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We study the anisotropic spin-half antiferromagnetic triangular Heisenberg lattice in two dimen-
sions, seen as a set of chains with couplings J (J ′) along (in between) chains, respectively. Our
focus is on the incommensurate correlation that emerges in this system in a wide parameter range
due to the intrinsic frustration of the spins. We study this system with traditional DMRG using
cylindrical boundary conditions to least constrain possible incommensurate order. Despite that the
limit of essentially decoupled chains J ′/J . 0.5 is not very accessible numerically, it appears that
the spin-spin correlations remain incommensurate for any finite 0 < J ′ < J ′

C , where J ′

C /J > 1.
The incommensurate wave vector qJ , however, approaches the commensurate value corresponding
to the antiferromagnetic correlation of a single chain very rapidly with decreasing J ′/J , roughly as

qJ ∼ π − c1(J
′/J)ne−c2J/J

′

.

PACS numbers: 75.10.Jm, 71.10.Pm, 75.40.Mg, 75.50.Ee

I. INTRODUCTION

The anisotropic triangular spin-1/2 Heisenberg lattice
has been suggested as an effective description for several
organic and anorganic compounds such as Cs2CuCl4

1,2

or κ− (ET)2Cu2(CN)3.
3–5 These bulk systems typically

consist of layered structures with weak inter-layer cou-
pling, next-nearest neighbor and spin-orbit interactions.
The experimental observation of spin-liquid-like behav-
ior in these systems in certain parameter ranges there-
fore sparked renewed interest in the anisotropic triangu-
lar model system.6 The simplest effective model is de-
picted schematically in Fig. 1. It is viewed as a set of
chains with intrachain coupling J , that are coupled in
planar triangular fashion by the interchain coupling J ′.
In the absence of an external magnetic field, all ener-
gies can be written in units of J := 1, which thus yields
the single dimensionless coupling parameter J ′ ≡ J ′/J ,
as used throughout this paper unless indicated other-
wise. Extensive theoretical studies have been performed
on this model system,7–13 but the full phase diagram has
remained elusive, in particular for smaller J ′. Approxi-
mate numerical studies11 found that the magnetic order
vanishes near J ′ . 0.85, with a possibly continuous tran-
sition to an essentially one-dimensional collinear phase
for J ′ . 0.6 [11] (J ′ . 0.3, [14]). The presence of collinear
versus incommensurate order at weak chain-coupling J ′,
thus remains controversial,8–12,14 and as such represents
a major motivation for this paper.

Here we present an extensive set of density matrix
renormalization group (DMRG)15 calculations for lad-
ders and cylinders for this system with widths ranging
from two to ten lattice spacings. Recently the use of
DMRG for frustrated two dimensional (2D) systems has
proven to be very powerful – the results are highly precise
and unbiased for the narrower systems, and maintain ac-

ceptable accuracy to widths of about ten or twelve chains.
Careful consideration of finite size effects have allowed
strong conclusions about the 2D ground state both in an
antiferromagnetically ordered system (the isotropic tri-
angular Heisenberg model)16 and for a spin liquid (the
kagome Heisenberg model).17 For a review of the tech-
niques important for such 2D DMRG studies see [18]. Of
course, each system is different, and for the anisotropic
triangular Heisenberg model we study here, the incom-
mensurate correlations and the associated finite size ef-
fects must be dealt with carefully.

For that purpose, we chose as our primary type of clus-
ter a cylindrical geometry, with the cylinder’s axis along
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Figure 1. (Color online) The anisotropic triangular Heisen-
berg lattice viewed as a set of parallel chains with intrachain
coupling J := 1 and interchain coupling J ′ with lattice spac-
ing a := 1. For the numerical simulation using DMRG,
cylindrical boundary conditions with periodic wrapping in the
transverse vertical direction are assumed unless indicated oth-
erwise. The quasi-one-dimensional sweeping path through the
triangular system used within DMRG is indicated at the left
side starting with site (1, 1). This path is generalized to sys-
tems of different width.
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the J direction [cf. Fig. 1]. Despite our limitation to
relatively small circumferences, given the strong frustra-
tion of the chains and their decoupling for J ′ ≪ 1, a
width of several chains appears to give a good descrip-
tion of the physics of the underlying two-dimensional lat-
tice for smaller J ′. We include a careful reexamination
of the zigzag chain, i. e. width-2 cylinder, which is then
extended to wider systems. We do find an alternation
in the properties depending on whether the width is of
the form 4n or 4n + 2, with n an integer, but this ef-
fect vanishes quickly with increasing n. In particular for
smaller couplings J ′, we find that our cylinders behave
rather similarly to the zigzag chain. Overall, we see in-
commensurate behavior over a wide parameter range for
all systems analyzed, with no indication of a collinear
phase for smaller J ′.8

This paper is thus organized as follows. Section I de-
fines the model, and reviews its classical phase diagram.
Section II describes the methods used to obtain incom-
mensurate data, paying particular attention to boundary
conditions. Section III presents the results, starting with
a reexamination of the zigzag chain. This puts the stage
for the analysis of increasingly wider systems, followed
by summary and conclusions.

A. The anisotropic triangular Heisenberg lattice

The anisotropic triangular Heisenberg lattice is de-
scribed by the Hamiltonian

Ĥ =
∑

〈i,j〉

Jij Ŝi · Ŝj , (1)

with the sum over all nearest neighbor pairs on the
triangular lattice, with Jij > 0 corresponding to frus-
trated antiferromagnetic (AF) nearest neighbor interac-
tions. Dzyaloshinskii-Moriya interactions, which we do
not include, are expected to help stabilize the incommen-
surate phase analyzed in this paper.8,14,19,20 The strength
of these interactions may be, for example, on the order
of a few percent of J for Cs2CuCl4.

1 The Hamiltonian
in Eq. (1) is depicted schematically in Fig. 1 in terms of
a width-4 system. Here an L × nC system refers to nC

chains of length L each. All energies are expressed in
units of J , leading to the single dimensionless parameter
J ′ ≡ J ′/J , with explicit reference to J for emphasis only
unless specified otherwise.
For practical reasons, the Hamiltonian in Eq. (1) is

augmented by the additional term,

Ĥpin =
∑

i

Bpin
i Ŝi,z, (2)

which describes pinning of a few sites i at an open bound-
ary. These pinning fields (i) facilitate the numerical con-
vergence, and (ii) provide a particularly convenient way,
for example, to calculate and display complex correla-
tions in a DMRG calculation. Regardless of whether

one sees incommensurate correlations through correla-
tion functions or through pinning, it is crucial that the
boundary conditions alter these correlations as little as
possible. In contrast, using periodic boundary conditions
also along the incommensurate chain direction would be
particularly troublesome, forcing commensurate locking
and inducing sudden jumps in the incommensurate wave
vector. Therefore we avoid fully periodic boundary con-
ditions completely.

B. Classical phase diagram

The classical phase diagram of the anisotropic Heisen-
berg lattice at zero temperature shows incommensurate
order over the wide parameter range J ′ ∈ [0, 2] due to
the system’s inherent frustration. Within this parameter
range, the classical ground state is given by a spiral wave
with the incommensurate wave vector qJ pointing along
the J-direction, ~q = qclJ êJ .

