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The surface states of topological insulators, which behave as charged massless Dirac fermions, are
studied in the presence of a quantizing uniform magnetic field. Using the method of D.H. Lee1,
analytical formula satisfied by the energy spectrum is found for a singly and doubly connected
geometry. This is in turn used to argue that the way to measure the quantized Hall conductivity
is to perform the Laughlin’s flux ramping experiment and measure the charge transferred from the
inner to the outer surface, analogous to the experiment in Ref.2. Unlike the Hall bar setup used
currently, this has the advantage of being free of the contamination from the delocalized continuum
of the surface edge states. In the presence of the Zeeman coupling, and/or interaction driven
Quantum Hall ferromagnetism, which translate into the Dirac mass term, the quantized charge Hall
conductivity σxy = ne2/h, with n = 0,±1,±3,±5 . . .. Backgating of one of the surfaces leads to
additional Landau level splitting and in this case n can be any integer.

Theoretical prediction of the existence of an odd num-
ber of Dirac cones in the dispersion of the surface states
of topological insulators3,4 and subsequent experimen-
tal observation of such unusual surface states5–8 has pro-
pelled this research field into an active area of condensed
matter physics (for reviews see Refs.9–11). Particularly
interesting is the problem of the topological insulator
surface Dirac Fermions in magnetic field. Because the
Dirac Fermions carry definite charge, the magnetic field
couples to the orbital motion. If this motion is con-
strained to be perpendicular to the applied field, the Lan-
dau level quantization results. However, as discussed by
D.H. Lee1, since the Dirac Fermions move on the sur-
face of a 3-dimensional material, in the absence of mag-
netic monopoles, i.e for ∇ · B = 0, it is impossible for
the magnetic field to be everywhere along the normal
of an oriented surface. Instead, in a typical experimen-
tal setting, the three dimensional material is placed in
a uniform external magnetic field, and only portions of
the surface, say the top and the bottom ones, experience
Landau quantization. The Dirac Fermions on the sur-
faces tangential to the external magnetic field continue
moving as plane-waves.

In addition, the spin-orbit coupling, which causes the
appearance of the Dirac particles in the first place, makes
the Zeeman coupling different from that in graphene,
where Dirac particles also appear but where the spin-
orbit coupling is negligible. Thus, instead of simply spin
splitting the electronic energy levels, the Zeeman term
in topological insulators acts as a Dirac mass. As illus-
trated in Fig.II, this causes the splitting of the zeroth
Landau level, but the higher Landau levels are not split
unless their guiding center approaches the edge. Rather,
at positive energies they move up and at negative energies
they move down. Of course, because of the Dirac struc-
ture, the energy scale associated with Zeeman splitting
∼ 1K ×H [T ] is much smaller1 that the spacing between

the zeroth and the first Landau levels, ∼ 200K×
√

H [T ]
for realistic fields. Nevertheless, similar behavior can be
expected in the presence of interaction driven Quantum

Hall ferromagnetism where the ”Zeeman” scale can be
much larger. While neglecting orbital coupling, the ef-
fects of Zeeman splitting near the boundary between the
portions of the material where the field is perpendicular,
and therefore the Dirac point is gapped, and where it is
parallel, and therefore gapless, was also studied in Ref.12.
Some aspects of Landau quantization in thin films of
topological insulators were also analyzed in Ref.13. The
analytical results for the energy spectrum obtained in
this work are in agreement with recent numerical lattice
band-structure diagonalization studies in magnetic field
for systems with small withdth14.

For a sphere with a finite radius r the Dirac Hamil-
tonian adopted to this curved surface in the presence of
a uniform applied field (without Zeeman coupling), was
analyzed in an insightful study in Ref.1. In the Lan-
dau gauge, the eigenenergy is a function of the azimuthal
quantum number m which serves as a ”guiding center”
coordinate. For large and positive values of m the spec-
trum corresponds to nearly doubly degenerate Landau
levels, with the wavefunctions residing near the north and
south poles. The energy splitting is exponentially small
in ∼ r/ℓB, where the magnetic length ℓB =

√

~c/eB.
As m approaches zero, the wavefunctions move towards
the equator of the sphere, the Landau levels are split
and merge into the plane-wave-like states residing near
the equator. The spectrum of these states resembles (fi-
nite size) Dirac spectrum. Thus, for the singly connected
topology, the portion of the surface approximately tan-
gential to the external magnetic field harbors the chiral
quantum Hall edge states together with the conducting
non-chiral surface states, which disperse as Dirac parti-
cles. Since the latter do not localize1,15, the two terminal
conductance is not quantized even when the Fermi en-
ergy lies between Landau levels. It was proposed1 that
the way to measure the quantized Hall effect is to set up
a potential difference between the electrode placed in the
caps of the sphere and to measure the circulating current
on the outer surface.

