The Q factor due to TED is given as9

Q−1 =
α2ET

Cv

ωτtd
1 + (ωτtd)2

, (1)

where Cv is the specific heat capacity at constant volume, α is the coefficient of thermal expansion, E is the Young’s
modulus, ω is the angular frequency of oscillation, T is the mean temperature and τtd is the thermal diffusion time.

For a temperature gradient developed across a width, w, in a material with thermal conductivity, κ, τtd = w2Cv

π2κ
.

TED, apart from depending on the material properties, therefore also depends on the length scale across which the
temperature gradient is developed.
Akhiezer damping takes place as a result of heat flow between different phonon modes. The applied strain field

modulates the frequency of the thermal phonons. The strength of coupling between the strain field and the phonon
modes varies and is given by a mode dependent Grüneisen parameter, which is a measure of the change in frequency
of each mode with applied strain. The applied deformation, therefore, results in a temperature difference between
different phonon modes, and each of them then tends to relax towards the mean temperature value. This results in
an intra mode heat flow and, hence, entropy generation leading to dissipation. While TED depends on the applied
strain field, Akhiezer damping rate is a more fundamental property of the system. Under the application of a uniform
strain field, and in the absence of any additional mechanism of dissipation, the damping rate in a structure will be
governed by the Akhiezer mechanism.
Since the original work of Akhiezer12 the absorption of acoustic waves by Akhiezer mechanism has been the subject of

extensive research. Bommel and Dransfeld15 developed an expression for attenuation of elastic waves by assuming that
the dominant heat flow takes place between two phonon branches. Woodruff and Ehrenreich16 derived an expression
for damping of elastic waves by solving the Boltzmann transport equation. Mason and Bateman17 introduced a
non-linearity parameter, D, for the attenuation coefficient due to Akhiezer damping and found good agreement with
the experimental results for silicon and germanium. The theories developed in these works have been applied to a
number of other experimental works18,19 wherein it has been demonstrated that the Akhiezer mechanism becomes
particularly important when the time scale of oscillation becomes comparable to the phonon relaxation time, τph−ph.
A metric for assessing the strength of this mechanism is the ωτph−ph value. The mechanism plays an important role
for the absorption of acoustic waves in the ultrasonic and the hypersonic regime.
The angular frequency of oscillation of the fundamental longitudinal mode, ωl, of a beam is given as

ωl =

√

E

ρ

π

2L
, (2)

where ρ is the mass density and L is the length of the beam. For L of the order of few nanometers, frequency in the
range of tens of GHz is obtained. The phonon relaxation time is generally of the order of few picoseconds. Thus, for
beams with dimension in the range of nanometers, ωτph−ph will be of the order of 10−2. The Q factor due to Akhiezer
mechanism scales as15

Q−1
∝

ωτph−ph

1 + (ωτph−ph)2
. (3)

Q attains a minimum value, Qmin, for ωτph−ph = 1. For ωτph−ph of the order of 10−2, Q
Qmin

is of the order of 102 and

one expects the Akhiezer damping to be an important loss mechanism at such length scales.
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A number of experimental as well as theoretical work20,21 have been carried out to elucidate the dissipation mech-
anisms in a nano-structure. These works have provided insight into the different possible dynamics operating at the
nano-scale. Kiselev et al.22 solved the Boltzmann transport equation and studied the relative importance of TED
and Akhiezer damping in a nano−beam under flexure. The analysis, however, did not take into consideration the
variation in material properties with size. For example, the value of τph−ph was assumed to be the same for all sizes.
Further attempts to isolate and study the role of individual dissipation dynamics at such small length scales have not
been made. A more general study of the role of surface on individual dissipation mechanism is therefore lacking and
we attempt to make some effort in this direction.
In this work we employ classical molecular dynamics (MD) to understand Akhiezer dynamics in nano-structures.

The other known dissipation mechanism, namely TED, is eliminated by applying a nearly uniform strain field. It
is worth pointing out that additional mechanisms, such as the surface dissipation, may also be present and mask
the dynamics that would have resulted solely from Akhiezer damping. Attempts have not been made to isolate such
effects. In section II, we review the dynamics of a beam under longitudinal vibration and present a case of a nearly
linear displacement profile. In section III, we describe the MD set-up to study the vibration of a nickel nanostructure,
using the idea of section II to attain the desired objective. In section IV the results are summarized, and conclusions
are given in section V.