21,22 The classical spiral wave
is defined as a set of spins rotated in some arbitrary but
fixed two-dimensional plane by an angle ~q ·~ri with ~ri the
position of spin i within the triangular lattice. Then for
arbitrary amplitude q ≡ qclJ , the energy per site of the
spiral wave in the J-direction is given by

Ecl

q (J ′) = cos (q) + 2J ′ cos
( q

2

)

,

having assumed spins of unit length, i. e. |S| ≡ 1, and
lattice spacing a ≡ 1. This energy is minimized by

cos(
qcl
J

2
) = −J′

2
for |J ′| ≤ 2, resulting in the classical

ground state energy per site Ecl
0 for the incommensurate

spiral wave with vector vector qclJ given by,

qclJ (J ′) = 2
[

π − cos−1(−J′

2
)
]

(3)

Ecl

0 (J ′) = −1− 1
2
(J ′)

2
, (4)

for J ′ ∈ [0, 2]. Here, 2π was added in qclJ , so it lies
within the first Brillouin zone, while assuming the branch
cos−1 (x) ∈ [0, π]. The pitch angle θ of the spiral wave,23

defined as the angle between two spins at neighboring
chains as one moves half a lattice spacing along the

chains, is given by θ(J ′) = cos−1(−J′

2
) = π − qclJ /2 ∈

[90◦, 180◦], with qclJ ∈ [0, π] for J ′ ∈ [0, 2].
The smooth classical incommensurate phase can be

seen as the continuous transition connecting the three
commensurate points J ′ ∈ {0, 1, 2}, as depicted in Fig. 2.
(i) For small interchain coupling J ′ ≪ 1, the chains are
essentially decoupled leading to antiferromagnetic spin
correlation along the chains (1D-AF), as indicated in
Fig. 2(a). Hence the incommensurate wave vector qclJ ap-
proaches the end of the Brillouin zone of a single chain,
i. e. qclJ → π [cf. Eq. (3)]. Note that with close to AF
correlation within a single chain, the interaction between
chains is strongly frustrated and hence suppressed. In
particular, coinciding with our definition of a spiral wave,
the spins of a neighboring chain are displaced by half a
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lattice constant and hence rotated by qclJ /2 = π/2, i. e.
90◦. The resulting 〈S · S〉 interaction across the chains
is thus close to zero, further emphasizing that neighbor-
ing chains essentially decouple. Therefore in the frozen
1D-AF configuration, E/J = 〈SiSi+1〉 = −1 = const, as
indicated by straight line in Fig. 2(d) around J ′ = 0.
(ii) At the isotropic point J ′ = 1, the system exhibits

120◦ order, as depicted in Fig. 2(b). The wave vector
of the spiral wave is given by qclJ = 2π/3, i. e. a period
of three sites within a chain. If the order were frozen in
the 120◦ structure, the energy per site would be E/J =
− 1

2
(1 + 2J ′), as indicated by straight line in Fig. 2(d)

around J ′ = 1.
(iii) For large interchain coupling J ′ ≫ 1, the lattice

reduces to a square lattice along the J ′ couplings with
weak spin-coupling along one diagonal of the squares (di-
amonds) of strength J , as indicated in Fig. 2(c). This
leads to a square AF order and consequently ferromag-
netic (FM) order of the spins along a single chain, i. e.
qclJ → 0. Within the frozen square AF order, the ground
state energy per site becomes E/J = 1 − 2J ′, again in-
dicated by a straight line in Fig. 2(d). This square AF
order is the true classical ground state configuration for
J ′ ≥ 2 and agrees with Eq. (4) for J ′ = 2.
From a quantum mechanical point of view, this classi-

cal picture will be altered by quantum fluctuations. Typ-
ically, one would assume that quantum fluctuations will
reduce incommensurate order. In particular, while the
phase boundary towards the square AF order also ex-
ists in the quantum mechanical context, one expects that
the incommensurate phase terminates at a smaller value
of J ′, as compared to the classical phase boundary of
J ′ = 2. For J ′ < 1, however, the question of whether or
not quantum fluctuations fully suppress the spiral wave
into a collinear configuration for small enough yet finite
J ′ has remained controversial. From our results below,
we do see clearly suppressed incommensurate order, in
that the quantum mechanical qJ approaches the bound-
ary π of the Brillouin zone significantly faster as com-
pared to the classical case. However, the incommensu-
rate correlations do persist for finite J ′, suggesting that
qJ = π is reached only for J ′ = 0.

II. METHODS

We use the density matrix renormalization group
(DMRG)15 on a finite two-dimensional lattice with
mainly cylindrical boundary conditions. We use tradi-

tional DMRG in that a two-dimensional strip of certain
width is mapped onto a single effectively one-dimensional
chain, as indicated in Fig. 1. The resulting ground
state is therefore described by a matrix-product state
(MPS).24,25 This approach provides a numerically well-
controlled setting, which, however, becomes numerically
expensive for smaller J ′, and therefore prohibits a fully
converged analysis for J ′ . 0.5 for widths nC > 2.
Nevertheless we are able to make a well-controlled and
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Figure 2. (Color online) Classical phase diagram of the
anisotropic triangular Heisenberg lattice at T = 0 demon-
strating continuous incommensurate order for the entire in-
terval J ′ ∈ [0, 2], having J ≡ 1. Specific snapshots are shown
for AF correlation for J ′ → 0 [panel a], triangular 120◦ order
at the isotropic point J ′ = 1 [panel b], and square AF order-
ing for J ′ ≥ 2 [panel c]. Panel d shows the classical ground
state energy per site for the spiral wave in J ′ ∈ [0, 2] [red
(dark gray) line]. The three straight tangential lines around
the point J ′ ∈ {0, 1, 2} assume the frozen spin configurations
at these points, respectively. For J ′ ≥ 2, finally, the ground
state configuration is given by the commensurate square AF
order.

largely unbiased analysis of the incommensurate correla-
tions down to J ′ & 0.5.

A. Cylindrical boundary conditions to study
incommensurate correlations

Incommensurate behavior is affected by boundary
conditions imposed on the finite system size under
consideration,26 which hence must be dealt with care-
fully. For this, we performed extensive initial test calcula-
tions on the anisotropic triangular lattice with a large va-
riety of boundary conditions. For example, to allow any
type of incommensurate correlations to appear and not
be frustrated, we studied systems with fully open bound-
ary conditions up to 11× 13, with weak pinning of a sin-
gle site in the center of the system. All such calculations
strongly indicated incommensurate spiral correlations in
the direction along the chains, varying with J ′. They also
always gave a commensurate period of two chain spacings
(
√
3a) for transverse correlations, i. e. ferromagnetic cor-

relations in next-nearest neighbor chains.14

Thus in order to study the incommensurate correla-
tions in a least constrained way, we use cylindrical bound-
ary conditions (cyl-BC) with an even circumference, i. e.
composed of an even number of chains [note that this is
also compatible with the square AF order of the system
for large J ′]. Furthermore, the very left boundary of the
open chains was pinned by a small external (staggered)
magnetic field, while the right boundary was softened by
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damping the Heisenberg couplings smoothly towards zero
(smooth boundary condition).27 The resulting combined
set of boundary conditions will be referred to as cylin-
drical pinned with smoothing boundary condition (cps-
BC). The pinning fields at the left boundary induce an
(exponentially) decaying magnetization in the bulk of the
system. The resulting incommensurate correlations are
analyzed away from the open boundaries in the central
area of the system.