Experimentally, quantum oscillations originating from



the surface states have been reported by several
groups16–20. In each case (although to varying degree)
the signal is contaminated due to the finite 3D bulk con-
ductivity. In 70nm thick strained films of HgTe, quantum
Hall effect has been reported21, although interestingly
the quantized Hall plateaus appear without the longitudi-
nal resistance Rxx reaching zero. So far, no quantization
plateaus of the 2D Hall conductivity has been reported
in thick samples. It is important to ask whether such
quantization could be realized in a typical multi-terminal
experimental setup even for a perfectly insulating bulk.
Theoretically, it was argued in Ref.14 that for topologi-
cal insulators with odd number of Dirac points, the four
terminal Hall conductance should remain quantized even
in the presence of scalar disorder, although the six ter-
minal should not. However, even in the ballistic limit,
such quantization of the four terminal Hall conductance
depends sensitively on the number of non-chiral surface
channels, which may vary between the four electrodes.
As such, it is sensitive to the surface roughness and for
typical Fermi momenta19,21 kF ∼ 0.2 − 0.5nm−1 would
require few nm precision in the height of the sample, as
in the molecular beam epitaxy grown films of Ref.21.
Here we study both the singly and the doubly con-

nected geometry. In the former case, the standard Hall
bar setup (Fig.5) will not lead to quantization of the Hall
conductivity, unless the sample height is reduced to be
much smaller than the magnetic length. The latter case is
illustrated in Fig.1 and argued to be an alternative way to
measure the quantization of σxy. The idea is to perform
the analog of the Laughlin thought experiment, experi-
mentally realized in Ref.2, and to measure the amount
of charge ∆Q transferred from the inner surface to the
outer surface in response to the change in the magnetic
flux ∆Φ threading the sample. Then,

σxy = −c∆Q
∆Φ

. (1)

This setup has the virtue that any interaction driven
fractional quantum Hall effects can also be detected, as
shown in the context of 2DEG heterostructures in Ref.2.
We build on the formalism and findings presented in

Ref.1 and analytically study the energy spectrum such
geometry. We include the Zeeman coupling, as well as
a difference in the gate voltage applied between the top
and the bottom surface of the 3D sample. The former
causes the splitting of the zeroth Landau level, but not
the rest of the Landau levels, while the latter splits all
Landau levels. Thus, integer quantum Hall conductivity,
measured in the doubly-connected setup, can take on any

positive or negative integer, including zero.

This paper is organized as follows, in Sec.I the effective
Hamiltonian for the geometry shown in Fig.1 is derived
and the boundary conditions at the edges are discussed.
In Sec II, the matching of the wavefunctions at the cor-
ners leads to the equation which determines the condition
for the eigenenergies as a function of the guiding center
kℓB. This equation is shown analytically to describe a

H

r

2a
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FIG. 1: The physical setup proposed for the measurement of
σxy.

Dirac-like continuum as well as Landau levels. Its nu-
merical solution determines the behavior of the discrete
levels as the guiding center approaches the continuum.
In Sec III the Hall bar and the Corbino-like geometry
are further compared.

I. HAMILTONIAN, EIGENSTATES AND THE
MATCHING CONDITIONS

The specific geometry considered is shown in Fig.1.
The magnetic field is assumed to be perpendicular to the
surface of the hollow cylinder of inner radius R, shell
thickness 2b and height 2a. As discussed by D.H. Lee1,
the Dirac Hamiltonian needs to be written on the sur-
face of this two dimensional curved space. In the limit
of R → ∞ the system is equivalent to an infinitely long
slab with rectangular cross-section and periodic bound-
ary conditions along its axis. We can now use the polar
coordinates shown in Fig.1 to describe the surface.

The procedure for determining the Hamiltonian, which
follows from the discussion in Refs.1,22, is shown the Ap-
pendix. The result is



H = ~vF
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∂

∂b cotφ
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+ hzσ1, π + φ0 < φ < 2π − φ0. (2)

where periodic boundary conditions for x, which is al-
lowed to get arbitrarily large, are assumed. Obviously,
the wavefunctions separate and correspond to planewaves
with wavector k in the x-coordinate. This will serve as
the analog of the guiding center coordinate. The term
proportional to hz represents the Zeeman coupling. A
mean-field description of any possible quantum Hall fer-
romagnetism would have a different value of hz in the
first and the third region than in the second and fourth.
As usual, the magnetic length is ℓB =

√

~c/eB.

