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We show that by enclosing graphene in an optical cavity, giant Faraday rotations in the infrared
regime are generated and measurable Faraday rotation angles in the visible range become possible.
Explicit expressions for the Hall steps of the Faraday rotation angle are given for relevant regimes. In
the context of this problem we develop an equation of motion (EOM) method for the calculation of
the magneto-optical properties of metals and semiconductors. It is shown that properly regularized
EOM solutions are fully equivalent to the Kubo formula.

PACS numbers:

I. INTRODUCTION

Electromagnetic radiation emitted by far stellar ob-
jects travels for long periods of time through very di-
luted concentrations of interstellar gases, traversing re-
gions where week magnetic fields exist. In this circum-
stance, the polarization of the electric field rotates due to
its interaction with the gases immersed in the magnetic
field. Due to the enormous traveling distances through
such interstellar regions, the degree of rotation of the po-
larization can be important. This magnetic rotational
effect turns out to be a problem in astrophysics, since it
modifies, in an unpredictable way, the polarization state
of the emitted radiation, introducing additional difficul-
ties in the interpretation of the astronomical observa-
tions. In the electrodynamics of metals and insulators
the effect of polarization rotation induced by a magnetic
field was first discussed by Faraday1, and on Earth has
many different applications.

In magneto-optics, the effect coined optical Faraday
rotation1 refers to the rotation of the plane of polariza-
tion of light when it transverses either a dielectric2 or a
metal3, in the presence of a static magnetic field applied
along the direction of propagation of the electromagnetic
wave. In addition to the rotation of the plane of polar-
ization, the polarization itself acquires a certain degree
of ellipticity. In dielectrics, the effect can be explained
using a model of harmonic oscillators coupled to light.2
In metals, the effect has its roots in the Hall effect.4

For a two-dimensional metal, such as graphene, in the
Hall regime, the conductivity becomes a tensor, σ̂, with
finite (non-zero) values for both diagonal and off-diagonal
components. In magneto-optics, the components of the
tensor depend both of the frequency of the impinging
electromagnetic wave and on the cyclotron frequency of
the electrons, due to the magnetic field perpendicular to
the plane of the metal. The response of the electrons
to the external magnetic field has two different regimes:
(i) the semi-classical limit, of low fields or/and high elec-

tronic density; (ii) the quantum Hall regime, of strong
fields or/and low electronic density.

For the interpretation of the optical Faraday rota-
tion, in the semi-classical regime, Drude theory of metals
suffices.3 In the case of graphene, it is possible to change
its electronic density either by using a gate or by the ad-
sorption of molecules.5,6 At large doping, graphene is in
the semiclassical regime and Boltzmann transport theory
can be used to compute the Hall conductivity.7

In the absence of disorder and other relaxation mecha-
nisms (such as electron-phonon scattering), the conduc-
tivity of graphene (at zero magnetic field) would be exclu-
sively determined by interband transitions. In the limit of
no disorder, the optical conductivity of doped graphene,
in the infrared region of the spectrum and at zero mag-
netic field, is given by8–15

σxx = σgnF (~ω − 2EF ) , (1)

where σg = πe2/(2h) is the so-called ac universal con-
ductivity of graphene.8,16–18

When a magnetic field is applied perpendicularly to
graphene’s surface, the system develops a finite Hall con-
ductivity. In the quantum regime, it was shown that
Faraday rotation angle θF is solely determined by the
fine structure constant α, and presents a step-like struc-
ture as the Fermi energy crosses different Landau levels
(LLs).19 The estimated Faraday rotation steps’ height in
this case is of order of θF ∼ 0.4◦,19 a magnitude that
can be resolved experimentally.20 In the context of topo-
logical insulators, similar quantization rules in particular
thin-film geometries have been derived in Refs. 21 and 22.
We note in passing that, when the external magnetic field
is absent, a dynamic Hall effect can still be induced by
using circularly polarized light impinging on graphene at
a finite angle with the normal to the graphene surface.23

In the theoretical side, the magneto-optical trans-
port properties of graphene have been investigated with
the Green’s function method8,10, and by means of
numerical implementations of the Kubo formula, us-
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ing exact diagonalization19 and Chebyshev polynomial
expansions.24 These approaches come with pros and
cons: numerical studies allow to explore general scenar-
ios, whereas Green’s functions allows to obtain analytic
results, but many times at the expense of a lengthy cal-
culations.

Motivated by the need for analytical flexible analytical
tools, the equation of motion (EOM) method employed
in Ref. 25 is generalized as to include the effect of a mag-
netic field. As shown later, starting from a small set of
EOMs, an adequate treatment permits the derivation of
the response functions with correct analytical properties
(i.e., satisfying Kramers-Kronig causality relations).

The present paper is divided in two main parts. In
Sec. II we present the EOM method for the calculation
of the magneto-optical transport in metals and semicon-
ductors; to be concrete the method is described in the
context of the properties of graphene. In Sec. III we de-
scribe in detail the Faraday effect in graphene and pro-
pose an experimental setup that is able to enhance the
Faraday effect up to the visible range. Sec. III relies
heavily in the results derived earlier in Sec. II. Several
technical details are given in Appendix.

We have chosen to organize the subjects according to
the following interests of the different readers: the reader
having a primary interest on the Faraday effect, and
familiar with all the details about the magneto-optical
properties of graphene, should be able to read Sec. III
with a bird’s eye reading of Sec. II. The reader inter-
ested in the Faraday effect in graphene but not well ac-
quainted with its magneto-optical properties may want
to go through Sec. II first. Finally, the reading of Sec. II
alone may appeal to those readers interested in applying
the equation of motion method to another problem of
interest bearing no relation to graphene.

II. EQUATION OF MOTION METHOD FOR
THE CALCULATION OF THE

MAGNETO-OPTICAL CONDUCTIVITY

In the forthcoming sub-section, we develop the equa-
tion of motion approach to the calculation of the
magneto-optical properties of a semiconductor. To be
concrete, the method is presented in the context of the
optical response of graphene. The magneto-optical re-
sponse of graphene was used before in the study of Fara-
day rotation in graphene.

Electrons constrained to two dimensions are responsi-
ble for a variety of quantum manifestations, a striking
example being the integer quantum Hall effect (IQHE).
Measured in semiconductor 2D electron gases more than
30 years ago26 and in the yearly days of graphene, in
both monolayer5,27 and bilayer samples28 (very recently
also in trilayer graphene29), the static quantum Hall ef-
fect is an hallmark elementary of excitations in electronic
systems.30

Its dynamical analogue—the ac quantum Hall effect—

can provide additional information about charge carriers,
such as the opening of gaps in the spectrum.31 Recent ad-
vances in time-domain spectroscopy in the Thz regime20
have paved the way to measure the dynamical optical
conductivities at impinging field energies closer to the
scale of interest. The goal is to reach cyclotronic energies,
usually O(10)meV in fields 1-10 T, whereof strong optical
responses take place. The so-called optical quantum Hall
conductivity of 2D electron gases shows robust plateaux
as the Fermi energy is swept, although no quantization
rule for the plateaux’s height exists.32 Due to its peculiar
band structure, graphene has been predicted to display
a characteristic optical quantum Hall effect which should
be detectable via Faraday rotation measurements.19 In
the semi-classical regime, on the other hand, the Faraday
rotation of graphene was reported to be O(1) degrees in
fields of a few tesla33, a surprisingly high value for an
one-atom thick electronic system.

Figure 1: (Color online) Lattice structure and Brillouin zone
of monolayer graphene. Left: Hexagonal lattice of graphene,
with the next nearest neighbor, δi, and the primitive, ai,
vectors depicted. The area of the primitive cell is Ac =
3
√

3a20/2 ' 5.1 Å2, and a0 ' 1.4 Å. Right: Brillouin zone of
graphene, with the Dirac points K and K′ indicated. Close
to these points, the dispersion of graphene is conical and the
density of states is proportional to the absolute value of the
energy.