Finite size artifacts for small systems

Incommensurate correlations for J ′ . 0.5 exhibit (ex-
ponentially) long wave lengths λ ≡ 2π/(π − qJ). These
correlations are strongly affected by small system sizes
and the boundary conditions applied, and as such may
potentially be misinterpreted. An example is given in
Fig. 3. For fully periodic boundary conditions (per-BC),
the relatively small 12×6 system clearly shows finite size
effects of the type q̃J ≡ π− qJ ≃ 2π

L n with n = 0, 1, 2, . . .
an integer. The small and noisy deviations from pure in-
teger n may already be considered an indicator that the
system tries to break away from the periodicity enforced
by given system length L = 12. In contrast, the incom-
mensurate data for the larger 64×6 system, using cps-BC
clearly interpolates the per-BC data in a smooth fashion.
A fit of the form q̃J(J

′) = a(J ′)2e−b/J′

is shown in Fig. 3
in solid gray [see also Fig. 8 later]. For the fully peri-
odic system, even for relatively large systems the tran-
sition between uniform collinear behavior (n = 0) and
the first “transition” to n = 1 will always occur at rela-
tively large J ′ & 0.5, which may thus be misinterpreted
as a transition into a collinear phase. Note that this
“transition” changes the parity or reflection symmetry of
the ground state which has been used as an argument in
favor of a (possibly continuous) phase transition in the
literature.9,11

In contrast, for all of our data using cps-BC for as small
as J ′ ≃ 0.3 . . . 0.5 for the width-4 system (not presented),
we still see incommensurate behavior,8 in that the mag-
netization data shows a clear onset of oscillatory behavior
consistent with our fit to qJ . It has significantly larger
error bars, however, since (i) many more states would ac-
tually have to be kept for full convergence given that the
entanglement block entropy strongly grows for smaller J ′,
and (ii) the corresponding wavelength λ = 2π/(π − qJ)
can no longer be determined reliably as it clearly exceeds
accessible system sizes.

B. Determination of the incommensurate wave
vector

The incommensurate wave vector is determined by the
analysis of the system’s response to the pinning fields at
the left boundary using cps-BC. The procedure is illus-
trated for a 64 × 4 system for J ′ = 0.6 in Fig. 4, and

0 0.2 0.4 0.6 0.8 1

0

1

2

3

J’/J

(π
−

q J) 
× 

(L
/2

π)

 

 
12x6 system (per−BC) → L=12
64x6 system (cps−BC)

Figure 3. (Color online) Comparison of the incommensurate
wave vector q̃J ≡ π−qJ obtained from DMRG between a small
12×6 system with fully periodic BC (per-BC) [solid line with
round symbols] and a larger 64×6 system using cps-BC (data

[black asterisks] with a fit of the type a(J ′)2e−b/J′

[gray line]
taken from Fig. 8 below). The incommensurate data for the
fully periodic system was extracted from the residual 〈Sz,x〉 ∼
10−3 data derived from the calculated DMRG ground state for
Stot
z = 0, consistent with explicit 〈S0 · Si〉 correlation data.

In the fully periodic system, no pinning or smoothing was
applied to guarantee full translational invariance. Due to the
presence of long-range interactions, in the per-BC case up to
m = 5000 states had to be kept.

with altered pinning for J ′ = 0.5 in Fig. 5. Note that
despite J ′ ≃ 0.6 was suggested as the phase boundary
towards collinear order,11 both systems, Fig. 4 as well as
Fig. 5, clearly show pronounced incommensurate oscilla-
tions still, while having J ′ ≤ 0.6.

Using cps-BC, in Fig. 4(a) the leftmost site of each
chain is pinned through a staggered external magnetic
fields |Bpin| = 0.5 which thus respects the underlying AF
correlations of the Heisenberg model for smaller J ′. How-
ever, the exact details of the applied pinning usually did
not matter [see Fig. 5 later]. After a relatively short tran-
sient region, the magnetization of each chain followed a
clear exponential decay with superimposed oscillations,
as seen in Fig. 4(c). The period of these oscillation usu-
ally neither is a simple multiple of the underlying lat-
tice spacing a, nor does a multiple of the period fit into
the specific finite system size under investigation, i. e.

the period is incommensurate. The smoothing27 of the
right open boundary roughly affected the right 20% of
the system [see data associated with right axis in inset
to Fig. 4(c)]. Within the smoothing region at the right
boundary, both couplings, J as well as J ′, were damped
uniformly as a function of horizontal chain position x
by weights that smoothly turned into an exponential de-
cay ∝ e−Λx, i. e. decreasing the couplings by a factor of
Λ = 2 within one horizontal lattice spacing a. This set-
ting has been used for smooth boundary throughout. The
purpose of this smooth boundary in the cps-BC setup
was tailored to blur the finite size in the direction of the
chains, and hence to least constrain incommensurate cor-
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Figure 4. (Color online) Analysis of the incommensurate
correlations for 64×4 system at J ′ = 0.6 using cps-BC. Panel
(a) shows the magnetization 〈Sz,x〉 at the open left bound-
ary [black arrows on top of each site], as triggered by the
staggered pinning fields Bpin

x,y at the leftmost sites [gray ar-
rows] with |B| = 0.5. The triangular lattice with sites and
bonds is indicated in the background, with the bonds due
the periodic BC in the vertical direction indicated by dashed
lines. Panel (b) shows 〈S · S〉 correlations between nearest-
neighbor sites around the center of the system. These cor-
relations are well-converged, uniform, and antiferromagnetic
[indicated by the same red color], with intrachain correla-
tions 〈S · S〉J ≃ −0.394 and significantly weaker interchain
correlations 〈S · S〉J′ ≃ −0.061. Panel (c) analyzes the full
〈Sz,x〉 response of the system, as partly already indicated in
panel (a), as a function of horizontal position for all chains.
It shows the bare 〈Sz,x〉 data [light colors], together with the
exponentially decaying oscillating envelopes [strong colors],
from which the exponential decay ξ and the incommensurate
period λ are determined from a phase analysis, as described
in Eq. (5) and the following discussion. The inset shows the
reduced purely oscillating part of 〈Sz,x〉. The right axis set
of the inset and its corresponding data [matching colors] in-
dicate the weights applied to the couplings for smoothing the
open right boundary.

relations.
The incommensurate correlations for smaller J ′ then

are dominated by AF correlations, as the wave vector qJ
rapidly approaches the boundary of the Brillouin zone
of a single chain, qJ → π. This is seen in the zigzag
structure of the bare 〈Sz,x〉 data for J ′ = 0.6 in Fig. 4(c)
[light colors in the background], while the envelope for
every other site [lines in strong color] are plain decaying
oscillating ± sin() and ± cos() curves for even and odd
chains, respectively. Note that the data for all even or
odd chains in Fig. 4(c) coincides, and hence lies indistin-
guishable on top of each other.
The spiral correlations are analyzed then as follows.