We can now find the eigenfunctions at a fixed energy
E and a fixed k for each segment. This is done in detail
in the Appendix. For the 1st and 3rd segment the Dirac
eigenspinors can be written in a closed form in terms of
the parabolic cylinder functions, Dν(z), with indices ν
of the upper and the lower components differing by 1.
For the 2nd and 4th segment, the eigenspinors are plane-
waves. In what follows, we use dimensionless lengths and
energy scales defined as

α =
a

ℓB
, β =

b

ℓB
, κ = kℓB (3)

ǫ =
E

~vF /ℓB
, ηz =

hz
~vF /ℓB

, νg =
Vg

~vF /ℓB
. (4)

The matching of the wavefunction is discussed in de-
tail below. While in general 4-parameter family of self-
adjoined extensions is allowed, it is argued that for sharp
edges, continuity of the wavefunctions should be im-
posed.

A. Matching conditions

In order to completely specify the behavior of the wave-
functions, the Hamiltonian (2) must be supplemented by
boundary conditions at the points where the horizontal
and the vertical surfaces meet. We will assume that the
corners are sharp, meaning that the lengthscale associ-
ated with the corner curvature is much smaller than the
magnetic length ℓB.

If we require that the Hamiltonian is a self-adjoint op-
erator we require that any two spinor wavefunctions ψ1

and ψ2 satisfy

ψ†
1L(φ0)σ2ψ2L(φ0) = ψ†

1R(φ0)σ2ψ2R(φ0), (5)

where the subscripts L and R refer to the direction of
approach of the boundary, i.e. left or right23. The most
general linear homogeneous boundary condition imposed
on ψ2 is

ψ2L = Mψ2R, (6)

where M is a 2 by 2 matrix. In order to satisfy (5) we
then must have

ψ†
1L(φ0)σ2Mψ2R(φ0) = ψ†

1R(φ0)σ2ψ2R(φ0). (7)

This must hold for arbitrary ψ2R and therefore the
boundary condition on ψ1 is

ψ1R = σ2M
†σ2ψ1L. (8)

Since we require that the domains of H and H† coincide,
the above must also be the boundary conditions on ψ2.
Therefore, M must satisfy

M−1 = σ2M
†σ2. (9)

Taking the determinant of both sides gives

1

detM
= detM∗ ⇒ detM = eiχ. (10)

Using the above relations we finally find that

M = e
i
2
χ

(

W + Z X − Y
X + Y W − Z

)

, (11)

1 = W 2 − Z2 −X2 + Y 2. (12)

That means that the self-adjoint constraint leaves us
with 4 independent real paraments which determine the
boundary conditions at the corners. The von Neumann-
Weyl deficiency indices23 are therefore (2, 2)
To determine these conditions we regularize the corners

as small circles with the vertical and horizontal surface
lines being tangential to the circle. Eventually, we are
interested in taking the limit of the radius of the circle,
r0, to zero. Note that in the limit r0 ≪ ℓB the vector
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FIG. 2: Energy spectrum for hZ = 0 and a → ∞. In addi-
tion β = b/ℓB ≫ 1. The shaded cones represent the Dirac
continuum physically located at the inner (left) and the outer
(right) surfaces of the doubly connected sample. Each Lan-
dau level is doubly degenerate and at energy

√
2n~vF /ℓB .

To understand how the discrete Landau levels merge into the
continuum, see Fig.III

potential does not depend on the position along the circle.
As a result, the solution to the Dirac equation along the
circle is a plane wave. The ratio of the two components of
the Dirac spinor of the planewave solution is independent
of the position, meaning that X = Y = Z = 0. At finite
energies the wave vector must be finite and therefore in
the limit of r0 → 0 the phase does not advance, i.e. χ =
0. This argument leads us to the requirement that for
sharp corners, the Dirac spinors are continuous, or

M = 12. (13)

In addition, we are going to take the limit b≫ ℓB and
focus on the solutions with the ”guiding center” κ = kℓB
either ≈ b/ℓ = β or ≈ −β. In the former case, κ ≈ β, we
can require that the wavefunction vanishes for tanφ →
−∞ on the top surface and for tanφ→ ∞ on the bottom
surface. Similarly, for κ ≈ −β, we can require that the
wavefunction vanishes for tanφ→ ∞ on the top surface
and for tanφ→ −∞ on the bottom surface.