II. BEAM DYNAMICS

The equation of motion for the displacement profile, u(x, t), of a purely elastic beam in longitudinal vibration is
given by

E
∂2u(x, t)

∂x2
+ ρ

∂2u(x, t)

∂t2
= f(x, t), (4)

where f(x, t) is the applied force. A periodic load, f(x, t) = F0δ(x − L)cos(ωt), is applied at the end where F0 is
the magnitude of the applied load and δ(x) is the Dirac delta function. The solution of Eqn (4) for such a case is

obtained as u(x, t) = Amsin( πx
2L0

)cos(ωt). Am is a measure of the amplitude of oscillation and L0 = π
2ω

√

E
ρ
. The

physical interpretation of L0 is that it corresponds to the length of an imaginary beam which has the same material
properties as stated above and for which the angular frequency of the fundamental longitudinal mode is equal to ω.
Under the condition that L is sufficiently smaller than L0, u(x, t) can be approximated as

u(x, t) = Amsin

(

πx

2L0

)

cos(ωt)≈Am

πx

2L0
cos(ωt). (5)

This results in a linear displacement profile with a uniform strain field. The amplitude of oscillation at the end of
beam, A, is then given as, A = Am

πL
2L0

. The elastic energy, U , stored in the beam is given as

U =

∫ L

0

1

2
SE

(

∂u

∂x

)2

dx, (6)

where S is the cross-sectional area of the beam.
For a linear displacement profile, U is obtained as

U =
1

2
kA2, (7)

where k is the effective stiffness of the beam and is given as k = ES
L
.

III. SIMULATION SET-UP

A nickel structure was generated by arranging atoms on an fcc lattice with a lattice spacing of 3.5374 Å. A schematic
of the simulation set-up is illustrated in Figure 1. 20 unit cells, corresponding to a length of 7.07 nm, were taken in
the longitudinal [1 0 0 ] direction while the cross-section area was varied from 3.53 × 3.53 nm2 to 7.07 × 7.07 nm2

for different studies. All atoms within one unit cell from the left end were fixed by setting the forces on them to be
zero. This corresponds to a clamped boundary condition. The embedded atom method (EAM) potential13 was used
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to model the force field. Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)14 was used for all
MD simulations. The structure was equilibrated at 300 K using a Nosé-Hoover thermostat with a time constant of
0.1 ps. A time step of 1 fs was used for the entire simulation. After equilibration of the structure for 2 ns, a periodic
force was applied to the atoms on the right longitudinal edge in the x- direction. The system was further evolved as
a canonical (NVT) ensemble for a simulation time of 30 ns.

FIG. 1. A schematic of the simulation set-up.

For a perfectly elastic structure, the mean displacement of the end atoms would be in phase with the applied
periodic force. However, because of dissipation, a phase lag exists between the applied force and the response. The
work done by the applied force per unit period is a measure of the energy dissipation rate. In an isolated system
(microcanonical ensemble) this work would result in an increase in the internal energy, and hence the temperature, of
the system. For a system evolved as canonical ensemble, the thermal bath takes away the excess energy and keeps the
mean temperature constant. The energy dissipated per unit period, Ediss, is equal to the work done by the external
force and is given as

Ediss =
ω

2πTf

∫ Tf

0

∑

ne

f0 cos(ωt)vxdt, (8)

where f0 is the magnitude of the applied force on each of the end atom, vx is the x- component of the velocity, Tf is
the total time for which the force is applied and ne is the number of atoms at the end on which the external force is
applied. F0 is related to f0 as F0 = nef0. We neglected an initial transient of 2 ns from the time the external force
was imposed for computing the energy dissipation rate. In order to compute the energy stored the Fourier transform
of the x- component of the center of mass displacement of the edge atoms was taken. The Fourier transform showed a
dominant peak corresponding to the frequency of the applied force. The amplitude of oscillation was computed from
the peak magnitude as