A. Graphene

The starting point of the present analysis is the low-
energy continuum description of single-layer graphene;
having two (carbon) atoms per unit cell and six-fold
symmetry, its elementary excitations obey a 2D Dirac
equation with linear electronic dispersion.34 This sub-
section is meant to fix the notation. The Brillouin zone
of graphene has six corners and among these only two
are inequivalent, the so-called K and K′ Dirac points
(see Fig. 1). At these points, the valence and conduc-
tion bands touch, with linear electronic spectrum up to
energies ∼2eV.

We assume, in what follows, that the two Dirac points
can be treated independently, and introduce the val-
ley degeneracy index, gv = 2, when pertinent. This
consideration is justified for typical experimental condi-
tions (i.e., low concentrations of scattering centers, finite
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temperatures, etc.) and provides an accurate descrip-
tion of graphene’s electronic transport properties at finite
densities.16,35

In accordance, we resort to the 2 × 2 Dirac Hamilto-
nian of graphene, describing the physics of elementary
excitations within the K valley, HK = vFσ · p, where
vF ' 106m/s is the Fermi velocity, σ = (σx, σy) [with
σi (i = x, y) denoting Pauli matrices], and p is the mo-
mentum of the low-energy excitation (measured relative
to the K point).34 HK has eigenvalues given by

E = ±~vF |k| , (2)

[with k = (kx, ky) denoting a two-dimensional wave vec-
tor], and (normalized) wavefunctions given by

ψλ,k(r) =
1√
2A

(
1

λeiθk

)
eik·r , (3)

where A is the area of the graphene sample, λ =
+1(−1) for electron(hole)-like excitation, and θk =
arctan(ky/kx).

The electromagnetic field can be incorporated via min-
imal coupling, p → p + eAg, where −e < 0 is the
electron charge, and the vector potential Ag relates to
the electromagnetic field according to the usual relations,
B = ∇×Ag and E = −∂Ag/∂t.

Here, the vector potential contains the information
about the impinging electromagnetic radiation, and pos-
sible external static magnetic fields. Assuming light lin-
early polarized along the x-axis, the radiation term reads
A = [A0(r)e−iωt + c.c.]ex, where ω stands for the fre-
quency of the radiation field and A0(r) describes its po-
sition dependence. For clarity of exposition, we separate
the light-matter interaction term from the free Hamilto-
nian,

H = H0 + evFσ ·A , (4)

where H0 ≡ HK + evFσ · AB , with AB describing the
static magnetic field.

A typical experimental scenario corresponds to a con-
stant magnetic field B > 0 applied in the transverse di-
rection with respect to the graphene plane. In such case,
LLs develop and the eigenenergies of charge carriers be-
come quantized according to36

En = sign(n)
~vF
lB

√
2|n| , n = 0,±1,±2, ..., (5)

with lB =
√
~/(eB) denoting the magnetic length.

Choosing the gauge AB = (0, Bx, 0) results in the fol-
lowing set of Landau eigenfunctions,

ψn,ky (r) =
Cn√
L

(
φ|n|−1(x)

isign(n)φ|n|(x)

)
eikyy , (6)

where φn(x) = e−ξ(x)2/2Hn(ξ(x))/
√
n!2n
√
πlB , Hn(x) is

the Hermite polynomial of degree n ≥ 0, φ−1(x) = 0, and
ξ(x) stands for the dimensionless center of the Landau

orbit, ξ(x) = lBky+x/lB . Here, L is the linear dimension
of the system in the y direction and Cn is a normalization
constant that distinguishes the zero-energy level from the
remaining levels, Cn = 1 for n = 0 and Cn = 1/

√
2 for

|n| ≥ 1.
Having reviewed the basics of the graphene’s electronic

low energy theory, in what follows we present the EOM
approach to the study of magneto-optical transport.

B. Theoretical methods

In the context of electronic systems, the EOM was
extensively used in calculations of light polarization in
semiconductor laser theory.37 Recently, it has been used
to study excitons in graphene in zero field.25

The EOM approach avoids the calculation of current-
current correlators (i.e. Kubo formula), and hence pro-
vides a shortcut to the determination of response of elec-
tronic systems to external perturbations. As shown in
detail in Appendix C, with an appropriate regulariza-
tion procedure, the EOM solutions become fully equiva-
lent to the Kubo formula, and hence provide an accurate
description of transport in the linear response regime.
Another advantage of the present approach is that it al-
lows for the calculation of non-linear corrections to the
conductivity.38

At the heart of the EOM approach to the calcula-
tion of the magneto-optical conductivity is the Heisen-
berg equation for the electronic current density, J(t),
in the presence of an external electromagnetic field, i.e.,
dJ/dt = (i/~)[H,J ], with H being the total Hamilto-
nian, Eq. (4). Having solved for the current density of
the system in the presence of the external perturbation,
in first order in the external field A, the optical con-
ductivity follows from the constitutive electromagnetic
relation

σij(ω) = gsgv ×
J̃i(ω)

Ẽj(ω)
, (7)

where Õ(ω) relates to the average O(t) [O = Ji, Ej ] ac-
cording to O(t) = Õ(ω)e−iωt + c.c., with appropriate
regularization implicit (Appendix C; Sec. IID). Having
graphene in the Dirac cone approximation in mind, the
latter equation contains the relevant degeneracies. The
spin contribution as a degeneracy factor, gs, should be
valid for typical magnetic fields (.15 T) when the Zee-
man effect does not manifest.

The first step is to project the Heisenberg equation
of motion for the current onto the space of unper-
turbed single-particle states: we introduce the field op-
erator Ψσ(r, t) =

∑
α ĉα,σ(t)ψα(r) (and respective her-

mitian conjugate), where ĉα,σ(ĉ†α,σ) is the annihilation
(creation) operator obeying fermionic anti-commutation
rules: {ĉα,σ, ĉ†α′,σ′} = δαα′δσ,σ′ and {ĉα,σ, ĉα′,σ′} =

{ĉ†α,σ, ĉ
†
α′,σ′} = 0. The symbol α = (λ,k, ...) specifies the

single-particle state of the electron (or hole) and σ = ±1
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is the spin variable. The kets |α, σ〉 ≡ ĉ†α,σ|0〉 represent
eigenstates ofH0, and, therefore, the position representa-
tion, 〈r|α, σ〉 ≡ ψα,σ(r), equals Eq. (3) at zero magnetic
field or Eq. (6) in the presence of a transverse uniform
magnetic field.

The second-quantized form of the full Hamiltonian and
the current density operator is given by

Ĥ(t) =
∑
σ

ˆ
drΨ†σ(r, t)HΨσ(r, t) , (8)

Ĵi(t) =
∑
σ

ˆ
drΨ†σ(r, t)jiΨσ(r, t) , (9)

respectively, where,

j = −evF
A
σ , (10)

is the current density of graphene in the continuum
description.16,35 We omit the spin dependence of the op-
erators hereafter for clarity of exposition.

We now define the generic operator,

P̂αβ(t) ≡ ĉ†α(t)ĉβ(t) , (11)

whose EOM reads

d

dt
P̂αβ(t) =

i

~
∑
γ,δ

hγδ

[
P̂γδ(t), P̂αβ(t)

]
, (12)

where hγδ = 〈γ|Ĥ|δ〉 are the matrix elements of the full
Hamiltonian [Eq. (4)]. Solving for P̂αβ(t) gives directly
the current density according to,

Ĵi(t) =
∑
α,β

〈α|ji|β〉P̂αβ(t), (13)

and hence the (yet non-regular) optical conductivity via
Eq. (7). The regularization is the final step of the
EOM approach needed for obtaining a fully-consistent
conductivity (in particular, obeying Kramers-Kronig
relations).39 The respective technical procedure is given
in Appendix C.

In the following section, we solve explicitly Eq. (12) in
the linear response regime (i.e. first order in the electric
field) for any pair of quantum states α,β, in the absence
of a magnetic field. The case of finite (non-zero) magnetic
field intensity is left to Sec. IID.

C. Graphene in zero magnetic field

The purpose of this section is to show the equation
of motion method at work in the context of a simple
problem, which allow us to derive well known results.