II. THE ENERGY SPECTRUM

The energy spectrum at each k is determined from
the matching conditions on the wavefunctions discussed
above. Near each edge, these take the form of four lin-
ear equations in four unknowns (A37) and (A46), with
energy and k dependent coefficients. The technical de-
tails are presented in the Appendix. Here we present the
analysis of the energy spectrum which results from these
equations.
The non-trivial solution to the Eq.(A37) exists pro-

vided that

[(ω− + iθ−)B+ − ǫA+] [(ω− − iθ−)Ag+ − ǫBg+] e
2iθ

−
α =

[(ω− − iθ−)B+ − ǫA+] [(ω− + iθ−)Ag+ − ǫBg+] e
−2iθ

−
α.

(14)

The functions used in the above equation are derived
in the Appendix. The above equation determines the
energy spectrum for κ ≈ β, i.e. near the outer surface.
If we are interested in the finite size effects, we have to
keep α = a/ℓB finite. This is useful to understand the
degeneracy of each energy level caused by the tunneling
across the vertical edge as well as mesoscopic transport
effects discussed in the next section. On the other hand,
in the thermodynamic limit α → ∞.
In order to solve Eq.(14) for ǫ = E/(vF /ℓB) we need

to consider two cases.
For θ2− > 0 the left hand side of Eq.(14) is the com-

plex conjugate of the right hand side. Therefore, we are
looking for roots of a purely imaginary function. Letting

S = [(ω− + iθ−)B+ − ǫA+] [(ω− − iθ−)Ag+ − ǫBg+] ,(15)

we find that (14) requires

tan (2θ−α) = −ℑmS
ℜeS . (16)

Note that the right hand side of the above equation does
not depend on α while the left hand side has a single
pole every time 2θ−α = mπ where m = 0,±1,±2 . . ..
For α → ∞ the spacing between the poles approaches
zero and the left hand side changes from −∞ to ∞ for
mπ/(2α) < θ− < (m + 1)π/(2α). Since the right hand
side is a function of ǫ which changes on scales much
larger than 1/α as α→ ∞, we have at least one positive
and one negative eigenenergy solution for each interval
mπ/(2α) < θ− < (m+ 1)π/(2α). This proves that for

ǫ2 > (κ− β − ηz)
2

the energy spectrum forms a continuum as α→ ∞.
For θ2− < 0, the left hand side vanishes in the limit

α→ ∞ and the spectrum is determined by

[(ω− + |θ−|)B+ − ǫA+] [(ω− − |θ−|)Ag+ − ǫBg+] = 0.

(17)



For κ − β ≪ −1, we can solve these equations within
exponential accuracy by noting that for non-negative in-
teger, the parabolic cylinder functions entering A+ and
B+ satisfy

Dν(z) = 2−ν/2e−
z2

4 Hν

(

z√
2

)

, for ν = 0, 1, 2, . . . ,

(18)

where Hn(z) is Hermite polynomial. If the ν in Dν(z)
deviates from non-negative integer, the function diverges
exponentially at large negative z. Therefore, as long as
κ− β ≪ −1, the equation

[(ω− + |θ−|)B+ − ǫA+] = 0

is solved for

ǫ = ±
√

2n+ η2z , n = 1, 2, 3, . . . ,

ǫ = −ηz . (19)

Similarly, as long as κ− β ≪ −1 the solutions to

[(ω− − |θ−|)Ag+ − ǫBg+] = 0

are

ǫ = νg ±
√

2n+ η2z , n = 1, 2, 3, . . . ,

ǫ = νg + ηz . (20)

For κ ≈ β the equations can be easily solved numerically
and the dispersion of the Landau levels in the vicinity
of the Dirac continuum can be determined. The solu-
tion for ηz = νg = 0 is shown in Fig.II for both edges.
In this case all Landau levels are doubly degenerate and

the σxy sequence is e2

h × (odd integer). Also, note the
downward dispersion of the Landau levels as they ap-
proach the continuum. For ηz = 0.3, νg = 0 the energy
spectrum is shown in Fig. II for outer the edge. The
lowest Landau level is now split linearly in hz giving rise
to the possibility that if the Fermi energy lies in this gap
σxy = 0. The higher Landau levels are doubly degen-
erate, but split as they approach the edge continuum.
Therefore for νg = 0, the allowed values for σxy = ne2/h,
are n = 0,±1,±3,±5 . . .. Finally, for νg 6= 0 all possible
Landau level (double) degeneracies are lifted, and as a
result n = 0,±1,±2,±3 . . ..
Similarly, the non-trivial solution to the Eq.(A46) ex-

ists provided that

[(ω+ + iθ+)B− − ǫA−] [(ω+ − iθ+)Ag− − ǫBg−] e
−2iθ+α =

[(ω+ − iθ+)B− − ǫA−] [(ω+ + iθ+)Ag− − ǫBg−] e
2iθ+α

(21)