With a two-chain periodicity normal to the chains, the
system can be regarded as an interleaved set of even
chains (chains 2, 4, . . .) and odd chains (chains 1, 3, . . .).
Consequently, the position x of the sites in chain direction
in the odd chains [x = 1

2
, 3
2
, . . ., in units of lattice spacings

a] is shifted by half a lattice constant with respect to the
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Figure 5. (Color online) Analysis of the incommensurate
correlation for the same system as in Fig. 4, except for smaller
J ′ = 0.5 and the pinning field which is applied to a single site
a the left boundary only [indicated by the light gray arrow in
panel (a); B=0.5]. Panel (b) shows the intrachain correlations
at the center of the system, having 〈S · S〉J ≃ −0.419 with
strongly weakened interchain correlations 〈S · S〉J′ ≃ −0.038
due to frustration. Note that 〈S · S〉J is already close to
the lower bound for the mean of 〈S · S〉J ≥ 1

4
− ln(2) =

−0.4431, derived from the ground state energy E0/J of a
single Heisenberg chain.28

even chains [x = 1, 2, . . .]. With 〈Sz,x〉 the measured spin
projections in z-direction of the spin at site position x,
the exponentially decaying envelope 〈Sz,0〉e−x/ξ allows
to determine the correlation length ξ by fitting. With
q̃J ≡ π − qJ ≪ 1 quickly becoming small for J ′ < 1,
the pure oscillatory part of the spiral correlations along
the chains can be extracted. Up to an irrelevant overall
phase, it is given by

〈Sz,x〉/(〈Sz,0〉e−x/ξ) ∼ cos ((π − q̃J) x) (5)

= cos (πx) cos (q̃Jx) + sin (πx) sin (q̃Jx)

=

{

(−1)x cos (q̃Jx) for x = 1, 2, . . . (even chains)
(−1)x̃ sin (q̃Jx) for x = 1

2
, 3
2
, . . . (odd chains),

with x̃ ≡ x − 1
2
in the last line. This zigzag due to the

signs together with the oscillatory envelope of sine and
cosine waves is clearly seen in the main panel Fig. 4(c).
Here the global phase is fixed through the pinning at
the left boundary, thus facilitating the overall numerical
convergence within the DMRG calculation. By apply-
ing staggered signs and correcting for the overall expo-
nential decay, pure cosine (even chains) and sine waves
(odd chains) can be extracted, as shown in the inset to
Fig. 4(c). Here the sign-factor for odd chains needs to be
understood as (−1)x̃, as introduced with Eq. (5). The in-
commensurate wavelength λ ≡ 2π/(π− qJ ) of the slowly
oscillating envelope can then be determined, for example,
from the zero-transitions of these oscillations, assuming
that several periods fit into the system.
Alternatively, a phase analysis of the the cosine-sine

relationship in Eq. (5) can be employed to determine
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qJ . For this, note that away from the open boundaries,
the slow oscillations of the envelope in Fig. 4(c) or its
inset are well described by c(x) ≡ r(x) cos(ϕ(x)) and
s(x) ≡ r(x) sin(ϕ(x)), with ϕ(x) ≡ qJx, up to an irrel-
evant overall phase, and a common decaying envelope
function r(x). Here even and odd chains are only dis-
tinguished by their respective discrete sets of values for
x. Nevertheless, for example, by interpolating the sine
data for odd chains half-way in between two neighboring
sites, values (c(x), s(x)) for a matching position x are ob-
tained. With tan(ϕ(x)) = s(x)/c(x), the wave vector qJ
can thus be determined from the slope of the calculated
phase ϕ(x). The amplitude r(x) drops out, hence its
precise value and functional dependence is unimportant.
This phase analysis, indeed, represented a reliable alter-
native procedure to determine qJ for smaller J ′. In par-
ticular, it also showed the quality of the underlying sine
and cosine data, which for the systems in Fig. 4 or Fig. 5
demonstrated an excellent linear dependence of ϕ(x) over
the fitting range x indicated by the vertical dashed lines
in the inset to panels (c). The specific resulting values
for the exponential decay ξ and the wavevector qJ are
specified with the panel.

The analysis in Fig. 4 has been repeated for exactly
the same system, yet for smaller J ′ = 0.5 and with the
pinning reduced to a single site (ssp) at the left bound-
ary, as indicated in Fig. 5(a). If the same J ′ = 0.6 as in
Fig. 4 had been taken, the altered pinning of Fig. 5 solely
resulted in a modified transient behavior right next to the
pinning fields at the left boundary, which also leads to a
different irrelevant phase of the oscillatory part in 〈Sz,x〉.
The resulting correlation length ξ as well as the incom-
mensurate wave vector λ, however, are exactly the same
as already indicated in Fig. 4(c), with relative differences
on the order of 1%. This insensitivity of the incommen-
surate behavior to the exact details of the pinning at the
left boundary is seen also for a wider range of J ′, as will
be demonstrated in Fig. 7.

The analysis in Fig. 5 then is based on a system with
the smaller interchain coupling J ′ = 0.5, instead. The
pinning occurs on a single site at the lowest chain, con-
sidered chain #1, and hence an odd chain. Similar to
Fig. 4, in the main panel Fig. 5(c) a transient behavior
at the left boundary is clearly visible. Not surprisingly,
the data within the odd chains differs for x/a . 15, given
that one of them is pinned. Overall, however, data for
even or odd chains quickly coincide away from the left
boundary, consistent with what has already been seen
in Fig. 4. Also, the data for even chains coincides from
the very beginning. This is attributed to the very weak
〈S ·S〉J′ correlation in between the chains [see Fig. 5(b)]
due to the systems inherent frustration despite the size-
able J ′ of 0.5.

III. RESULTS

A. Review of width-2 system (zigzag chain)

The triangular system consisting of two chains is
also referred to as zigzag or J1-J2 chain, with nearest-
neighbor interaction J1 ≡ J ′ and next-nearest neighbor
interaction J2 ≡ J . While it has been widely studied
in the literature,27,29 we carefully reexamine the zigzag
chain in the entire parameter range from small to large
J ′, with the main focus on incommensurate behavior23

for J ′ < 1. This analysis for the width-2 system then
sets the stage for the wider systems further below, which
will proceed in a completely analogous fashion.
The results for the 128× 2 system are summarized in

Fig. 6 using cps-BC. Since for the zigzag chain the peri-
odic boundary in the width of the system is equivalent
to taking J ′ → 2J ′ and using open BC, the boundaries
are considered open in this case, while nevertheless ap-
plying pinning and smoothing as usual. The data shown
in Fig. 6 covers a wide range of J ′ from large J ′ ≫ 1
down to smaller J ′ & 0.5. For this purpose, panels (a-c)
plot the data vs. J ′ in units of J for J ′ ≤ 1, while for
J ′ > 1 the data is plotted vs. J in units of J ′ in reverse
order. To be specific, while J and J ′ is indicated on the
horizontal axis in panels Fig. 6(a-c) for readability, what
is actually plotted on the horizontal axis is

