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We investigate with the aid of numerical renormalization group techniques the thermoelectric
properties of a molecular quantum dot described by the negative-U Anderson model. We show that
the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation
induced asymmetry in the spectral function close to the Fermi level. We show that this effect results
in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems
with Seebeck coefficients exceeding 50µV/K over a wide range of gate voltages.
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Introduction.— Thermoelectric devices currently use
bulk materials, e.g. Si-Ge, PbTe or Bi2Te3

1–3. In fu-
ture, devices made of nanoscale objects, such as quantum
dots or molecules, could offer alternatives, particularly
for low temperature applications, such as on-chip cool-
ing of microprocessors or low temperature refrigeration.
Nanoscale objects have some potential advantages over
their bulk counterparts; for example, in scalability or in
their high degree of tunability (e.g. via a gate voltage),
allowing them to be operated at optimal thermoelectric
efficiency. Molecular quantum dots, in particular, could
be interesting to study, since a large variety of such sys-
tems could be fabricated and investigated for interesting
thermoelectric properties4.
The description of electrical and thermal transport

through quantum dots is, however, a challenging theo-
retical task. Electrons tunneling from the leads through
the quasi-localized levels of the dot typically experience
a large Coulomb repulsion on the dot, giving rise to the
spin Kondo effect5. The latter profoundly affects trans-
port, resulting, for example, in the lifting of Coulomb
blockade at low temperatures for a wide range of gate
voltages and an enhanced conductance close to the uni-
tary limit, G ≈ G0 = 2e2/h, for symmetric coupling to
the leads6–10. Recent experimental and theoretical work
has also addressed the effects of Kondo correlations on
the thermoelectric properties of such quantum dots11–13.
However, the Kondo induced enhancement of the ther-
mopower at the Kondo temperature TK was found to be
very small13 suggesting that the spin Kondo effect, in its
simplest manifestation, is ineffective for realizing efficient
thermoelectric devices.
In this Rapid Communication we consider a molecu-

lar quantum dot with an attractive onsite Coulomb in-
teraction, U < 0, described by a negative-U Anderson
impurity model, Eq. (1) below. Such a model has been
used to explain the dielectric properties of amorphous
semiconductors14, to describe highly polarized heavy

fermion states15 and to investigate the noise and non-
equilibrium transport through negative-U molecules16.
For a molecular quantum dot, several mechanisms could
result in U < 0, for example, screening by electrons
in metallic leads can reduce an initially repulsive local
Coulomb interaction to negative values17, or, a vibrating
molecule with a local electron-phonon interaction could
result in a net attractive Coulomb interaction18,20. For
typically used metallic electrodes, such as gold, screen-
ing is expected to ensure the locality of the attractive
interaction in Eq. (1).
A negative-U quantum dot supports a charge Kondo

effect in which the role of spin up and spin down states
in the conventional spin Kondo effect are played by the
non-magnetic empty and doubly occupied states of the
dot15. As in the usual spin Kondo effect, this charge
Kondo effect results in a renormalized Fermi liquid at low
temperatures which has important consequences for elec-
trical and thermal transport. It is also believed to be the
origin of superconductivity in PbTe doped with Tl, where
the valence skipper Tl acts as a negative-U Centre21,22.
While some aspects of the electrical transport through a
negative-U molecule have been investigated16, the most
astonishing feature of such a system, elucidated below,
lies in its remarkable low temperature Kondo induced
thermoelectric response which has not been previously
addressed.
Model and calculations.— Specifically, we consider a

quantum dot described by the following two-lead Ander-
son impurity model

H =
∑

σ

εdndσ + Und↑nd↓ +
∑

kασ

ǫkαc
†
kασckασ

+
∑

kασ

(tαc
†
kασdσ + h.c.). (1)

where, εd is the energy of the molecular level, U < 0
is the local Coulomb interaction, σ labels the spin, and
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α = L,R labels left and right electron lead states with
kinetic energies ǫkα. The couplings of the dot to the leads
are denoted by Γα(ω) = 2πρα(ω)|tα|