The above equation determines the energy spectrum for
κ ≈ −β, i.e. near the inner surface. The analysis of this
equation proceeds in the same way as for Eq.(14). The
continuum appears for

ǫ2 > (κ+ β + ηz)
2.
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FIG. 3: Energy spectrum for hZ 6= 0 (ηz = 0.3) and a → ∞
near the outer surface. In addition β = b/ℓB ≫ 1. The
shaded cones represent the Dirac continuum physically lo-
cated at the outer surface. The degeneracy of the Landau
levels is split as κ = kℓB approaches the continuum. The
double degeneracy of the zeroth Landau level is lifted, with a
gap that varies linearly in hZ . The double degeneracy of the
higher Landau levels is split near the continuum, but in the
thermodynamic limit remains intact for κ ≪ kℓB with the en-
ergies ±(~vF /ℓ)

√

2n + η2
z , n = 0, 1, 2, . . .. The spectrum near

the inner surface can be obtained simply by taking κ → −κ,
i.e. by mirror reflecting the above picture around kℓB = 0.

Furthermore, the equations for ǫ2 < (κ + β + ηz)
2 can

be shown to be the same as (14) under the transforma-
tion κ → −κ. The spectrum near the inner surface can
therefore be determined simply by mirror reflecting the
spectrum near outer surface about κ = 0.
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FIG. 4: The positive energy spectrum for hZ = 0 and α =
a/ℓB = 5 near the outer surface. In addition β = b/ℓB ≫ 1.
Note the presence of the discrete non-chiral modes, which
merge into continuum for α → ∞. The spacing between the
levels at kℓB = b/ℓB scales as ∼ 1/a while the spacing be-
tween the (Dirac) Landau levels for kℓB ≪ b/ℓB scales as
∼ 1/ℓB . Therefore, in order to observe quantized Hall con-
ductivity in the Hall bar geometry the condition a ≪ ℓB
should be satisfied.

III. DISCUSSION OF HALL BAR VS.
”CORBINO” GEOMETRY

Currently, the experimental geometry used to measure
the Hall conductivity in the quantum Hall regime of 3D
topological insulators is the Hall bar geometry sketched
in Fig.5. No plateau quantization of σxy has been ob-
served. While part of the reason for this is finite 3D bulk
conductivity, we wish to argue here that even if the sys-
tem was insulating in the bulk the presence of the non-
chiral surface modes will spoil the quantization of σxy.
One way to avoid such contamination would be to reduce
the sample height ≪ ℓB. The second way, would be to
use ”Corbino” geometry shown in Fig.1, to ramp up the
flux through the hollow region and to measure the charge
transferred between the inner and the out surfaces.

For the Hall bar geometry in the ballistic limit, the Hall
conductance, as well as the longitudinal conductance, are
easily obtained within the Landauer-Buttiker formalism.
Assuming that the contacts 2, 3, 5 and 6 float to the av-
erage chemical potential of the modes which enter them,
forM -chiral modes and N -non-chiral modes with perfect
transmission the Hall conductance, measured between

N+M 

N+M N+M 

N+M 

N 

N 

N N 
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N N 

N+M 

N 

FIG. 5: (Top panel) A schematic for a Hall bar setup for the
3D topological insulator. The applied magnetic field is per-
pendicular to the top surface. The applied magnetic field is
perpendicular to the top surface; six contacts are also marked.
(Bottom panel) The corresponding edge/surface state struc-
ture. There are M chiral modes coming from the top and
the bottom surface Hall droplet. In the absence of the bot-
tom gate M can be any odd integer (including zero if Zeeman
field is included). In addition, there are N non-chiral modes
coming from the surfaces parallel to the external field.

contacts 2 and 6, is

GHall =
e2

h

(

M +N +
N2

M

)

. (22)

The longitudinal conductance measured between 2 and 3
is

G =
e2

h

(

2N +M +
M2

N
+

M2

N +M

)

. (23)