ζ ≡
{

J′

J for J ′/J ≤ 1 → ζ ∈ [0, 1]
2− J

J′
for J ′/J ≥ 1 → ζ ∈ [1, 2]

(6)

Overall then, ζ ∈ [0, 2] covers the entire range J ′ ∈ [0,∞],
with ζ = 1 being the isotropic triangular lattice. Note
that the derivative of ζ(J ′) is smooth across J ′ = 1,
which is also reflected in the smoothness of all data across
J ′ = 1 in panels Fig. 6(a-c).
Panel (a) of Fig. 6 analyzes the nearest-neighbor cor-

relations 〈S ·S〉J and 〈S ·S〉J′ at the center of the system
along and in between the chains, respectively. The over-
all averages 〈〈S ·S〉J〉 and 〈〈S ·S〉J′〉 are shown in strong
solid colors with symbols. The data for individual bonds,
〈S · S〉J and 〈S · S〉J′ , with respect to nC

S = 8 sites from
both chains is shown in light colors [solid lines]. Much of
the data of individual bonds lies indistinguishable on top
of each other, which demonstrates the uniformity of the
system [larger deviations will be seen later for wider sys-
tems for small J ′ due to numerical issues [e. g. see Fig. 8].
In Fig. 6, tiny deviations in the individual bond data are
seen only for the very smallest J ′ = 0.4 analyzed. De-
spite numerical issues as discussed with panel (b) below,
this is also attributed to finite size effects, in that the in-
commensurate wavelength λ ≡ 2π/(π − qJ ) reaches and
rapidly extends beyond given system size for small J ′.
While the 〈S · S〉J data widely agrees with its aver-

age, the 〈S · S〉J′ data shows a symmetry-broken state.
The interchain bonds combine two different diagonal di-
rections, and as such shows dimerization over a wide
range,23 seen as the opening of a dimerization bubble in
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Figure 6. (Color online) Analysis of 128 × 2 system (zigzag
chain) around the system center using cps-BC over a wide
range of J ′. In panels (a-c), the horizontal axis shows J ′ for
J ′ < 1, smoothly switching to the inverse 1/J ′ for J ′ > 1 [cf.
Eq. (6)]. Panel (a) shows the nearest-neighbor spin correla-
tions of individual bonds along the chains [〈S · S〉J ] and in
between the chains [〈S · S〉J′ ]. Here, up to dimerization, this
leads to many lines lying on top of each other, with minor de-
viations seen for the smallest J ′ only. 〈〈S ·S〉J〉 and 〈〈S ·S〉J′〉
corresponds to the averaged 〈S · S〉J and 〈S · S〉J′ data, and
is shown in strong colors [dashed with bullets and asterisks,
respectively]. Panel (b) indicates the numerical cost of the
calculations in terms of the effective dimension D∗ ≡ eS (see
text). D∗ is calculated w.r.t. to bonds of the linearized system
[cf. path shown in Fig. 1]. Given intrinsic even-odd alterna-
tions, for simplicity, only the maximum and minimum D∗

from block-decompositions w.r.t. the system center is shown.
Panel (c) shows the incommensurate wave vector qJ [solid
blue with bullets for 128 × 2 system, black pluses for larger
250×2 system], where the thick solid line for smaller J ′ repli-
cates the exponential fit from panel (d). For reference, also
the classical incommensurate wave vector qclJ as well as the
spin-gap ∆S/J is shown, with the latter calculated for plain
cylindrical BC (see text). Panel (d) analyzes the incommen-
surate data qJ for small J ′ relative to the zone boundary vs.
plain inverse J ′ on a semilogarithmic plot. A smooth expo-
nential fit [solid red (dark gray)], and for comparison, a plain
polynomial fit [solid green (light gray)] are shown. Data for
a larger 250 × 2 system as well as data from White ’96 [23]
are included. The horizontal dashed lines indicate 2/L, i. e.
the smallest q̃J/π ≡ 1− qJ/π reachable for given system size
[color match with data in panel]. The inset shows the relative
deviation of both fits from the data. Thin (thick) lines are
for the smaller (larger) system, while red (dark gray) [green
(light gray)] lines refer to the exponential [simple polynomial]
fit, respectively.

the 〈S · S〉J data. This bubble closes, i. e. approaches
its average [asterisks] for J ′ → 0 and for large J ′ at
1/J ′ ≃ 0.241167.29 The dimerization results from spon-
taneous symmetry breaking along the direction of the
chains with alternating weak and strong interchain bonds
[interestingly, a similar symmetry breaking is encoun-
tered again later in an increasingly weaker form for the
wider width-6 and width-10 systems]. The width-2 sys-
tem analyzed here becomes completely dimerized at the
Majumdar-Ghosh point,30 J ′ = 2, as seen in Fig. 6(a)
at J/J ′ = 0.5. There both, the 〈S · S〉J data [blue (dark
gray) line with bullets] as well as the upper branch in the
〈S ·S〉J′ data [solid light green (gray) lines], pass through
zero, while the lower branch in the 〈S ·S〉J′ data reaches
its strongest negative value of −0.75 due to pairwise sin-
glet formation.

The numerical cost of a DMRG calculation is directly
reflected in the effective dimension D∗ ≡ eS, which is
plotted in Fig. 6(b). Here S is the block-entropy around
the center of the system, i. e. the von-Neumann entropy
after tracing out approximately half of the system. Up to
a prefactor, the effective dimension D∗ directly indicates
the dimension D of the underlying matrix product state
that is required for some fixed prespecified accuracy. As
such, D∗ indicates the numerical cost, which in the case
of DMRG scales as O(D3). For reference, Fig. 6(b) also
indicates the actual number of states [m ≤ 2055, largest
for small J ′] as well as the maximum discarded weight,
ǫρ. D

∗ typically shows even-odd behavior and also varia-
tions depending on the explicit block-partitioning of the
system. Hence the maximum and minimum D∗ across
the system center is shown. As seen in Fig. 6(b), D∗

saturates for large J ′, and exhibits a minimum at the
Majumdar-Ghosh point, J ′ = 2. There D∗ alternates
between the minimum of 1 [at the boundary in between
two singlets] and the maximum of 2 [cutting across one
singlet]. Starting from the Majumdar-Ghosh point, when
decreasing J ′, D∗ increases exponentially, with a further
strong boost for J ′ . 0.6 [note that panel (b) is a semilog-
arithmic plot]. The strong increase in numerical cost for
small J ′ is clearly due to the effective decoupling of the
chains in this parameter regime. This leads to largely
independent Hilbert spaces that need to be combined in
a tensor product. Nevertheless, the presence of the frus-
trating neighboring chains does affect the detailed na-
ture of the effective low-energy Hilbert spaces, hence the
sweeping path across the chains as depicted in Fig. 1 is
important, and cannot simply be replaced, for example,
by a sweep preferentially along entire chains first.