A = max(abs(FFT (xdata)))/(2×ndata), (9)

where xdata is the time series data of the center of mass of edge atoms and ndata is the number of data points.
The effective stiffness of the structure was determined using a separate equilibrium simulation. After an initial

equilibration at 300 K for 2 ns, a static force was applied on the end atoms. The structure was relaxed for 1 ns, the
length value corresponding to the applied force was then computed using the data obtained for a subsequent time
of 1.5 ns. The force magnitude was then increased and the procedure described above was followed to compute the
new relaxed length for the increased applied force value. This was repeated with subsequent force increments and the
length value was obtained for different magnitude of the applied force. The slope of the force−displacement curve
gives the value of k.
The energy stored, Estored, was then computed as

Estored =
1

2
kA2. (10)

The Q factor is then given as

Q = 2π
Estored

Ediss

. (11)
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IV. RESULTS AND DISCUSSION

We first studied the frequency dependence of Q factor for the bulk case. The bulk case was simulated by imposing
periodic boundary condition in the lateral direction. A size independence for a simulation domain with cross-sectional
area larger than 3.53× 3.53 nm2 was observed. Figure 2(a) shows the plot of Q factor vs frequency as obtained for
the bulk case. The Q factor decreases and, hence, the dissipation rate increases with the increase in frequency.
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FIG. 2. (a) Q factor vs frequency for 7.07 nm × 4.24 nm × 4.24 nm nickel structure with periodic boundary condition in the
lateral directions. (b) The relaxation relation for the bulk case is illustrated by this plot.
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Under the single mode relaxation time approximation, the Q factor for Akhiezer damping is given as15

Q−1 =
CpTλ

2
av

ρv2
ωτph−ph

1 + (ωτph−ph)2
, (12)

where v is the sound velocity, Cp is the specific heat capacity at constant pressure, λav is the mean value of the
Grüneisen parameter, ω is the angular frequency of the applied strain field and τph−ph is a measure of the phonon
energy mean transfer time. Eqn (12) states that, for ωτph−ph ≤ 1, Q factor decreases with the increase in frequency.
The phonon relaxation time is generally of the order of few picoseconds, and the above inequality is valid if the
frequency is of the order of few GHz. Eqn (12) can be further recasted as

Qω = mω2 + c, (13)

where m =
ρτph−phv

2

CpTλ2
av

and c = m
τ2

ph−ph

. Eqn (13) states that Qω and ω2 have a linear relationship. Figure 2(b) shows

the plot of Qω vs ω2 as obtained for the bulk case and a linear dependence between Qω and ω2 is observed. The
slope and the intercept of the linear fit were used to compute the τph−ph value which was estimated to be 1.72 ps.
Different studies have estimated different values of τph−ph. According to Bommel and Dransfeld15, the value of

τph−ph should be taken to be same as that of the thermal relaxation time, τth, given as

τth =
3κ

Cvv2
. (14)

Mason and Bateman17 used a value of τph−ph = 2τth for longitudinal mode and obtained very good agreement with
the experimental data. Heino and Ristolainen23 computed phonon mean free path, l, and v for nickel using MD,
although they used a different version of the EAM potential to model the force field. Making use of τth = l

v
and using

the data given by Heino and Ristolainen,23 the value of τth comes out to be 0.96 ps. The ratio
τph−ph

τth
= 1.8, it then

follows that the relation given by Mason and Bateman17 holds more applicable for our case.
Phonon relaxation time can also be computed by taking the correlation of the mode potential or kinetic energy24.

20× 10× 10 unit cells of nickel with periodic boundary condition in all directions was used. The relaxation time for
phonons in the direction of 20 unit cells, which corresponded to [1 0 0] direction in a fcc lattice structure, is computed
at 300 K. A phonon is a propagating wave for which the mode shape is given as

~up(~x, t) = ~P exp(i~k.~x)exp(iω0t), (15)

where ~x is the position vector of each atom, ~up is the displacement from the mean position, ~k is the wave vector,

ω0 is the phonon frequency and ~P is the polarization vector. ~k is given by the boundary condition. For a given

value of ~k one can construct a force constant matrix26 using second-order derivative of the potential function, the

eigen vectors of the force constant matrix then give ~P and the eigen values scaled with atomic mass give ω2
0 .