For finite N , the Hall conductance here is generally not
quantized. In the thermodynamic limit, N ≫M and the
Hall resistance is small (∼ h

e2M/N2). These results were

also obtained in Ref.14.
The physical reason for the non-quantization for large

sample height is quite clear. The presence of the large
number of non-chiral surface states tends to make the lo-
cal potential on each of the surfaces close to (µL+µR)/2,
as opposed to µL on one, and µR on the other, as is
the case in the absence of non-chiral modes. In the
presence of disorder, in the form of scalar potential
in the Dirac equation, but in the absence of electron-
electron interactions, the states have been argued to re-
main delocalized15,24 and the conductivity diverges as
temperature T → 0. Therefore in this limit there will
be no voltage drop along the surfaces, all of which will
appear near the contacts. The local potential near the
two surfaces will still tend to (µL + µR)/2 and no quan-
tization of GHall will occur. Including electron-electron
interactions and scalar disorder, it has been argued in
Ref.25 that the states remain delocalized, but that at
T = 0 the conductivity flows to a finite value. Therefore,
the potential will drop along the surfaces, the modes will



equilibrate but no quantization will occur. The two ter-
minal conductance will also not be quantized1. The way
to achieve quantization in the Hall bar geometry is there-
fore to eliminate the side surface modes altogether, which
can be achieved through finite size effects by reducing the
height of the sample below ℓB.

A four terminal setup shown in Fig.6a of Ref.14 has
been argued to lead to quantized Hall conductance
Me2/h even in the presence of disorder. However, this
result was obtained assuming that the number of non-
chiral channels is exactly N for each of the four seg-
ments of the four terminal setup. Unlike the number
of chiral channels M , for a thick sample the number
of non-chiral channels can vary from segment to seg-
ment. In the four terminal setup, we should therefore
consider N1 channels between µL and µ2, N2 between
µ2 and µR, N3 between µR and µ4 and N4 between µ4

and µL. In the ideal case of perfect transmission, we

find I4 − I2 = e2

h (2M +N1 −N2 +N3 −N4) (µL − µ2).
Therefore, unless N1 −N2 = N4 −N3, the Hall conduc-
tance defined this way is not properly given by the num-
ber of chiral channels. As mentioned in the introduction,
for typical Fermi momentum19,21 kF ∼ 0.2 − 0.5nm−1,
this would require a few nm precision in the height of
the sample. It seems that, in the least, such sensitiv-
ity to surface roughness would have to be eliminated in
practice.

In the Corbino geometry, the increase of the flux will
transfer the charge from the inner to the outer surface,
which can then measured. In the thermodynamic limit,
this quantization is robust to the presence non-chiral
states. Such measurement of σxy has been performed in
2DEGs (Ref.2) where both integer and fractional quanti-
zations have been detected, and should be feasible in the
3D topological insulators in the quantum Hall regime.
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Appendix A: Derivation of the Hamiltonian,
eigenstates and the matching conditions

In this appendix we present the detailed steps which
lead to the Eq.(2) as well as to the matching conditions
which lead to the equation for the energy spectrum. We
use the parametrization shown in Fig.1.

1. Top horizontal surface (−φ0 < φ < φ0)

For the top horizontal surface, r(φ) = a/ cosφ and
−φ0 < φ < φ0 where tanφ0 = b/a. For φ in this range
the metric for the surface is

ds2 = dx21 + dx22 = dx2 +

[

r2(φ) +

(

dr(φ)

dφ

)2
]

dφ2

= dx2 + (da tanφ)
2
. (A1)

In the Landau gauge of choice here, the two components
of the vector potential are

A1 = Ba tanφ, A2 = 0. (A2)

The physical spin is related to the Dirac Pauli matrices
by1

~s = n̂× ~σ (A3)

where n̂ is the normal to the surface. Using n̂ = ẑ and
s1s2 = is3, we obtain

s1 = −σ2, s2 = σ1, s3 = σ3. (A4)

Thus, for −φ0 < φ < φ0 the Hamiltonian is

H = ~vF

[

σ1

(

1

i

∂

∂x
− a

ℓ2B
tanφ

)

+ σ2
1

i

∂

∂a tanφ

]

+ hzσ3.