In the absence of magnetic fields, the macroscopic elec-
tronic current follows the applied optical field, and thus
only the longitudinal conductivity is non-zero. From
symmetry considerations, we also have σxx(ω) = σyy(ω).

Figure 2: Allowed interband transitions (vertical arrows) in
graphene; a photon of energy ~ω produces an excitation from
the lower to the upper Dirac, as long as ~ω > 2µ. The tran-
sitions conserve k and hence are said to be “vertical”. For
~ω ≤ 2µ, Pauli blocking forbids any (interband) transition.
In practice, due to disorder (impurities, etc.), the interband
conductivity can be non-zero even for ~ω ≤ 2µ.

According to the statement Eq. (13), the relevant set of
EOM to be solved is determined by the non-zero matrix
elements of the current density.

Defining 〈k, λ|jx|k′, λ′〉 = −(evF /A)jxλ,λ′,k,k′ and us-
ing the wavefunctions Eq. (3), we easily find

jxλ,λ′,k,k′ =
δk,k′

2

(
λ′eiθk + λe−iθk

)
. (14)

With this notation, the current density along the x di-
rection reads,

Jx(t) = −evF
A

∑
λ,λ′,k

jxλ,λ′,k,k〈ĉ
†
λ,k(t)ĉλ′,k(t)〉 . (15)

The non-null matrix elements in Eq. (14) contributing to
the conductivity correspond to transitions between dif-
ferent bands conserving the momentum k. These transi-
tions are said to be “vertical” and, in addition, since they
connect states in different bands, they are refereed to as
being interband-like (see Fig. 2).

Taking the dipole approximation, A(r) → A0, the
Hamiltonian [Eq. (8)] reads

Ĥ =
∑
λ,k

Eλ(k)ĉ†λ,kĉλ,k + evFA0

(
e−iωt + c.c.

)
×

×
∑
k

jxc,v,k,kĉ
†
c,k,σ ĉv,k,σ + (c←→ v) . (16)

In the latter equation, Eλ(k) ≡ λ~vF k , and the sub-
scripts c (v) denote electrons (holes).

As described in above, we need to compute the
time evolution of the operator P̂v,c,k(t) = ĉ†v,k(t)ĉc,k(t).
Straightforward algebra yields,

d

dt
P̂v,c,k =

i

~

{
[Ev(k)− Ec(k)] P̂v,c,k

+evFA0

(
e−iωt + c.c.

)
jxc,v,k,k [n̂c(t)− n̂v(t)]

}
,

(17)
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where we have defined the occupation operator for elec-
trons (holes) as n̂c(v)(t) ≡ ĉ†c(v),k(t)ĉc(v),k(t). A similar
equation holds for P̂c,v,k,σ which can be obtained by in-
terchanging c←→ v.

To proceed, we take the average of Eq. (17) with re-
spect to the unperturbed Hamiltonian, H0, and approxi-
mate 〈n̂c(t)− n̂v(t)〉0 ' 〈n̂c − n̂v〉0. Both procedures are
consistent with an expansion of Ĵx(t) up to first order in
the parameter A0. The solution of the above differential
equation reads

〈P̂v,c,k(t)〉0 = P̃v,c,k(ω)e−iωt + P̃v,c,k(−ω)eiωt , (18)

with,

P̃v,c,k(ω) = evFA0j
x
c,v,k,k

〈n̂c〉0 − 〈n̂v〉0
Ec(k)− Ev(k)− ~ω − iΓ

,(19)

and we have introduced a imaginary energy Γ by hand,
as to account for disorder phenomenologically. The re-
maining term P̃v,c,k,σ(ω) can be obtained from the latter
expression by making ω → −ω and Γ → −Γ . From
Eq. (15), the oscillator strength of the current density
along the x direction J̃x(ω) is seen to be given by

J̃x(ω) = −evF
A

∑
k

[jxv,c,k,kP̃v,c,k(ω) + jxc,v,k,kP̃c,v,k(ω)] .

(20)
The longitudinal optical conductivity, σxx, follows from
Eq. (7),

σinterxx (ω) =gvgs
e2v2

F

iω

ˆ
d2k

4π2

(
sin2 θk

)
×

× nF [Ev(k)]− nF [Ec(k)]

Ec(k)− Ev(k)− ~ω − iΓ
+ (c↔ v) .

(21)

where nF (E) = 1/[e(E−µ)/kBT + 1] stands for the Fermi-
Dirac distribution (µ is the chemical potential). In deriv-
ing this expression, we have used the relation Ẽx(ω) =
iωA0. Taking the clean limit Γ → 0 and considering
ω > 0 and T = 0, one obtains the well known-result

Re σinterxx (ω) =
πe2

2h
θ (~ω − 2|µ|) . (22)

The latter result is the T → 0 limit of Eq. (1). For pho-
ton energies greater than 2µ (see Fig. 2), the interband
conductivity is essentially frequency independent (up to
energies ∼2 eV) and equals

σg =
πe2

2h
, (23)

which is nothing else than the universal conductivity of
graphene mentioned in the Introduction. For µ = 0,
and contrary to ordinary semiconductors, there is no fre-
quency threshold for interband transitions: according to

Eq. (22) some interband transitions will always be avail-
able for sufficiently high photon frequency. As a conse-
quence, Drude’s description will not suffice for a general
description of the optical response of graphene.

On top of the interband transitions discussed here,
there is an intraband contribution in graphene which can
be appreciable for µ 6= 0. This contribution comes from
non-vertical processes (e.g. via collisions with phonons),
not included in the Hamiltonian Eq. (16). This contri-
bution gives the Drude response and reads40

Reσintraxx (ω) =
2e2

h
|µ| Γ

~2ω2 + Γ2
. (24)

Interestingly enough, the latter result can be derived
from a full quantum mechanical calculation by consider-
ing a finite magnetic field intensity and taking the limit
B → 0 in the end.10 This is because a magnetic field
open gaps in the spectrum of the clean system, allowing
for intraband transitions (see Sec. IID). A semi-classical
calculation also leads to an equivalent result (Sec. II E).

D. Optical conductivity of graphene in a magnetic
field

In what follows, we show that the EOM method can
be employed to study the magneto-optical response of
graphene along the same lines of Sec. II C. The pres-
ence of a transverse magnetic field in the Hamiltonian
develops LLs, and hence we must start from the eigen-
states given in Eq. (6). The latter defines the field oper-
ator, Ψ(r, t) =

∑
n,ky

ĉn,ky (t)ψn,ky (r) (together with the
respective hermitian conjugate); the index n labels the
degenerate LL with energy given by Eq. (5). The field
operator can be written as

Ψ(r, t) =
1√
2L

∑
n 6=0,ky

(
φ|n|−1(x)

isign(n)φ|n|(x)

)
eikyy ĉn,ky

+
1√
L

∑
ky

(
0

φ0(x)

)
eikyy ĉ0,ky . (25)

This peculiar spinorial structure, with a single level being
highlighted, is on the basis of non-standard features in
the magneto-optical conductivity of graphene.8,11,31,41

1. The longitudinal conductivity

According to Eq. (7), the calculation of the longitudi-
nal conductivity requires the computation of the average
value of the current density operator along the x direc-
tion,

Jx(t) =
∑
n,n′

∑
ky,k′y

〈n, ky|jx|n′, k′y〉〈ĉ
†
n,ky

(t)ĉn′,k′y (t)〉 . (26)
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Using the LL wavefunctions [Eq. (6)], we easily find the
non-zero matrix elements to be,

〈0, ky|jx| ± 1, k′y〉 =− evF√
2A

δky,k′y , (27)

〈n, ky|jx|n′, k′y〉 =− evF
2A

i
[
sign(n′)δ|n|−1,|n′|

−sign(n)δ|n|,|n′|−1

]
δky,k′y , (28)

where in the last line n, n′ 6= 0. These statements show
that the optical transitions conserve ky and occur be-
tween levels with indexes n and n′ differing by the unit,
i.e., |n| − |n′| = ±1.