2, where ρα(ω) =
∑

k δ(ω − ǫkα) is the density of states of lead α.
The linear response transport properties can be cal-

culated from the single-particle spectral function of the
dot Aσ(ω) = −Im[Gdσ(ω + iδ)]/π, where Gdσ(ω + iδ) =
〈〈dσ; d

†
σ〉〉 is the Fourier transform of the retarded single-

particle Green function of (1). The thermopower is given
by12

S = −
1

|e|T

∫

dω ωT (ω) (−∂f/∂ω)
∫

dωT (ω) (−∂f/∂ω)
, (2)

where f is the Fermi function, e is the electronic charge,
and T (ω) = 2πΓ(ω)

∑

σ Aσ(ω) is the transmission func-

tion of the dot with Γ(ω) = ΓL(ω)ΓR(ω)
ΓL(ω)+ΓR(ω) . At low tem-

perature, a Sommerfeld expansion leads to

S(T ) = −
π2kB
3|e|

kBT

(

Γ′(ǫF )

Γ(ǫF )
+

∑

σ A
′
σ(ǫF )

∑

σ Aσ(ǫF )

)

(3)

where ǫF = 0 is the Fermi level of the leads. In the
absence of a magnetic field A↑(ω) = A↓(ω) = A(ω) is spin
independent. A large thermopower at low temperature
can be achieved by either tailoring the band structure of
the leads to give a highly asymmetric Γ(ω) at ǫF with
a large slope Γ′(ǫF )

23 or tailoring correlations to yield a
highly asymmetric A(ω) at ǫF with a large slope A′(ǫF ),
or both. We concentrate on the latter which is robust to
details of the lead density of states, and assume a smooth
Γ(ω) around ǫF , i.e., we take Γ(ω) = Γ = 0.01 (in units
of the half bandwidth of the leads).
The frequency and temperature dependence of A(ω, T )

is calculated by using the numerical renormalization
group (NRG) method24. Results for U/Γ = −8 were ob-
tained at gate voltages −|e|Vg = (εd +U/2) in the range
|Vg| ≤ 8Γ (setting e = 1). In addition, for T = 0, we
have compared results for occupation numbers nd with
those from functional renormalization group (fRG)25 and
Bethe Ansatz26 techniques (see Fig. 3 below). In the fol-

lowing, TK =
√

|U |Γ/4e−π|U|/4Γ5, denotes the relevant
low energy charge Kondo scale of (1). Due to the expo-
nential dependence on U and Γ, TK can vary by orders of
magnitude, e.g. for positive-U systems from 1 K to 200
K27. For U = −8Γ, we have TK = 2.64× 10−3Γ ≪ Γ.
Results.— Fig. 1 shows the T = 0 spectral function

for several gate voltages. At Vg = 0 the pseudo-spin
states nd = 0 and nd = 2 are degenerate, the spectral
function is symmetric, with a Kondo resonance of width
O(TK) at ω = 0 and two Hubbard satellite peaks at
ω = εd > 0 and ω = εd + U < 0. A finite gate voltage
Vg induces a splitting ∆E = −2Vg of the pseudo-spin
states which is analogous to a magnetic field in the con-
ventional spin Kondo effect, i.e. the spectral function
becomes highly asymmetric due to the polarizing effect
of Vg, with nd changing substantially from its “perfectly
screened” value of nd = 128. This asymmetry in the
single-particle spectral function with a large slope at ǫF ,
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FIG. 1: (Color online) Main panel: T = 0 spectral function
for U/Γ = −8 for different gate voltages Vg/TK , inset (a):
A(ω,T = 0) near ω = 0, inset (b): temperature dependence
of A(ω,T ) for Vg/TK = 1.
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FIG. 2: (Color online) Thermopower S versus temperature
at different gate voltages Vg/TK and U/Γ = −8. Inset: com-
parison with U > 0 thermopower for Vg/TK = 10.