The results for the incommensurate wave vector qJ are
shown in Fig. 6(c) [blue (dark gray) bullets], together
with data from a larger 250×2 system [black pluses] and
an exponential fit for small J ′, replicated from panel (d)
[thick red (black) line]. The incommensurate wave vec-
tor qJ vanishes at the Majumdar-Ghosh point, being zero
for J ′ ≥ 2. This phase boundary incidentally agrees with
the classical incommensurability qclJ for the infinite sys-
tem. On the other hand, while for small J ′ the classical
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qclJ approaches the boundary of the Brillouin zone in a
linear fashion [also plotted in panel (c) for comparison],
the quantum mechanical incommensurability is strongly
reduced, in that qJ approaches the zone boundary of π
much faster, and at first sight, even appears to vanish al-
ready for J ′ ≃ 0.5. But as we will argue in the following,
it does not.
The spin-gap ∆S of the zigzag chain [also calculated

and shown in panel c, for reference; see later discussion]

is described for small J ′ by ∆S ≃ c1e
−c2/J

′

,23 with con-
stants c1 and c2 of order one. For large J ′, on the other
hand, the dimerization [panel (a)] as well as the spin-gap
[panel (c)] are expected to vanish for 1/J ′ = 0.241167.29

Motivated by this inverse exponential behavior of the
spin-gap for small J ′, Fig. 6(d) shows the qJ data of
panel (c) vs. plain inverse J ′. Moreover, in order to zoom
into the boundary of the Brillouin zone, the incommen-
surate data qJ is plotted in terms of q̃J ≡ π − qJ on a
semilogarithmic scale in y-direction. Clearly, the incom-
mensurate q̃J decays fast for large x-values [i. e. small J ′

values], close to exponentially, indeed, but by no means
does q̃J show any tendency to vanish for finite J ′. On
the contrary, the data shows a slight upward curvature.
We fitted the data for q̃J in the interval indicated by

the two vertical lines in Fig. 6(d) in two ways: (i) an
exponential fit of the type

q̃J(
1
J′
) ≡ π − qJ(

1
J′
)

∼= c1(J
′)c3e−c2/J

′

, (7)

and (ii), for comparison, also a plain polynomial fit. The
exponential fit indicated an exponent c3 ≃ 2, so c3 was
fixed to this value for the zigzag chain. The remaining
fit parameters are shown in the legend of panel (d). For
comparison, the plain power law fit results in (J ′)3.16, in
agreement with the O(J ′3) estimate by [14] in the case
where spiral order is selected by fluctuations at O(J ′2).
It is hard to discern in panel (d), which of the two fits is
closer to the data, so the relative difference of the actual
data to the fitted values is shown in an inset to panel
(d). The slight positive curvature of the power-law fit in
the panel appears somewhat too strong, which is clearly
magnified still in the inset. In comparison, the exponen-
tial fit lies significantly closer to the actual data, which
due to the large number of states kept in the calculation,
is well-converged.
From this we conclude, that the exponential fit of the

type c1(J
′)2e−c2/J

′

, which is non-analytic in J ′, fits best
for the incommensurate wave vector of the zigzag chain.
Moreover, from the systematic behavior seen in the in-
commensurability down to J ′ & 0.5, we take this as a
strong indication that π− qJ remains finite for any finite
J ′ < 0.5. From further calculations for J ′ ∼ 0.3 . . .0.5
(not shown) we do see that the oscillatory bending of the
Sz data as in Fig. 4 continues. The system, however, can
no longer be taken large enough to accommodate even
a single full period of an incommensurable wave, which
would allow a reliable determination of qJ . Clearly, given

the exponentially rapid decay of π − qJ as in e−c2/J
′

,
the required system sizes to actually analyze incommen-
surable order for small J ′ becomes exponentially large.
With the fit parameters in panel (d), for example, the re-
quired system length estimated by λ ≡ 2π/q̃J for J ′ = 0.3
is around λ ≃ 1, 300 sites, while for J ′ = 0.2 it would have
already grown to λ ≃ 11, 500 sites!

B. Width-4 to width-10 systems

The same analysis as for the width-2 system in Fig. 6
is performed for systems of width-4 [Fig. 7], width-6
[Fig. 8], width-8 [Fig. 10], and width-10 [Fig. 11]. All
systems analyzed exhibit smoothly changing incommen-
surate behavior for finite J ′ < J ′

C with J ′
C & 1.25. The

width-4 system in Fig. 7 includes reference data [black
pluses in panels (c-d)], with the pinning altered from an
AF-pinning at the left boundary [cf. Fig. 4] to pinning
of a single site [cf. Fig. 5]. The data is clearly consis-
tent with each other, which emphasizes the insensitivity
to the exact details of the pinning at the open boundary
and supports a clear two-chain periodicity normal to the
chain direction in the center of the system.

For comparison, also the spin-gap ∆S was calculated
for the systems up to width-8 with rudimentary finite-size
scaling only.31 The spin-gap ∆S was obtained by calculat-
ing the ground state energy ES

0 for increasing total spin
S of a system with plain cylindrical boundary conditions,
i. e. in the absence of pinning fields or smoothing of the
boundary. In avoiding fully periodic boundary conditions
for numerical but also physical reasons [i. e. accounting
for incommensurate behavior], the open boundary at the
end of the cylinder can carry spinful edge excitations.31

Since these edge states quickly decouple with increasing
system length, they can and do lie within the spin-gap
for the width-4, 6, 8, . . . systems. Thus the total spin S
was increased until a true bulk excitation was observed
in the data, i. e. the measured 〈Sz,x〉 data was no longer
exponentially confined to the boundary. The energy of
this state relative to the global ground state was used to
estimate the spin-gap ∆S .

31

1. Intermediate chain coupling

The major striking effect seen in the wider systems is
the symmetry-broken alternation of the nearest-neighbor
exchange correlation (to be referred to as dimerization)
for intermediate J ′, as seen in Figs. 6-11. The dimeriza-
tion bubble in the 〈S ·S〉J′ data, which is strongly visible
for width-2 [Fig. 6(a)], disappears for width-4 [Fig. 7(a)]
and width-8 [Fig. 10(a)], while it clearly reappears in
ever weaker form for width-6 [Fig. 8(a)] and width-10
[Fig. 11(a)]. While the strength of the dimerization,
where present, clearly weakens for smaller J ′, it never-
theless appears to persist for finite J ′ < 1.
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Figure 7. (Color online) Analysis of 64× 4 system using cps-
BC [analysis is similar to Fig. 6; for a detailed description
of panels and insets see caption there]. The system shows
no dimerization, with the incommensurate phase boundary
at J ′

C ≃ 1.78. Small finite-size and numerical limitations are
seen for J ′ < 0.5 in panels (a-b). The exponential fit in panel
(d) as in Eq. (7) gives c3 ≃ 1 to a good approximation, hence
c3 has been fixed to 1. The reference data [black crosses]
shown in panels (c) and (d) derive from exactly the same
physical system, with the only difference of having a single
site pinned only [cf. Fig. 5].