Two sets of transitions are thus allowed: intraband
transitions, occurring within the same band, and, as
in the absence of magnetic field, transitions connect-
ing LLs in the valence and conduction bands, which
are interband-like. Transitions involving the zero en-
ergy state n = 0 can either be considered intraband or
interband-like, since the zero-energy state is shared be-
tween electrons and holes. For sake of simplicity in defin-
ing the set of EOMs, throughout, we classify the transi-
tions involving the zero energy state as being interband.

In order to clearly distinguish between the possible
types of transitions, we define

ĉn,ky ≡


cn for n > 0

v|n| for n < 0

a0 for n = 0

, (29)

with the hermitian conjugates following identical redefi-
nitions. Note that with these definitions the subscript n
in the operators take only positive integer values.
Interband transitions.—Using the field operator in the

presence of a magnetic field [Eq. (25)], and just keeping
track of the interband terms for the moment being, the
full Hamiltonian takes the following form,

Ĥ =
∑
n≥1

[
Enc

†
ncn + E−nv

†
nvn
]

+
evFA(t)√

2

[
c†1a0 + v†1a0 + h.c.

]
−evFA(t)

2
i
∑
n≥1

[
P̂ (1)
n + P̂ (2)

n − h.c.
]
, (30)

where A(t) ≡ A0(e−iωt + c.c.), and

P̂ (1)
n = c†nvn+1 , (31)

P̂ (2)
n = c†n+1vn . (32)

(Also, for clarity, we have omitted ky under all the sum-
mation signs.) The first line in Eq. (30) describes mass-
less Dirac fermions in a transverse magnetic field and the
remaining lines contain the electronic transitions among
different LLs induced by the external electric field.

The interband current density along the x direction
can be recast into the form

Ĵx(t) = − 1√
2A

evF

(
c†1a0 + v†1a0 + h.c.

)
+

1

2A
evF

∑
n≥1

(
iP̂ (1)
n + iP̂ (2)

n + h.c.
)
. (33)

From the form of the current we see that there are two
basic sets of EOMs to be solved: a first set refers to
the time evolution of operators involving the zero-energy
state (c†1a0, v

†
1a0 and hermitian conjugates), while the

other set refers to higher energy LLs. Take for instance
the operator P̂ (1)

n belonging to the latter set; as in the
case of zero magnetic field (Sec. II C), the commutator
[H, P̂

(1)
n ] gives rise to i) occupation number operators

(v†n+1vn+1 and c†ncn), and ii) a free evolution term, that
is, the operator P̂ (1)

n itself. In addition, intraband terms
with |n| − |n′| = ±2 show up, namely, c†ncn+2, v

†
n−1vn+1

and a†0v2δn,1. These terms do not originate real intraband
transitions, since the respective current density matrix
elements are null.

We are now in position to write the prototype EOMs
governing the interaction of Landau quasi-particles with
an external oscillating electric field,

~
i

d

dt
P̂ (1)
n =

[
En − E−(n+1)

]
P̂ (1)
n − i

2
evFA(t)×

× [v†n+1vn+1 − c†ncn] , (34)
~
i

d

dt
P̂c = E1P̂c +

1√
2
evFA(t)[a†0a0 − c†1c1] , (35)

where we have omitted the time dependence of the op-
erators and defined P̂c(v) = c(v)†1a0. The remaining op-
erators obey similar equations. [The EOM for P̂ (2)

n is
obtained making P̂ (1)

n → P̂
(2)
n and interchanging n with

n+1 in the right-hand side of Eq. (34). As for P̂v, we let
P̂c → P̂v, E1 → E−1 and c1(c†1)→ v1(v†1) in Eq. (35).]

To solve the above set of differential equations in first
order in A0, we proceed as in Sec. II C. Taking the aver-
age value 〈...〉0 of each EOM with respect to the unper-
turbed Hamiltonian, H0, the solution for each operator
O can be written as 〈O(t)〉0 = Õ(ω)e−iωt + Õ(−ω)eiωt,
where the oscillator strengths read

P̃ (1)
n (ω) = − i

2
evFA0

〈v†n+1vn+1〉0 − 〈c†ncn〉0
E−(n+1) − En − ~ω − iΓ

, (36)

P̃c(ω) =
1√
2
evFA0

〈a†0a0〉0 − 〈c†1c1〉0
−E1 − ~ω − iΓ

, (37)

and where, as in Sec. II C, we have added a imaginary
energy Γ to account for level broadening. The solutions
for P̃ (2)

n (ω) and P̃v(ω) can be obtained from the latter
expressions as described below Eq. (35).
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Figure 3: Schematic of electronic transitions contributing to
σxx(ω) of doped graphene in a magnetic field. In this example,
EF ≥ E1, and thus the last occupied LL, n = NF ≥ 1,
belongs to the conduction band. Two types of transitions take
place: i) interband transitions, connecting LLs from the lower
cone (valence band) with LLs in the upper cone (conduction
band), and ii) intraband transitions within the upper cone.
Intraband transitions are limited to adjacent LLs: NF →
NF +1. The picture shows the following interband transitions:
a) the pair −NF → NF + 1 and −NF − 1 → NF , whose
energy difference is EN+1+EN (the lowest interband energy).
Note that transitions −NF − 1 → NF are forbidden because
n = NF is occupied; b) the pair −NF − 1 → NF + 2 and
−NF − 2 → NF + 1. The respective energy difference is
EN+1 +EN+2 (the second lowest interband energy difference)
and in this case both transitions take place. Transitions with
higher energy differences are not represented.

Combining these results and Eq. (33), we easily find

J̃x(ω) =
1

2A
evF

∑
ky

∑
n≥1

[
iP̃ 1
n(ω) + iP̃ 2

n(ω)
]

−
√

2
[
P̃c(ω) + P̃v(ω)

]
+ ”c.c. term”

}
,(38)

where the summation over ky has been restored. This
summation yields the degeneracy of the Landau levels∑
ky

= A/(2πl2B). The last term in the above equation
(i.e., the c.c. term) is obtained taking the complex con-
jugate and making ω → −ω of all the previous terms.

The final expression for the longitudinal (interband)
conductivity is derived in two steps: 1) dividing the
Eq. (38) by Ẽx(ω) [Eq. (7)], and 2) undertake appro-
priate regularization to remove the divergent factor 1/ω,

σinterxx (ω) =
e2v2

F~
2πl2B

i

Nc∑
n=0

(1 + δn,0)
∑
α=±1

α

×
[

1

E−(n+1) − En
×

nF [E−(n+1)]− nF [En]

E−(n+1) − En − α(~ω + iΓ)

+(n↔ n+ 1)] . (39)

The above expression is analytic in the upper-half plane
and finite at ω = 0, thus obeying Kramers-Kronig causal-
ity relations. (We refer to Appendix C for the derivation

and physical grounds of the regularization procedure.)
Note that, as usual when dealing with low-energy the-
ories, a cutoff energy Ecut of the order of bandwidth
must be considered for consistency; we take n ≤ Nc,
with Nc = int[(Ecut/E1)2], where int[...] denotes the in-
teger part. Nc varies roughly as 104B−1 with B in tesla.
Within the physical relevant range for Ecut, these sum-
mations converge quite rapidly; the figures in the present
work have Ecut ≈ t '2.7 eV.
Intraband transitions.—The intraband interaction

Hamiltonian reads

Ĥ intra
int =

i

2
evFA(t)

∑
n≥1

[
v†nvn+1 − c†ncn+1 − h.c.