~k and
~P completely characterize a mode shape. MD displacement and velocity are then projected on the mode shape to
get the mode displacement, dm, and the mode velocity, vm. The mode kinetic energy, Kem, is then computed as
Kem = 1

2mv2m. The correlation function of Kem was taken to estimate the decay rate. Figure 3 shows the relaxation
time for the transverse and longitudinal phonons as obtained for the bulk case. The phonon density of states (PDOS)
was computed by taking the FFT of the function C(t)25 given as

C(t) =
1

natoms

〈

∑

natoms

~vi(t0).~vi(t0 + t)

〉

, (16)

where natoms is the total number of atoms and ~vi(t) is the velocity vector of the ith atom obtained from MD. Figure
4 shows the PDOS obtained for the bulk case using MD. The PDOS has two peaks. The peak at around 6 THz
corresponds to the transverse mode while the peak near 9 THz corresponds to the longitudinal mode. At 5.73 GHz
the transverse mode has a relaxation time of 2.97 ps and at 8.8 GHz the longitudinal mode has a relaxation time
of 0.78 ps, the mean of these two values comes to be 1.875 ps which is comparable to the phonon relaxation time
estimated from Q vs ω scaling.
The scaling of Q factor with ω was then studied for the finite sized case. A free surface boundary condition was

imposed in the lateral direction. We considered three different cases, each of them having a length of 7.1 nm in the
longitudinal direction, and with cross-sectional areas as 3.53× 3.53 nm2, 5.29× 5.29 nm2 and 7.07× 7.07 nm2. Figure
5 shows the plot of Q vs frequency for the three cases. For all the sizes the dissipation rate was found to increase
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FIG. 3. (a) Longitudinal phonon relaxation time for bulk nickel in [1 0 0 ] direction. (b) Transverse phonon relaxation time
for bulk nickel in the [1 0 0 ] direction.
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FIG. 4. Phonon density of states for bulk nickel.

with the increase in the frequency. The plot also shows a Q = Bω−1 curve, with B obtained using the least square
fit from the data points. For the case of cross-sectional area of 7.1 × 7.1 nm2, the Q value closely follows the Bω−1

curve. For the smallest size, the MD data and the inverse relationship became slightly deviant. Further, for all three
cases, a linear dependence between Qω and ω2, as has been observed for the bulk case, was not seen.

The Q vs ω relation, as stated in Eqn (12), was derived by Bommel and Dransfeld15 under the assumption that
Grüneisen parameter for a given phonon branch is independent of frequency and two phonon groups are present.
This is applicable for a bulk structure for which only the longitudinal and transverse modes are present. In a low
dimensional structure, such as a nanowire, the presence of a surface splits the phonon spectrum into sub-band27,28.
The assumptions used in deriving Eqn (12) are, therefore, not applicable for nano-structures. A linear dependence
between Qω and ω2 is, therefore, not observed in the case of free surface boundary condition.

Under the approximation ωτph−ph ≤ 1 , Woodruff and Ehrenreich16 derived an expression for damping of elastic
waves by solving the Boltzmann transport equation. An expression for the attenuation coefficient, αt, was obtained
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FIG. 5. (a) Q factor vs frequency for 7.1× 7.1 nm2 nickel nano−structure. (b) Q factor vs frequency for 5.1× 5.1 nm2 nickel
nano−structure. (c) Q factor vs frequency for 3.5 × 3.5 nm2 nickel nano−structure.

as

αt = β
ω2T

ρv2

∑

q,j

τ(q, j)λ2(q, j)C(q, j), (17)

where β is a numerical coefficient, τ(q, j), λ(q, j) and C(q, j) are the relaxation time, the Grüneisen parameter and
specific heat capacity of the phonon branch labelled as q, j. Q is related to αt as Q = ω

2αt
and, hence, Eqn (17) shows

that Q scales as ω−1. This explains the trend as has been observed for the case of 7.1× 7.1 nm2 cross-sectional area.
We studied the size dependence of Q factor for a fixed frequency of 25 GHz. The cross-sectional area was varied

from 12.51 nm2 to 50.41 nm2. Figure 6 shows that the Q factor first shows an improvement with the decrease in size
and then drops below some critical size. This trend in the variation of Q factor with size indicates the role of different
competing factors.
The initial decrease in the dissipation rate with the decrease in size can be explained by the role of surface on the

ensemble of thermal phonons. Akhiezer damping takes place as a result of the modulation of thermal phonons with
the applied strain field. The strain field disturbs the equilibrium of the thermal phonons which then relax towards
equilibrium with a finite relaxation time. Faster relaxation of phonons towards thermal equilibrium would decrease
the lag between the stress and the strain and would result in a lower dissipation rate. A manifestation of this effect
was observed by Harding and Wilks29 who found that the attenuation of sound in liquid helium decreased by the
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FIG. 6. Variation of Q factor with cross-sectional area for square nickel beam with a length of 7.1 nm at 25 GHz.