(A5)

ℓB =
√

~c
eB . This is clearly separable, and the eigenfunc-

tions are planewaves in the x− direction. Its wavevector

is set to be k. Letting ρ =
√
2
(

a
ℓB

tanφ− kℓB

)

leads to





hz − E −
√
2~vF

ℓB

(

∂
∂ρ + 1

2ρ
)

√
2~vF

ℓB

(

∂
∂ρ − 1

2ρ
)

−hz − E





(

uk(φ)
vk(φ)

)

= 0.(A6)

The generic solution to these two coupled first order dif-
ferential equations is

(

uk(φ)
vk(φ)

)

= c1,L

(

α1Dν(ρ)
β1Dν+1(ρ)

)

+ c1,R

(

α2Dν(−ρ)
β2Dν+1(−ρ)

)

,(A7)

where Dν(ρ) is the parabolic cylinder function27

Dν(ρ) = 2ν/2e−ρ2/4

[

Γ[ 12 ]

Γ[(1− ν)/2]
1F1

(

−ν
2
;
1

2
;
ρ2

2

)

ρ√
2

Γ[− 1
2 ]

Γ[−ν/2]1F1

(

1− ν

2
;
3

2
;
ρ2

2

)]

(A8)

and 1F1 is the confluent hypergeometric function

1F1 (a; b; ρ) = 1 +
a

c

ρ

1!
+
a(a+ 1)

c(c+ 1)

ρ2

2!
+ . . . . (A9)



Unless ν is a non-negative integer, the two solutions in
the Eq.(A7) are linearly independent and Dν(ρ) diverges
as ρ→ −∞. These functions satisfy the relations

(

∂

∂ρ
+

1

2
ρ

)

Dν(ρ) = νDν−1(ρ), (A10)

(

∂

∂ρ
− 1

2
ρ

)

Dν(ρ) = −Dν+1(ρ). (A11)

Since we are interested in taking the limit b ≫ ℓB,
the solution near the outer surface must satisfy vanishing
boundary condition as it moves closer to the 2D ”bulk”.
This means that near the outer surface c1,L = 0 and

(

uk(φ)
vk(φ)

)

= c1,R

(

(ǫ+ ηz)D 1
2
(ǫ2−η2

z)−1

(√
2 (κ− α tanφ)

)

√
2D 1

2
(ǫ2−η2

z)

(√
2 (κ− α tanφ)

)

)

,(A12)

where the dimensionless lengths and energy scales are
α = a

ℓB
, β = b

ℓB
, κ = kℓB, ǫ =

E
~vF /ℓB

, ηz = hz

~vF /ℓB
and

νg =
Vg

~vF /ℓB
.

Similarly, near the inner surface c1,R = 0 and the so-
lution has the form

(

uk(φ)
vk(φ)

)

=

c1,L

(

−(ǫ+ ηz)D 1
2
(ǫ2−η2

z)−1

(√
2(α tanφ− κ)

)

√
2D 1

2
(ǫ2−η2

z)

(√
2(α tanφ− κ)

)

)

.(A13)

2. Outer vertical surface (φ0 < φ < π − φ0)

r(φ) = b/ sinφ

ds2 = dx21 + dx22 = dx2 + (db cotφ)
2

(A14)

⇒ x1 = x, x2 = a+ b− b cotφ. (A15)

A1 = Bb, A2 = 0. (A16)

The physical spin operators (up to ~/2) are

s1 = σ3, s2 = σ2, s3 = −σ1. (A17)

For φ0 < φ < π − φ0 the Hamiltonian is

H = ~vF

[

σ1

(

1

i

∂

∂x
− eB

~c
b

)

− σ2
1

i

∂

∂b cotφ

]

− hzσ1.

(A18)

and the eigenfunctions are
(

uk(φ)
vk(φ)

)

= c2,1e
i
√

ǫ2−(κ−β−ηz)2β cotφ

(

α+

ǫ

)

+ c2,2e
−i
√

ǫ2−(κ−β−ηz)2β cotφ

(

α−

ǫ

)

,(A19)

where

α± = κ− β − ηz ± i
√

ǫ2 − (κ− β − ηz)2. (A20)

3. Bottom horizontal surface (π − φ0 < φ < π + φ0)

r(φ) = −a/ cosφ

ds2 = dx21 + dx22 = dx2 + (da tanφ)
2

(A21)

⇒ x1 = x, x2 = 2(a+ b) + a tanφ. (A22)

A1 = −Ba tanφ, A2 = 0. (A23)

s1 = σ2, s2 = −σ1, s3 = σ3. (A24)

For π − φ0 < φ < π + φ0 the Hamiltonian is

H = ~vF

[

σ1

(

1

i

∂

∂x
+

a

ℓ2B
tanφ

)

+ σ2
1

i

∂

∂a tanφ

]

+ hzσ3 + Vg. (A25)

where we included a different electrical potential on the
bottom surface Vg.
Near the outer vertical surface the solution on the bot-

tom horizontal surface is
(

uk(φ)
vk(φ)

)

= (A26)

c3,R

( √
2D 1

2
((ǫ−νg)2−η2

z)

(√
2 (κ+ α tanφ)

)

(ǫ − ηz − νg)D 1
2
((ǫ−νg)2−η2

z)−1

(√
2 (κ+ α tanφ)

)

)

,

where νg = Vg/(~vF /ℓB).
Near the inner vertical surface the solution on the bot-

tom horizontal surface is
(

uk(φ)
vk(φ)

)

= (A27)

c3,L

( √
2D 1

2
((ǫ−νg)2−η2

z)

(

−
√
2(κ+ α tanφ)

)

(νg − ǫ+ ηz)D 1
2
((ǫ−νg)2−η2

z)−1

(

−
√
2(κ+ α tanφ)

)

)

.