A typical symmetry-broken state for the width-6 sys-
tem is shown in Fig. 9, with a similar pattern aris-
ing for the width-10 system. Here J ′ was chosen such
that the bond strength 〈S · S〉J along the chains just
crosses zero [cf. Fig. 8(a)]. Note that a dimerization pat-
tern as in Fig. 9 has been recently also observed on an
isotropic four-leg triangular ladder with additional ring
exchanges.32 Overall, the dimerization seen here suggests
a qualitative difference of the systems of width 4n + 2
(symmetry-broken systems), with n an integer, to sys-
tems of width 4n (uniform systems), while nevertheless,
a two-chain periodicity perpendicular to the chains is
maintained in either case. Equivalently, this translates
into an even-odd effect in the number of laterally coupled
zigzag chains. As the dimerization clearly weakens with
increasing system width, however, in the thermodynamic
limit the dimerization is expected to vanish completely,
resulting in a consistent picture independent of the actual
system width.

The reoccurrence of the dimerization in the width
(4n+2) systems in Figs. 8 and 11 is also reflected in sev-
eral other quantities, similar to what has already been
seen in the width-2 system in Fig. 6. Specifically, in the
parameter range where the dimerization is strongest [e. g.
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Figure 8. (Color online) Analysis of 64× 6 system using cps-
BC [analysis is similar to Fig. 6; for a detailed description of
panels and insets see caption there]. The system again shows
spontaneous symmetry breaking, with the associated dimer-
ization pattern at J ′ = 1.16 shown in Fig. 9. Strong finite-size
and convergence issues are seen for J ′ . 0.6 in panels (a-b).
The phase boundary for incommensurate behavior (panel c)
is given by J ′ ≤ J ′

C ≃ 1.27. Similar to the width-2 system,
the exponential fit as in Eq. (7) in panel (d) results in c3 ≃ 2,
thus c3 has been fixed to this value.

Figure 9. (Color online) Spontaneously symmetry-broken
ground state of the 64 × 6 system [Fig. 8 at J ′ = 1.16, hav-
ing m = 4096 states kept, with the chain coupling J ′ chosen
such that the intrachain bond strength 〈S · S〉J just crosses
zero in Fig. 8(a)]. The figure shows the extremely uniform
〈S · S〉J and 〈S · S〉J′ across the central region of the system,
having 〈S · S〉J′ ∈ {−0.3453,−0.2039} and 〈S · S〉J = 0.0038,
with deviations below given accuracy. This underlines the
in-sensitivity to the open boundaries having cps-BC. With
〈S · S〉J [horizontal bonds] still slightly positive, it is indi-
cated in blue (black) vs. red (gray) for negative values. The
weaker interchain bond is shown in lighter color for increased
contrast.

where the lower branch in the 〈S · S〉J′ bubble reaches
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Figure 10. (Color online) Analysis of 64 × 8 system using
cps-BC [analysis is similar to Fig. 6; for a detailed descrip-
tion of panels and insets see caption there]. The system is
uniform without any spontaneous symmetry breaking, with
incommensurate behavior for J ′ ≤ J ′

C ≃ 1.56. Finite-size
and convergence issues are seen for J ′ . 0.6 in panel (a),
with significant numerical truncation starting with J ′ . 0.8,
as indicated by the artificial suppression (kink) of D∗ in panel
(b). The exponential fit in panel (d) uses c3 = 2 [cf. Eq. (7)],
although the fitting range no longer supports a clear prefer-
ence for either c3 = 1 or c3 = 2.
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Figure 11. (Color online) Analysis of 〈S · S〉 correlations for
width-10 system using cps-BC with a similar analysis as in
panels (a) and (d) of Fig. 6 [for a more detailed description,
see caption there]. The system again shows spontaneous sym-
metry breaking in terms of a dimerization bubble for larger
J ′. The regime J ′ . 0.8 suffers strong numerical limitations
[panel (a)]. Panel (b) analyzes the incommensurate behav-
ior with tentative fits to the regime J ′ < 1 using c3 = 2
[cf. Eq. (7) and other symmetry-broken systems]. The in-
commensurate phase terminates at J ′ . J ′

C ≃ 1.27. The
horizontal dashed line again indicates 2/L, i. e. the smallest
q̃J/π ≡ 1− qJ/π reachable for given system size. There, how-
ever, the block-entropy has already grown to such an extent
that this limit is no longer reachable reliably numerically.

a minimum in panels (a)], (i) also a minimum is seen
in the effective dimension D∗ in panels (b), while (ii) at
the same time the incommensurate behavior terminates
in panels (c) [panel (b) of Fig. 11]. For the width-2 sys-
tem [Fig. 6], this exactly corresponds to the Majumdar-
Ghosh point, J ′ = 2, while for the width-6 system [Fig. 8]
as well as for the width-10 system [Fig. 11] this occurs
at J ′

C ≃ 1.27. Interestingly, in all symmetry-broken cases
the strongest dimerization always occurs around the zero-
transition of the bond strength 〈S · S〉J along the chains
(see panels a).
In contrast, the non-symmetry-broken width 4n sys-

tems show an effectively flat D∗ for J ′ > 1, as seen for
width-4 in Fig. 7(b) and width-8 in Fig. 10(b). At closer
inspection, nevertheless a shallow minimum in D∗ is dis-
cernible, which within the accuracy of our data again also
coincides with the point where the incommensurate be-
havior terminates. In contrast to the symmetry-broken
systems, this typically occurs at a somewhat larger J ′

still, i. e. at J ′
C ≃ 1.78 for the width-4 system [Fig. 7(c)],

and J ′
C ≃ 1.56 for the width-8 system [Fig. 10(c)]. The

larger J ′
C is also reflected in a qualitatively different shape

of the curve of the incommensurate wave vector qJ [pan-
els (c)] as compared to the symmetry-broken systems.
For the phase boundary where the incommensurate

behavior vanishes, a numerical analysis suggests that
qJ(J

′) ∼ |J ′−J ′
C |1/2 for J ′ → (J ′

C )
−. This is particularly

so for the width-2 system, while for larger widths the in-
commensurate data is not as reliable to make a definitive
statement. The reason being, that at the point where
the incommensurate behavior vanishes, typically also the
correlation length ξ becomes shortest, e. g. even vanish-
ing for the width-2 system. Consequently, only a very
short spatial range is accessible to determine qJ from the
Sz data, which for all systems is much shorter than the
actual chain length analyzed. While the extraction still
works relatively well for width-2 and width-4 systems,
the qJ data becomes more noisy for the width-6 system,
as seen, for example, in Fig. 8(c) around J ′

C ≃ 1.27.
Similarly, also the spin-gap ∆S/J

′ reflects the quali-
tatively different behavior of the non-symmetry-broken
width 4n systems [Fig. 7(c) and Fig. 10(c)], in that it
saturates for large J ′ at a finite value. This value, how-
ever, appears to diminish rapidly with increasing width.
For the symmetry-broken systems of width-2 and width-
6, on the other hand, the spin-gap vanishes for large J ′.
Both sets of systems lead us to conclude that the spin-gap
vanishes in the thermodynamic limit.