addition of small amount of 3He impurity. The presence of surfaces act as an additional scattering mechanism30 and
reduces the relaxation time of thermal phonons in nano-structures. Such an effect has been studied before and has
been accounted for as a reason for the decrease in the thermal conductivity of nanowires31.
The phonon relaxation time for a finite sized case was computed using the method described by McGaughey and

Kaviany24. A nickel structure with 20 × 12 × 12 unit cells (7.1 nm × 4.24 nm × 4.24 nm) was used with a periodic
boundary condition in the direction of 20 unit cells and a free surface boundary condition in the other directions.
Computing the phonon relaxation time in this case would entail using the eigen modes for the one-dimensional
structure. The mode shapes were computed using the method described before for the case of bulk system. For
large wave vectors, the bulk modes corresponded to the eigen modes of the structure considered. This was evident
from the correlation function of the mode potential or kinetic energy which showed a dominant single frequency. The
relaxation time was computed only for large wave vectors for which the eigen modes are sufficiently given by the bulk
mode shapes. Figure 7 shows the plot of relaxation time for longitudinal phonons as obtained for the finite sized
case. The bulk values are also plotted for comparison. For the higher frequency values both the finite structure and
bulk have similar relaxation time. In this case, the relaxation is dominated by the Umklapp process. The relaxation
time deviates with the decrease in frequency, with the finite size case having a lower value. The presence of surfaces
therefore reduces the mean phonon relaxation time.
The autocorrelation function, S(t), of the heat current vector, ~q(t), can be used to estimate phonon mean relaxation

times32. For a fcc crystal S(t) shows a two stage decay. A bi-exponential fit of S(t) gives two relaxation times33.
The relaxation time with the smaller value is the mean life time of short wavelength phonons, τsp. Physically, τsp
corresponds to the time an atom takes to transfer energy to its neighboring atoms. The second relaxation time
obtained from the bi-exponential fit is the long wavelength phonons mean life time, τlp.
τsp and τlp values were estimated for nickel nano-wires of varying cross-sectional area. Periodic boundary condition

was used in the longitudinal direction while free surface boundary condition was used otherwise. S(t) was computed
by taking the auto-correlaton of the component of ~q(t) in the longitudinal direction. A total simulation time of 6 ns
was used to compute S(t). The bi-exponential fitting was done on the values of S(t) for a period of 5 ps. τsp was
estimated to be of the order of few femtoseconds. For the frequency range under consideration this time scale is not
of importance and hence was not considered for analysis. Figure 8 shows the τlp values for different cross-sectional
areas. The plot shows that τlp decreases with the decrease in size. This decrease in τlp value with the decrease in size
is expected to govern the Q factor variation for larger sizes. For Akhiezer mechanism, dissipation rate and relaxation
time have a direct relationship and, hence, the dissipation rate initially decreases with the decrease in size.
The surface atoms, because of lower coordination number, have intrinsic properties which are different from the

bulk atoms. The increasing role of surface atoms, with the increase in surface to volume ratio, results in change in
the properties of a nano-structure. The length scale at which such an effect becomes important is of the order of few
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FIG. 7. Relaxation time for longitudinal phonons in nickel nanowire and its comparison with bulk value.
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FIG. 8. Variation of the long wavelength phonons mean relaxation time, τlp, with size.

nanometers. The magnitude of this length scale depends on the material property of interest and the nature of the
material itself. For example, the Young’s modulus of a silicon nanowire drops sharply below a cross-section area of
10 nm2 35.
The physical origin of the Akhiezer damping mechanism lies in the flow of heat current between different phonon

modes. The flow of heat takes place due to the difference in λ(q, j) values between different modes, with λ(q, j) being
a measure of the change in temperature of each mode when strained adiabatically. The higher is the difference in the
λ(q, j) value for different modes, the higher will be the temperature difference. This effect on the dissipation rate is
quantified by a non-linearity parameter,17 D, given as

D = 3

[

3
∑

q,j (λ
2(q, j))

n
−

λ2CvT

E0

]

, (18)

where n is the number of the modes, E0 is the total thermal energy and λ is the volume Grüneisen constant. The

attenuation due to Akhiezer mechanism is related to D as αt =
Dω2E0τph−ph

6ρv3 .