]
, (40)

and the zero energy operators (a0 and a†0) are ab-
sent given our classification of intraband transitions [see
Eq. (29) and text therein]. The calculation follows iden-
tical steps to the interband conductivity, and hence will
not be repeated. The final expression for the (regular)
intraband diagonal conductivity reads,

σintraxx (ω) =
e2v2

F~
2πl2B

i
∑
α=±1

α

Nc∑
n=1

[
1

En+1 − En
×

× nF [En+1]− nF [En]

En+1 − En − α (~ω + iΓ)

+(En → −En ∧ En+1 → −En+1)] . (41)

The full longitudinal conductivity σxx(ω) is given by
adding its interband and intraband counterparts, that is,
Eqs. (39) and (41), respectively; straightforward algebra
yields

σxx(ω) =
e2

h

Nc∑
n 6=m=−Nc

Λxxnm
iEnm

nF (En)− nF (Em)

~ω + Enm + iΓ
, (42)

with Enm = En − Em, and where we have defined the
longitudinal matrix elements

Λxxnm =
~2v2

F

l2B
(1 + δm,0 + δn,0)δ|m|−|n|,±1 . (43)

Equation (42) is the main result of the present sec-
tion. It coincides with Eq. (7) of Ref. 42 obtained via
a Green’s function calculation in the bubble approxima-
tion, and also with a Kubo formula calculation within the
Dirac cone approximation (see Appendix C). We note
in passing that, on top of the interband and intraband
contributions discussed here, there is a correction arising
from phonon-electron coupling. At low temperatures and
zero field, such correction is expected to be small.40 At
high magnetic field, though, a recent calculation shows
that phonon energy peaks splits the LLs nearby,43 which
can lead to a measurable signature in magneto-optical
experiments.
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Figure 4: The longitudinal magneto-optical conductivity as
function of the photon energy for a field of 7 T, zero chemical
potential, T = 17 K and Γ = 6.8 meV (∼ 79 K). The hori-
zontal dashed-dot (black) line marks the graphene’s universal
ac-conductivity background [Eq. (1)].

2. The general properties of σxx(ω)

In what follows, we overview the main features of
graphene’s longitudinal magneto-optical conductivity, an
essential step to understand the Faraday rotation in
graphene (Sec. III).
Low electronic density.—At low electronic density,

more precisely, for |EF | < E1, no intraband transitions
can take place. Because the LLs energy scale in graphene
is relative high (e.g., E1 ' 36meV for a field of 1 T), the
magneto-optical conductivity is fully driven by interband
transitions even close to room temperature.

Figure 4 shows a plot of Eq. (42) for zero Fermi en-
ergy and a magnetic field of 7T: a sequence of absorption
peaks, corresponding to the maximum of the real part of
each term in Eq. (39), ~ω ' E1, E2 − E−1, E3 − E−2,
etc., is clearly observed [see Eq. (49) and text therein].
The conductivity never vanishes even tough the concen-
trations of carriers is very small (EF → 0), a genuine
signature of graphene’s LL structure.5

The contributions from different interband transitions
[Eq. (39)] partially overlap at high frequency, with the
effect that the real part of σxx(ω) displays the so-called
Shubnikov–de Haas oscillations around the universal ac
optical conductivity of graphene, σg (the imaginary part,
in turn, oscillates around zero).8–15 The semi-classical
conductivity is null, on the other hand, thus failing to
describe the magneto-transport in neutral graphene.
High electronic density.—Away from charge neutrality,

more precisely, for |EF | > E1, the picture is more in-
volved; intraband transitions can now occur, while some
interband transitions will be blocked. We take T = 0
and, without loss of generality, assume that EF > 0
(similar conclusions hold for holes); direct inspection of
Eq. (41) shows that a single type of intraband transition

is allowed, whose contribution to the optical conductivity
reads

σintraxx (ω) =
e2

h

2i~v2
F

∆ωNF l
2
B

~ω + iΓ

(~ω + iΓ)
2 − ~2∆ω2

NF

. (44)

In the above formula,

∆NF ≡ ~∆ωNF = ENF+1 − ENF , (45)

denotes the intraband gap, with NF being the index for
the last occupied LL.

Let us first consider the limiting case when the energy
gap ∆NF is larger than the level broadening, ∆NF & Γ.
The latter typically happens at high magnetic fields and
not too high Fermi energies; in this limit, the real part
of Eq. (44) displays a maximum at ω ' ∆ωNF , with an
intensity falling off as B/∆ωNF ,

Reσintraxx (∆ωNF ) '
(

2eBv2
F

πΓ∆ωNF

)
× σg . (46)

The intraband magneto-peak, Eq. (46), is the lowest fre-
quency peak in the absorption spectrum of graphene with
EF > E1; its magnitude increases with increasing Fermi
energy and/or magnetic field intensity. An example of an
intraband absorption line occurring at ω ' ∆ωNF can be
seen in Fig. 5. In that case, the parameters correspond to
∆NF = 22.6 meV and Γ = 6.8 meV, and hence ∆NF & Γ.
Some points are worth mention: i) the intraband contri-
bution to the conductivity [Eq. (44)] dominates at low
photon frequencies; ii) the curve for Reσxx(ω) shows
that the remaining absorption peaks are found in the
higher frequency part of the spectrum, above the thresh-
old for interband transitions, ~ω ≥ ENF +ENF+1. (Note
that, at low magnetic field and/or high Fermi energy, the
level spacing between adjacent LLs is so reduced that
ENF ' ENF+1 ' EF , and thus one recovers the condi-
tion found earlier, namely ~ω > 2EF .) Such interband
peaks cause Shubnikov–de Haas oscillations despite the
finite electronic density.

For a general relation between the broadening and the
energy gap ∆NF , the maximum for the intraband peak
occurs at

ωintrapeak = Re
√

2∆ωNF

√
∆ω2

NF
+ Γ2/~2 −∆ω2

NF
− Γ2/~2 .

(47)
When ∆ωNF ≤ Γ/(

√
3~) (typically the case of very high

Fermi energy and/or low magnetic field), the intraband
conductivity is maximal at null frequency, with an inten-
sity given by Eq. (46) multiplied by a factor of two.

The regime ∆NF . Γ is illustrated in the bottom panel
of Fig. 12. Two magnetic fields are considered, at fixed
Fermi energy, EF = 0.3eV, with Re σxx(ω) being repre-
sented by the solid lines. When B = 7T (left-hand side
panel), although a considerable number of levels are oc-
cupied (NF = 9), one has ∆NF ' 1.4Γ, which, according
to Eq. (47), corresponds to a maximum of the longitudi-
nal conductivity at ω ' ∆ωNF . This is indeed confirmed
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Figure 5: The longitudinal conductivity as function of the
photon energy for EF = 0.2 eV. Other parameters as in Fig. 4.
The horizontal dashed-dot (black) line marks the graphene’s
universal ac-conductivity background [Eq. (1)].

by the numerical calculation there shown. Decreasing the
magnetic field down to B =3T (right-hand side panel),
reduces ∆NF (recall that LL energy varies as l−1

B ∼
√
B),

which in turn increases the number of occupied levels to
NF = 22. As a consequence, ∆NF ' 0.67Γ, and the max-
imum of the intraband peak is seen to be shifted to zero
frequency, again in accordance with Eq. (47).

Given the intrinsic large cyclotron gap of graphene,
E1, the intraband contribution [Eq. (44)] controls the
magneto-optical response of this material in the mi-
crowave region up to THz frequencies in samples with
finite electronic density (EF > E1).

The interband contribution, on the other hand, is
important both in samples with low electronic density,
EF < E1, where it determines the full magneto-optical
response (discarding the effect of phonons as discussed
above), and in samples with arbitrary carriers concentra-
tions, for photon energies above the threshold for inter-
band transitions, ~ω = ENF + ENF+1 (typically within
the near infrared region).

The positions of each interband peak can be obtained
from Eq. (47), with ∆ωNF replaced by

∆Ωn = (En+1 + En)/~ , (48)

with the constraint n ≥ NF . At finite electronic densi-
ties, NF ≥ 1, typically one has ~∆Ωn & Γ, and thus we
arrive at the following useful approximation

ω
inter (n)
peak ' ∆Ωn , n ≥ NF . (49)

For not too small fields, B & 0.1T, the cyclotron gap
E1 ' 36 ×

√
B meV·T−1/2 is larger than the LL broad-

ening, and thus, in practice, the latter statement can be
generalized to include the case of NF = 0.