for both spin components, is the origin of the large ther-
mopowers to be discussed below. The analogy to the
spin Kondo effect in a magnetic field, can be made pre-
cise for the case of particle-hole symmetric bands which
we consider: a particle-hole transformation on the down
spins, allows the negative-U Anderson model in absence
of a local magnetic field to be mapped onto the positive-U
symmetric Anderson model in a finite local magnetic field
B = 2ǫd + |U | = −2Vg

29, thereby explaining the highly
asymmetric spectral function of (1) shown in Fig. 1. The
polarizing effect of finite Vg ∼ B is strongest at T = 0
and diminishes for T ≫ TK (see Fig. 1b). In terms of the
above analogy, this corresponds to the quenching of the
magnetization M = (nd↑ − nd↓)/2 at high temperatures
in the corresponding positive-U model in a field B.
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Fig. 2 shows the main result of this Rapid Commu-
nication: a dramatic enhancement of the Seebeck coeffi-
cient induced by a finite gate voltage Vg & TK exceed-
ing 50µV/K for Vg & 2TK . The maximum in the ther-
mopower occurs on a temperature scale which correlates
with Vg and is therefore highly tunable. Corresponding
Seebeck coefficients for U > 0 in the Kondo regime are
insignificant (inset, Fig. 2). The large enhancement in S
is due to the correlation induced asymmetry in the spec-
tral function at finite Vg. At low temperatures, explicit
calculations, within Fermi liquid theory5, also shed light
on this enhancement. In this limit, the thermopower may
be expressed in terms of the occupancy nd of the dot as

S(T ) = −
πγT

|e|
cot(πnd/2) (4)

with γT ≪ 1, and γ being the linear coefficient of spe-
cific heat of the dot5 (with γ ∼ 1/TK for Vg = 0). A
finite Vg ∼ TK polarizes the charge Kondo state, lead-
ing to nd ∼ 2 for Vg > 0. This enhances a nomi-
nally small (≪ kB/|e|) thermopower by the large factor
cot(πnd/2) ≫ 1. Note also, that while a finite mag-
netic field for U > 0 also leads to asymmetric spectral
functions A↑(ω) and A↓(ω) around ǫF , the asymmetry
in the Kondo regime is opposite for spin up and spin
down. Consequently, it largely cancels in the combina-
tion

∑

σ Aσ entering (2) and the thermopower is not en-
hanced. (Furthermore, for nd ≃ 1, the factor cot(πnd/2)
is very small.) Finally, note that S(T ) of the negative-U
model in Fig. 2 does not exhibit a sign change with in-
creasing temperature for any finite Vg, in contrast to the
case of U > 013: the sign change of the latter is due to
a change in slope of the spectral function at the Fermi
level, induced by a collapse of the Kondo resonance with
increasing temperature. This cannot occur in the U < 0
model, since the spectral function remains polarized by
a finite Vg at all relevant temperatures.
The gate voltage dependence of the thermopower and

electrical conductance is shown in Fig. 3a-b at several
temperatures. Except at T . TK , a large Seebeck coeffi-
cient exceeding 50µV/K can always be realized by suit-
able choice of gate voltage. By tuning the gate voltage
to positive or negative values about the charge Kondo
state at Vg = 0 one can realize the p-type or n-type
legs of a thermoelectric device. Note the absence of a
Kondo plateau in G(Vg) at T ≪ TK in Fig. 3b, which
contrasts with the U > 0 case, and the rapid drop on
a scale Vg ∼ TK of G(Vg) due to the suppression of the
Kondo state by finite gate voltage acting like a magnetic
field in the conventional Kondo effect16,18,19. NRG re-
sults for nd(T = 0) versus Vg compare very well with
fRG calculations at U/Γ = −2,−4 and with exact Bethe
Ansatz (BA) calculations at U/Γ = −8 (see Fig. 3c).
Fig. 3d shows that G(T ) exhibits the typical Kondo scal-
ing behavior at small gate voltages Vg . TK .
The thermoelectric efficiency of a nanoscale device is