2. Small chain couplings

The small J ′ regime is increasingly affected by finite
size effects and limited numerical resources for the wider
systems, where the entanglement across the chains in-
creases strongly. This limits the numerically accessible
range. For the width-4 system in Fig. 7, for J ′ . 0.5
a slight spread is seen in the individual bond correla-
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tions [solid lines] in panel (a), and more pronouncedly,
in panel (b) where the effective dimension D∗ is cutoff
by the maximum number of states that could be kept
[m ≤ 7000]. Similar to the width-2 system, D∗ shows
a strong exponential increase for intermediate decreasing
J ′ < J ′

C ≃ 1.78. For the width-6 system, strong conver-
gence issues arise for J ′ . 0.6 [Fig. 8(a)], for the width-8
system for J ′ . 0.7 [Fig. 10(a)], and for the width-10
system for J ′ . 0.8 [Fig. 11(a)]. In the latter case, the
accuracy is already also compromised for intermediate
J ′, as seen by the slight spread in the individual bond
data for J ′ . 1.10.
Bearing in mind this limited numerical accessibility of

small J ′, the incommensurate behavior for smaller J ′ is
analyzed exactly the same way as for the width-2 sys-
tem in Fig. 6(d) for the width-4 [Fig. 7(d)], width-6
[Fig. 8(d)], width-8 [Fig. 10(d)], and the width-10 system
[Fig. 11(b)]. The data was fitted both, with an exponen-
tial fit as in Eq. (7), as well as with a plain polynomial fit.
Interestingly, for all systems from width-2 to width-10,
the plain polynomial fit qJ ∼ (J ′)3 does represent a very
close fit, in agreement with [14]. However, similar to the
discussion of the width-2 system, there appear systematic
deviations which can be improved upon by using an ex-
ponential fit. This is clearly seen for the width-4 system
[see inset to Fig. 7(d)], and to a somewhat lesser degree
given numerical limitations for the width-6 [Fig. 8(d)] or
width-8 system [Fig. 10(d)].
Finally, the incommensurate data of all systems an-

alyzed [Figs. 6-10(d) and Fig. 11(b)] is summarized in
Fig. 12. Since the data for the width-2 system is cal-
culated without periodic wrapping (as this just doubles
the strength of the interactions of existing bonds between
the chains), a factor of 2/3 was applied onto J ′ for the
width-2 system such that the incommensurate data vis-
ibly coincides at J ′ = 1 with the data from the wider
systems. With this, for smaller J ′ (large J/J ′), the in-
commensurate data shows little qualitative and quantita-
tive differences. This supports the intuitive notion that
as the chains become more and more independent, the
dependence of the incommensurate behavior on the ac-
tual system width also weakens. In particular, none of
the data indicates that the incommensurability may van-
ish for small but finite J ′.

3. Correlation length

In contrast to the incommensurate wave vectors, the
correlation length ξ still shows a pronounced dependence
on the system width. Following the analysis in Eq. (5),
in the incommensurate regime aside from the oscillat-
ing behavior that determines qJ , a clear exponential de-
cay is observed and fitted in the central area of the sys-
tem away from the open left and right boundaries [cf.
Figs. 4 and 5]. The combined results for width 2 to 10
are shown in Fig. 13. The horizontal axis of the width-
2 system again has been scaled the same way as shown
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Figure 12. (Color online) Summarized incommensurate data
q̃J ≡ π−qJ for width-2 to width-10 systems [Figs. 6-10, panel
(d), and Fig. 11(b), respectively]. For wider systems, the
incommensurate phase terminates at J ′

C ≃ 1.25. The inset
shows the same data vs. J ′ on a linear scale.

0.5 1 1.5 2

10
0

10
1

J/J’

co
rr

el
at

io
n 

le
ng

th
 ξ

 

 

64×2  (J’×2/3)
64×4
32×6
32×8
32×10

Figure 13. (Color online) Combined data of correlation
length defined through Eq. (5) for width-2 to width-10 sys-
tems. The correlation length is shown only in the parame-
ter regime where the systems show incommensurate behavior.
Outside this range [i. e. for large J ′/J ], depending on system
width, exponential decay can be replaced by algebraic decay.

and discussed with Fig. 12. Considering the qualitative
difference between width 4n and width (4n+ 2) systems
then, only width-(2, 6, 10, . . .) or width-(4, 8, . . .) may be
directly comparable. This strongly limits finite-size anal-
ysis in terms of the system width. While the correlation
length strongly grows with the width of the systems, con-
sistent with the fact, for example, that the isotropic case
has finite magnetization,16 nevertheless, finite-size scal-
ing in the width of the system would be crucial in the
explicit determination of the existence of magnetization
for arbitrary J ′ in the thermodynamic limit. This is thus
beyond the scope of the present paper.
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IV. SUMMARY AND OUTLOOK

The incommensurate correlations on the anisotropic
spin-half Heisenberg lattice have been analyzed over a
wide range of chain couplings J ′/J . The incommensurate
behavior in terms of the Brillouin zone of a single chain
is found to change smoothly from qJ → π for weak chain
coupling to qJ = 0 for J ′ ≥ J ′

C > 1. In particular, our
results are consistent with the 120◦ order for the isotropic
lattice, which is also reflected in the crossing of qJ with
the classical incommensurability qclJ at J ′ = 1 in Figs. 7-
10(c). Away from the isotropic point, the 120◦ order in
the spin correlations changes smoothly into the 1D-AF
correlations for J ′ < 1 or into the square AF correlations
for J ′ ≥ J ′

C . Note that the emphasis here is on the
relative order of spin correlations, rather than explicit
magnetization.16 The latter is out of the scope of this
paper and thus left as an outlook.
Given the strong frustration in the system, one may

expect that for smaller interchain couplings J ′ the actual
data becomes less sensitive to the width of the system14

[see Fig. 12]. Therefore already the narrower even-width
systems provide a good qualitative description of the two-
dimensional triangular lattice in the regime of small J ′.
Finite size effects on our cylinders include symmetry-
broken and non-symmetry-broken ground states as for
width (4n+2) and 4n systems, respectively, so extrapola-
tions in the width should separate these two classes.10,14

From the analysis of the incommensurate data, we find
that exponential fits of the form Eq. (7) fit the data for
the incommensurate wave vectors best. While the ac-
cessible range is limited to finite J ′, we nevertheless see
very systematic behavior for smaller J ′ down to J ′ & 0.5

where the correlations between the chains are already
strongly reduced due to inherent frustration. We take
this as evidence that the exponential behavior is valid
down to J ′ =0. That is, the incommensurate behavior
remains present for any finite 0 < J ′ < J ′

C . Given the
derived exponential fits, one may estimate the required
system sizes for J ′ < 0.5. Taking J ′ = 0.2 for the width-4
(width-6) system, for example, a system length of & 8700
sites (& 3400 sites) would be required, respectively. From
a DMRG point of view, this is completely out of reach
at this stage. It needs to be seen to what extent recently
emerging infinite size algorithms, such as iTEBD33 or
iDMRG34 will be able to deal with this kind of situation
while bearing in mind that incommensurate correlations
with an (exponentially) large underlying wave length rep-
resent a delicate issue.

Meanwhile experimental quantum simulations utilizing
ultracold atoms are making rapid progress. With simula-
tions on the classical anisotropic Heisenberg lattice per-
formed successfully recently,35 this provides the exciting
outlook that the simulation of quantum spin models may
become accessible to this highly controlled experimental
arena in the near future.
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