For general parameters, the intensity of each interband
peak is no longer given by a simple expression, because

many interband transitions can contribute to the spectral
weight close to each of the resonances ω ' ∆Ωn. As
a result, as ω varies, the real part of σxx(ω) oscillates
around a constant value of about σg. Examples are shown
in Fig. 4 for EF = 0 and in Fig. 5 for EF = 0.2eV. In
the first case, we have NF = 0 and therefore all the
observed peaks are interband-like. The second case has
NF = 4 and therefore one intraband peak is observed,
corresponding to transitions n = 4 → n = 5, at low
photon energy, whereas the interband peaks appear at
energies ~ω & 2EF = 0.4eV.

We finally remark that, as long as not too small mag-
netic fields are considered (B . 0.1 T), the above consid-
erations are valid even close to room temperature (e.g.,
for B = 1T, the first LL corresponds to a thermal energy
of 420K).

3. The Hall conductivity

The Hall optical conductivity of graphene, σxy(ω), fol-
lows directly from Eq. (7); choosing i = y, j = x, we
obtain

σxy(ω) = −gsgv ×
J̃y(ω)

Ẽx(ω)
, (50)

where we have invoked graphene’s six-fold crystallo-
graphic symmetry to write σxy(ω) = −σyx(ω). The cen-
tral quantity to be computed this time is the average
value of the current density operator along the y direc-
tion; using Eqs. (6) and (25), we get

Jy(t) = −evF
∑
n,n′

〈n, ky|jy|n′, ky〉〈ĉ†n,ky (t)ĉn′,k′y (t)〉 .

(51)
The non-zero matrix elements read

〈0, ky|jy| ± 1, ky〉 =− i evF√
2A

, (52)

〈n, ky|jy|n′, ky〉 =− evF
2A

[
sign(n′)δ|n|−1,|n′|

+sign(n)δ|n|,|n′|−1

]
, (53)

(plus respective complex conjugates) where, in the last
line, n, n′ 6= 0. Omitting the summation over ky, the
total current density reads

Ĵy(t) =
i√
2A

evF

(
c†1a0 + v†1a0 − h.c.

)
− 1

2A
evF

∑
n≥1

(
P̂ (1)
n − P̂ (2)

n + h.c.
)

− 1

2A
evF

∑
n≥1

(
c†ncn+1 − v†nvn+1 + h.c.

)
. (54)

The EOMs resemble those derived for the longitudinal
conductivity [Eqs. (34)-(35)], the reason being that the
current matrix elements in the x and y directions are the
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Figure 6: Schematic of electronic transitions contributing to
the Hall conductivity of doped graphene in a magnetic field.
Contrary to the longitudinal conductivity (Fig. 3), symmetry
implies that only interband transitions involving the smallest
energy difference, ~∆ΩNF = ENF + ENF+1, contribute to
σxy. The remaining interband transitions (∆Ωn, with n >
NF ) come in pairs whose contribution to the Hall current
mutually cancel as explained in the text: an example of a
pair of interband transitions that cancel is shown in zig-zag
arrows. Note: the schematic picture is strictly adequate for
NF ≥ 1; the case of NF = 0 admits a single type of electronic
transition, namely, n = 0→ n = 1.

same expect for phase factors [compare Eqs. (27)-(28)
with Eqs. (52)-(53)]. The final formula (after regulariza-
tion) yields,

σregxy (ω) =
e2

h

Nc∑
n 6=m=−Nc

Λxynm
iEnm

nF (En)− nF (Em)

~ω + Enm + iΓ
, (55)

with matrix elements Λxymn related to Λxxnm [Eq. (42)] ac-
cording to,

Λxynm = iΛxxnm(δ|m|,|n|−1 − δ|m|−1,|n|) . (56)

Likewise σxx(ω), the result for the Hall conductivity
based on the EOM method coincides with the result ob-
tained using Green functions calculations.42

Symmetry considerations imply that only two terms
contribute in general for the zero-temperature Hall con-
ductivity, and hence the formula Eq. (55) can be consid-
erably simplified. The first term is the intraband contri-
bution and reads,

σintraxy (ω) =
e2

h

2~2v2
F

l2B

1− δNF ,0
(~ω + iΓ)

2 − ~2∆ω2
NF

, (57)

and the second is interband-like, connecting electronic
states with n = −NF and n = NF + 1, and reads,

σinterxy (ω) =
e2

h

2~2v2
F

l2B

1 + δNF ,0

(~ω + iΓ)
2 − ~2∆Ω2

NF

. (58)

A single interband transition play a role in setting the
Hall conductivity, even for zero Fermi energy. This is

at odds with the situation for σxx(ω), where many non
equivalent interband transitions contribute to the optical
spectral weight. To understand this peculiar feature of
σxy(ω), let us consider the second lowest interband res-
onant energy, namely, ∆E2 = ENF+2 − E−NF−1: there
are two distinct sorts of interband transitions n → m
involving such energy difference, namely, the pair n1 =
−NF−2∧m1 = NF+1 and n2 = −NF−1∧m2 = NF+2,
whose Hall matrix elements read, Λxyn1m1

= iΛxxn1m1
and

Λxyn2m2
= −iΛxxn2m2

, respectively. When substituting into
Eq. (55), these contributions cancel each other at T = 0
because Λxxn2m2

= Λxxn1m1
. The same argument applies to

all transitions involving an energy difference larger than
the interband gap, ~∆ΩNF . The only exception is in-
deed the interband transition −NF → NF + 1 because,
contrary to interband transitions involving larger energy
differences, it cannot be canceled by the other member
of the pair, n = −NF − 1 ∧m = NF , since the latter is
forbidden via Pauli blockade; a schematic picture is given
in Fig. 6.

The extrema points of the real part of the Hall con-
ductivity occurs at zero frequency, ω = 0, and

ωintra± '∆ωNF ± Γ/~ , (59)

ωinter± '∆ΩNF ± Γ/~ , (60)

where we have considered Γ/~ . ∆ωNF [see Eq. (46) and
text therein] and made use of Γ/~� ∆ΩNF . The latter
consideration is true virtually in all situations except for
graphene at low electronic density and small magnetic
field B. Within the same accuracy, the Hall conductivity
at ω = 0 reads

Reσxy(0) ' −
(

1− δNF ,0
∆ω2

NF

+
1 + δNF ,0

∆Ω2
NF

)(
4eBv2

F

~π

)
×σg ,

(61)
whereas at the point ωintra± is given by

Reσxy(ωintra± ) =' F±∆ωNF

(
1− δNF ,0

∆ωNF

)(
eBv2

F

πΓ

)
× σg ,

(62)
and for ωinter± reads

Reσxy(ωinter± ) ' F±∆ΩNF

(
1 + δNF ,0

∆ΩNF

)(
eBv2

F

πΓ

)
× σg ,

(63)

where we have defined F±ω = ±~ω/(~ω ± Γ). The inten-
sity of the Hall peaks dependence on the magnetic field
intensity B is the same than for the longitudinal (intra-
band) peaks [Eq. (46)], i.e., as ∼

√
B. Also, similarly to

σxx(ω), in doped graphene with NF > 1, the interband
peak is very low when compared to the intraband Hall
peak for ∆ωNF � ∆ΩNF . We finally remark that the
anomaly associated to the zero energy LL is present in
all the latter expressions via the factor 1 + δNF ,0.
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Figure 7: Hall conductivity as function of photon energy for
EF = 0 (top panel) and EF = 0.2 eV (bottom panel). In both
plots T = 0 (other parameters as in Fig. 4). At zero Fermi
energy (top), σxy(ω) originates in a single type of interband
transition, centered at ~ω ≈ E1 ' 96 meV, and therefore
cannot be described by a semi-classical treatment [Eq. (58)].
When EF = 0.2 eV (bottom), we have the first four LLs
fulfilled, which results in a classical intraband contribution
[Eq. (57)], centered at ~ω ' E5 − E4 ≈ 23 meV, and a single
interband transition [Eq. (58)] centered at ~ω ' E5 + E4 ≈
0.4 eV ' 2EF . The latter is shown in the inset.