D by definition is therefore a metric of the variance in λ(q, j) value. In a bulk crystal the main contribution to D
comes from the difference in λ(q, j) value between the transverse and the longitudinal branch. The presence of surface
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leads to additional modes in a nano-structure. Some of these modes, called the surface modes, have displacement
profiles in which the surface atoms share most of the amplitude. λ(q, j) for such modes will therefore depend on the
property of the surface atoms and will be different from that of the bulk-like modes. The presence of such modes will
therefore contribute to an increase in the value of D and, hence, an increase in the dissipation rate. The fraction of
such modes to the total number of modes depends on the ratio of the number of surface atoms to that of the bulk
atoms and is expected to become significant only at very small dimension.
Local Quasi Harmonic (LQHM) model36 was used to estimate the D value for nickel nano-beams. In LQHM

model the motion of each atom is decoupled from the rest. A local stiffness matrix, Φ(α), is obtained by taking the
double derivative of the potential energy with respect to displacement vector of an atom α. From the eigen-values
of Φ(α) three vibrational frequencies, ωαi(i = 1, 2, 3), are determined. The local Grun̈eisen parameter, λαi, is given

as λαi = − V
ωαi

dωαi

dV
, where V is the volume of the crystal. We define Cαi as Cαi =

kb(
~ωαi
kbT

)2exp(
~ωαi
kbT

)

[exp(
~ωαi
kbT

)−1]2
and Eαi as

Eαi =
~ωαi

exp(
~ωαi
kbT

)−1
, where kb is the Boltzmann constant, ~ = h

2π and h is the Plancks constant. In the LQHM model

λ is obtained as

λ =

∑nt

α=1

∑3
i=1 Cαiλαi

∑nt

α=1

∑3
i=1 Cαi

, (19)

where nt is the total number of atoms in the structure. Cv and Eo in the LQHM model are given as Cv =
1
V

∑nt
α=1

∑3
i=1 Cαi and E0 = 1

V

∑nt
α=1

∑3
i=1 Eαi.

Finite sized nickel nano-structrues, as used in the MD simulations, were considered for LQHM analysis. λαi values
were computed by imposing a uni-axial deformation on the structure. The values of λαi, λ, Cv and E0 thus obtained
using the LQHM model were substituted in eqn(18) to get the value of D. Figure 9 shows the value of D for nickel
nano-beams of different cross-sectional area. The plot shows thatD increases with the decrease in size. For the smallest
size considered, the increase in the value of D is expected to become significant and compensate for the decrease in
the relaxation time value. This effect of surface on the D value plausibly explains the observed non-mononotic scaling
of the Q factor with size.

0 20 40 60
5.2

5.4

5.6

5.8

6

D

Cross−sectional Area (nm2)

FIG. 9. Variation of the non-linearity parameter, D, with size as computed using the LQHM model.

V. CONCLUSIONS

MD simulations have been used to investigate the dissipation in a nickel nanowire. A nearly uniform strain field
was applied to eliminate TED. In such a case, we expect the dissipation to be dominated by the Akhiezer mechanism.
From the scaling of the Q factor with ω for the bulk case, τph−ph was estimated. The value was comparable with the
estimate obtained from other methods. The finite sized case showed an inverse scaling of Q factor with ω, and for
the smallest size considered a slight deviation was observed. The size dependence of Q factor showed a positive role
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of the surface where in the Q factor initially increased with the decrease in thickness. This was explained by the role
of the surface as a scattering medium for the thermal phonons. For dimensions below some critical value, a drop in
Q factor with size was observed, and this was attributed to the contribution of surface atoms to increase the variance
in the λ(q, j) value.
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