4. Inner vertical surface (π + φ0 < φ < 2π − φ0)

r(φ) = −b/ sinφ

ds2 = dx21 + dx22 = dx2 + (db cotφ)
2

(A28)

⇒ x1 = x, x2 = 3(a+ b)− b cotφ. (A29)

A1 = −Bb, A2 = 0. (A30)

s1 = −σ3, s2 = σ2, s3 = σ1. (A31)

For π + φ0 < φ < 2π − φ0 the Hamiltonian is

H = ~vF

[

σ1

(

1

i

∂

∂x
+

b

ℓ2B

)

− σ2
1

i

∂

∂b cotφ

]

+ hzσ1.

(A32)



The eigenfunctions are

(

uk(φ)
vk(φ)

)

= c4,1e
i
√

ǫ2−(κ+β+ηz)2β cotφ

(

α+

ǫ

)

+ c4,2e
−i
√

ǫ2−(κ+β+ηz)2β cotφ

(

α−

ǫ

)

,(A33)

where

α± = κ+ β + ηz ± i
√

ǫ2 − (κ+ β + ηz)2. (A34)

5. Matching conditions

As discussed in the main text, we require the continuity
of the wavefunctions near the outer surface where κ ≈ β.
Therefore, we must have

(

uk(φ
(−)
0 )

vk(φ
(−)
0 )

)

=

(

uk(φ
(+)
0 )

vk(φ
(+)
0 )

)

(A35)

(

uk(π − φ
(+)
0 )

vk(π − φ
(+)
0 )

)

=

(

uk(π − φ
(−)
0 )

vk(π − φ
(−)
0 )

)

, (A36)

where φ(±)0 = φ0 ± 0+.
Using the wavefunctions determined in the Appendix,

the above set of four linear equations in four unknowns
translates into

A+c1,R = eiθ−α(ω− + iθ−)c2,1 + e−iθ
−
α(ω− − iθ−)c2,2

B+c1,R = eiθ−αǫc2,1 + e−iθ
−
αǫc2,2

Bg+c3,R = e−iθ
−
α(ω− + iθ−)c2,1 + eiθ−α(ω− − iθ−)c2,2

Ag+c3,R = eiθ−αǫc2,1 + e−iθ
−
αǫc2,2 (A37)

where

A± = ±(ǫ+ ηz)D 1
2
(ǫ2−η2

z)−1

(√
2(−β ± κ)

)

(A38)

B± =
√
2D 1

2
(ǫ2−η2

z)

(√
2(−β ± κ)

)

(A39)

Ag± = ±(ǫ− νg − ηz)D 1
2
((ǫ−νg)2−η2

z)−1

(√
2(−β ± κ)

)

(A40)

Bg± =
√
2D 1

2
((ǫ−νg)2−η2

z)

(√
2(−β ± κ)

)

(A41)

ω± = κ± β ± ηz (A42)

θ± =
√

ǫ2 − ω2
±. (A43)

Near the inner surface, where κ ≈ −β, we must have

(

uk(π + φ
(−)
0 )

vk(π + φ
(−)
0 )

)

=

(

uk(π + φ
(+)
0 )

vk(π + φ
(+)
0 )

)

(A44)

(

uk(2π − φ
(+)
0 )

vk(2π − φ
(+)
0 )

)

=

(

uk(−φ(−)
0 )

vk(−φ(−)
0 )

)

, (A45)

This translates to

Bg−c3,L = eiθ+α(ω+ + iθ+)c4,1 + e−iθ+α(ω+ − iθ+)c4,2

Ag−c3,L = eiθ+αǫc4,1 + e−iθ+αǫc4,2

A−c1,L = e−iθ+α(ω+ + iθ+)c4,1 + eiθ+α(ω+ − iθ+)c4,2

B−c1,L = e−iθ+αǫc4,1 + eiθ+αǫc4,2

(A46)
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