Figure 7 shows the Hall conductivity of graphene at
high magnetic field (B = 7 T) for NF = 0 (top panel)
and NF = 4 (bottom panel), corresponding to neutral
and highly doped graphene samples, respectively. The
main characteristics of Reσxy(ω) can be explained us-
ing Eqs. (61)-(63). In particular, for doped graphene,
the spectral weight concentrates around two well sep-
arated parts of the spectrum: i) an intraband domi-
nated region (n = 4 → n = 5 ), at low photon ener-
gies, with maximum (minimum) intensity occurring at
~ω+ ' ∆4 + Γ ' 30 meV (~ω− ' ∆4 − Γ ' 16 meV )
[intensity equal to ' 10e2/h (' −20e2/h), in accordance
with Eq. (62)], and ii) an interband dominated region n =
−4 → n = 5, at high photon energies, with maximum
(minimum) intensity occurring at ~Ω+ ' ~∆Ω4+Γ ' 413
meV (~Ω− ' ~∆Ω4 − Γ ' 400 meV) [intensity equal to
' 0.81e2/h (' −0.85e2/h), in accordance with Eq. (63)].
Dependence on the Fermi energy.— The variation of

conductivity with the Fermi energy reveals other pecu-
liar feature of 2D systems: the Hall quantization.26,30
Figure 8 shows the formation of plateau in the static (or
dc) Hall conductivity, σxy(0), a direct evidence for dis-
crete energy levels. In conventional 2D electron gases,
the widths of such plateau are constant (the LLs energy
scales as n), whereas in graphene the plateau’s width
decreases with increasing Fermi energy (the LLs energy
scales as

√
n). As for the steps heights, they are equidis-

tant in graphene, ∆σxy(0) = 4e2/h, even when crossing
EF = 0, whereas in conventional 2D systems the step

Figure 8: The dc Hall conductivity as function of the Fermi
energy. The parameters are T = 17 K and Γ = 0.68 meV.
The plateaux show Hall quantization values according to the
theoretical prediction for massless Dirac fermions [Eq. (64)].

from the first electron LL (n = 1) and the first hole LL
(n = −1) is twice the value of the remaining steps (a
manifestation of the zero-energy LL graphene anomaly).

The Hall conductivity quantization rule of graphene
can be readily obtained adding the intraband and inter-
band Hall conductivities,

σxy(0) = −4e2

h

(
NF +

1

2

)
, (64)

where we have used Γ� E1 in order to simplify the de-
nominators of Eqs. (57)-(58). Despite the filling factor,
ν = 4NF + 2, being an integer number, there is no com-
plete correspondence with the conventional 2D integer
quantum Hall effect, for which σxy = −4e2NF /h; an ex-
tra 1/2 factor due to the contribution of the zero energy
state, shared by both electrons and holes, shows up which
must be taken separately, making ν always even—this is
known as the anomalous IQHE and is a hallmark of chiral
massless fermions. The anomalous IQHE was predicted
theoretically8,41 and measured5,27 in the yearly days of
graphene.

E. The semi-classical solution

Within the semiclassical approach, the spinorial na-
ture of the electrons’ wave function is immaterial. On
the other hand, the massless nature of the spectrum in-
validates a straightforward Drude-like approach44,45 to
the calculation of the transport coefficients, and Boltz-
mann transport theory is required, since in this formula-
tion the central quantity to be computed is the deviation
of the momentum distribution function from the equilib-
rium Fermi distribution.
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In the semi-classical regime (that is high electronic
density and/or low magnetic fields), the physics of the
Hall effect can be explained in terms of Boltzmann’s the-
ory of transport, where the electric current is given, in
the case of graphene, by:

J =
e2

h

ˆ
dkg(B,k, ω)vk , (65)

with spin and valley degeneracies included, and where
g(B,k, ω) ≡ gk, is the deviation of the carriers’ (elec-
trons or holes) distribution function from the equilib-
rium Fermi distribution, f0(ε), e is the charge of the
carrier, the static magnetic field B is considered to be
perpendicular to graphene’s surface, ω is the frequency of
the electromagnetic field, and the carrier’s velocity reads
vk = (vx, vy) = vF (cos θ, sin θ). In the presence of both
a electric and a magnetic field, the distribution gk is the
solution of the following equation44

−eE · vk
∂f0

∂ε
=
gk
τk

+
∂gk
∂t

+
e

~
(vk ×B) · ∇kgk , (66)

where we have employed the the standard relaxation
approximation44, i.e.,

∂fk
∂t

∣∣∣∣
scatt

= −gk
τk
, (67)

with τk the relaxation scattering time, E = (E0,x, E0,y)
is the electric field, and ∇k is the gradient operator with
respect to the momentum k. Writing gk as,

gk = e−iωtk ·A , (68)

and noting that (vk × B) · ∇kgk = vk · (B × ∇kgk),
Eq. (66) can be solved exactly, where the vector A needs
to be determined. Solving Eq. (66), the components of
the vector A = (Ax, Ay) are obtained in the form

Ax =
(1− iωτk)Ex − τkωcEy

(1− iωτk)2 + ω2
cτ

2
k

, (69)

Ay =
(1− iωτk)Ey + τkωcEx

(1− iωτk)2 + ω2
cτ

2
k

, (70)

where

ωc = ev2
FB/|EF | , (71)

is the graphene’s cyclotron frequency, and Ex(y) is defined
as

Ex(y) = −eE0,x(y)vx(y)
∂f0

∂ε
. (72)

Introducing gk in Eq. (65), and assuming T = 0, we
obtain the components of the conductivity tensor, which
read

σxx =
e2

h

2|EF |τkF
~

1− iωτkF
(1− iωτkF )2 + ω2

cτ
2
kF

, (73)

σxy = −e
2

h

2EF τkF
~

ωcτkF
(1− iωτkF )2 + ω2

cτ
2
kF

, (74)

Remark that setting ωc = 0 in Eq. (73) leads to the semi-
classical longitudinal conductivity at zero field mentioned
in Sec. II C.
The validity of the semi-classical calculation.—The re-

sults presented so far demonstrate the reliability of the
Boltzmann approach in the regions of the spectrum where
the optical weight is mostly due to intraband transitions.
This is borne out in Fig. 5 [Fig. 7 (bottom panel)], where
σxx(ω) [σxy(ω)] is plotted as function of ~ω, for B = 7 T
and EF = 0.2 eV: the agreement between the real part
(imaginary part) of the quantum calculation shown in
blue line ( dashed double dot line) and the semi-classical
calculation shown in dashed curve (dashed-dot line) in
these figures is confined to energies ~ω . 2EF . For high
photon frequencies, more precisely, above the threshold
for interband transitions, ~ω ' 2EF , the conductivity
cannot be described by Boltzmann’s transport theory.

The fine agreement observed at low photon energies is
not accidental and only ceases to happen for very small
Fermi energy. To see why, we note that Eqs. (44) and
(57) (intraband conductivity) and Eqs. (73)-(74) (semi-
classical conductivity) coincide upon identification of the
intraband energy gap ∆NF with the cyclotron energy,
~ωc. This identification is justified when a sufficient num-
ber of LLs are filled. In fact, expressing the Fermi en-
ergy as EF = (~vF /lB)

√
2N?, we obtain ∆NF → ~ωc

provided that√
NF + 1−

√
NF →

1

2
√
N?

. (75)

Noting that NF = int[N?], we then see that latter limit
is achieved when N? � 1, as anticipated.

For the parameters in Fig. 5 [see also Fig. 7 (bottom
panel)], even though only a few LLs are fulfilled, i.e.,
NF = 4, the values of ∆NF and ~ωc are quite similar,
∆NF = 0.0226 eV and ~ωc = 0.0230 eV, explaining the
consistence between both theories in describing the in-
traband electronic transport. In practice, only for very
small Fermi energy and/or very high magnetic field, such
that NF = 0, the semi-classical calculation fails to de-
scribe the conductivity in the whole optical spectrum,
since all transitions are interband-like in such case. Re-
markably, already for a single LL occupied, NF = 1,
the semi-classical calculation provides a reasonable de-
scription of the optical conductivity, as long as one keeps
inside the portion of the spectrum where the interband
processes have little or none weight, that is, ~ω . E1+E2

(see Fig. 9). We note again, however, that the intraband
region extends for a large range of frequencies given the
large intrinsic cyclotron gap of graphene.