related to its dimensionless figure of merit defined by
ZT = PT/K, where P = S2G is the power factor, and
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FIG. 3: (Color online) Gate voltage dependence of ther-
mopower S (panel (a)) and conductance G (panel (b)) at typ-
ical temperatures T/TK . Inset (c): dot occupation number
nd versus gate voltage for U/Γ = −2,−4,−8. fRG results for
U/Γ = −2,−4 agree with NRG to less than 8% relative er-
ror, while for U/Γ = −8 NRG agrees with the Bethe Ansatz26

very well. Inset (d): temperature dependence of G at selected
gate voltages Vg/TK .
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arrows. Inset: upper and lower bounds for ZT , as defined in
the text, at several gate voltages.

K = Ke + Kph the thermal conductance due to elec-
trons (e) and phonons (ph). For metallic leads, Ke will
give the dominant contribution to K30, while for semi-
conducting leads, Kph will also be important. Since no
calculation of Kph in the presence of Kondo correlations
is available, we discuss the efficiency of our system in
terms of the power factor PVg

(T ), shown in Fig. 4, and
give upper and lower bound estimates for ZT below. The
power factor is largely independent of details of the leads,
making it a useful quantity for future comparison with
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experiments. It is also a relevant quantity for on-chip
cooling of a hot source in microelectronics1. For each
Vg the power factor exhibits a maximum at a tempera-
ture which is related to Vg. The envelope of these curves
has two maxima, one at T ≈ TK for Vg ≈ 2TK and an-
other at high temperatures T ≈ 2Γ for Vg ∼ 4Γ ≫ TK .
In contrast, for U > 0, the power factor is vanishingly
small in the Kondo regime, with larger values being ob-
tained only at the border between mixed valence and
Kondo regimes13. Turning to ZT , an upper bound es-
timate is obtained by setting Kph = 0. A lower bound
estimate is obtained by assuming that the molecule is
transparent to phonons. In this case, each phonon mode
contributes the maximum ballistic thermal conductance
of κ0 = π2kBT/3h

31. For three phonon modes we have
Kph = 3κ0 resulting in a lower bound estimate for ZT .
Both bounds (see inset to Fig. 4) show a maximum at a
temperature T that correlates with Vg, with the upper
bound exceeding 1 for Vg/TK ≫ 1 and T/TK ≫ 1. In
a real device, phonons will be inelastically scattered, e.g.
by vibrational modes of the molecule, thereby reducing
Kph below its ballistic value, especially at higher tem-
peratures where anharmonic effects become important.
Hence, our lower bound for ZT is likely too stringent so
that a suitable choice of gate voltage could allow interest-
ing values of ZT ∼ 0.5− 1 to be achieved at T ∼ 100TK.
Conclusions.— In summary, we investigated the ther-

moelectric properties of a negative-U molecular quantum
dot exhibiting the charge Kondo effect. A small gate volt-
age Vg & TK is found to polarize the charge on the dot
creating a single-particle spectral function which is highly
asymmetric about the Fermi level. This yields a large en-
hancement of the Seebeck coefficient exceeding 50µV/K
on a temperature scale comparable to Vg. The device
is highly tunable and allows large power factors to be
achieved at virtually any temperature by suitable choice
of the gate voltage. In addition to the mentioned possible
realizations of such devices, molecular complexes similar
to those in Ref. 27, but with valence skipping ions32 such
as Bi, Tl or In, acting as negative-U centers, and attached
to gold leads, could be promising systems to look into in
the future. Reducing the dimensionality of the leads, e.g.
by using carbon nanotubes33, could further enhance the
power factor23.
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