In summary, the validity of the semi-classical calcu-
lation is bounded to photon energies below the inter-
band threshold, ~ω . ENF + ENF+1, and for not too
small Fermi energy, NF & 1. For the parameters used
in Figs. 5, 7 (bottom panel), 9 and 11, we list in Table
I the corresponding values of ∆NF /~ωc. Those figures
have NF > 1 and hence the semi-classical conductiv-
ity agrees well within the far infrared part of the spec-
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Figure 9: The real part of the longitudinal conductivity is
plotted as function of the photon energy for EF = 0.1 eV (left
panel) and EF = 0.15 eV (right panel). In these plots, B =
7 T and Γ = 6.8 meV. The red dashed line stands for the semi-
classical result [Eq. (73)] and the blue solid line represents the
EOM quantum solution [Eq. (42)]. Remark that, in the right
panel, there is no interband peak n = −1 → m = 2, at
EF ≈ 230 meV, and the peak at ~ω ≈ 300 meV looses halve
of its intensity because the n = −3 → m = 2 transitions get
blocked when the Fermi energy crosses the LL with n = 2.

trum. For completeness, Fig. 9 shows the real part of
σxx(ω) for NF = 1 (left panel) and NF = 2 (right panel).
The former has ∆NF /~ωc ' 0.86 and hence the semi-
classical calculation is only partially accurate. In par-
ticular, it underestimates the maximum intensity for in-
traband light absorption. The panel with NF = 2 has
∆NF /~ωc ' 0.99, which explains the excellent agreement
between both curves in the intraband region, ~ω . 0.3
eV.

B (T) EF (eV) NF ∆NF /~ωc

1 0.30 68 0.9990
2 0.30 34 0.9954
5 0.30 13 1.0066
7 0.20 4 0.9837
7 0.15 2 0.9933
7 0.10 1 0.8629

Table I: Values of several relevant quantities related to the
numerical simulations given in Figs. 5,7,9 and 11. The agree-
ment between the semi-classical calculation and the quantum
intraband expression comes from the similarity between ∆NF

and ~ωc.

Having presented the calculation method of the
magneto-optical properties of graphene based on the
equation of motion method, we we now turn to the study
of the Faraday effect.

III. THE FARADAY EFFECT IN GRAPHENE

We want to discuss the transmission of electromag-
netic radiation between two dielectric media separated
by graphene. The scattering geometry is given in Fig. 10,
where the transverse magnetic mode was chosen as a par-
ticular example. Since we will be interested in normal
incidence, there is no distinction between the transverse
magnetic and the transverse electric modes.

The present section is organized as follows: in
Sec. III A, we derive general expressions for transmission,
ellipticity and Faraday rotation angle. These quantities
depend on the frequency of the impinging light, ω, magni-
tude of (transverse) magnetic field, B, scattering mech-
anisms (i.e., level broadening, Γ), temperature, T , and
Fermi energy, EF , via the magneto-optical conductivity
tensor of graphene derived in Sec. II.

Our theoretical results are tested against experimental
data measured recently by Crassee et al. using graphene
samples with large electronic density.33 The limit of low
electronic density is studied in Sec. III C, where the Fara-
day rotation angle is shown to display quantum jumps as
a function of the Fermi energy.

Finally, in Sec. IIID, an experimental setup is pro-
posed that is able to greatly enhance the Faraday rota-
tion angle in the entire optical spectrum.

A. Faraday rotation in graphene

We now solve the problem posed in Fig. 10, considering
only a single graphene sheet separating two dielectrics. In
what follows, we assume that graphene is deposited on
top of lossless dielectric medium (that is fully transpar-
ent to the impinging light), of relative permittivity εr.
The generalization of the problem to the case of a lossy
dielectric poses no difficulties, except for the introduc-
tion of a complex index of refraction associated with the
dielectric medium. We further assume that the incom-
ing electromagnetic field is linearly polarized along the
x-axis and propagates along the z-direction, as shown in
the diagram of Fig. 10, that is

Ei = exE
i
xe
i(qz−ωt) , (76)

such that q =
√
εrω/c.

Due to the optical Faraday rotation of the plane of
polarization of the electric field, both the reflected, Er,
and the transmitted, Et, fields acquire a finite component
along the y-direction, that is

Er =(Erx, E
r
y)e−i(qz−ωt) , (77)

Et =(Etx, E
t
y)ei(kz−ωt) , (78)

where k = ω/c. For this problem, Maxwell’s equations
for the electric field reads (in MKS units)

∂2Ei
∂z2

+ iωµ0δ(z)
∑
j=x,y

σijEj + ω2εrµEi = 0 , (79)
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Figure 10: Schematic of the Faraday effect: an electromag-
netic wave polarized in the xy plane (transverse magnetic
mode) and traveling in the positive z direction passes through
a graphene film subjected to a transverse magnetic field B.
In this case, graphene is adhered to a substrate (typically
SiO2), but the experiment can also be made with suspended
graphene. The transmitted field sees its plane of polariza-
tion rotated by an angle θF and acquires a certain degree of
ellipticity.

where Ei is the i-component of the electric field (we have
i = x, y), µ0 is the vacuum permeability, and σij are the
components of the magneto-optical tensor of graphene
(see Sec. II). The boundary conditions at the substrate-
graphene-air interface are the continuity of the tangential
components of the electric field at the surface of graphene
(z = 0), (

Eix, 0
)

+
(
Erx, E

r
y

)
=
(
Etx, E

t
y

)
, (80)

and (the derivatives are evaluated at z = 0)

∂Etl
∂z
− ∂Eil

∂z
− ∂Erl

∂z
= −iωµ0

∑
j=x,y

σljE
t
j , (81)

where the last condition was derived from integrating
Eq. (79) in the interval z ∈ [0−, 0+] and l = x, y. The
calculation of the transmitted intensities becomes easier
to perform if we rewrite the boundary conditions in terms
of circularly polarized waves:

−2qEix + (k + q)Et± = −µωσ∓Et± , (82)

where E± = Ex±iEy and σ± = σxx±iσxy, for in this rep-
resentation the two circular polarizations decouple from

each other. From Eqs. (82) it follows the transmission
amplitudes in the form:

t± ≡
Et±
Eix

=
2
√
εr

1 +
√
εr + cµ0σ∓

= |t±|eiθ± . (83)

The transmittance can be written as,

T (B) =
1

2
√
εr

(
|t+|2 + |t−|2

)
, (84)

where the factor 1/2 comes from the proper normaliza-
tion of circularly polarized waves (omitted in the defini-
tion above, for simplicity of writing) and the factor 1/

√
εr

is due to flux conservation. Faraday’s rotation angle, θF ,
and the ellipticity are given by46–48

θF =
1

2
(θ+ − θ−) , (85)

δ =
|t+| − |t−|
|t+|+ |t−|

, (86)

respectively. From Eq. (83), θF is given in terms of the
conductivity σ±, since

θ± = − arctan
µcσ′′∓

1 +
√
εr + cµσ′∓

, (87)

where σ± = σ′± + iσ′′±, and σ′± and σ′′± are the real and
imaginary parts of σ±, respectively. Explicitly, we have

σ± =
(
σ′xx ∓ σ′′xy

)
+ i
(
σ′′xx ± σ′xy

)
, (88)

from which follows the approximate expression

θF ≈ −
cµ0

1 +
√
εr
σ′xy , (89)

where we have assumed that θF . 1 and that 1 +
√
εr �

cµ0σ
′
∓. The last assumption is the more stringent of the

two. For comparison, in the numerical studies we give in
Fig. 11, we represent both the exact and the approximate
results for θF , δ, and T . This allow us to check the valid-
ity of the approximate results. Discarding terms of the
order of (cµ0σ∓)2 in Eq. (84) we obtain an approximate
expression for the total transmitted light in the form

T (B) ≈
4
√
εr

(1 +
√
εr)2

(
1− 2cµ0

1 +
√
εr
σ′xx

)
. (90)

Within the same degree of approximation used to derive
Eq. 89, the ellipticity is given by

δ ≈ − 2cµ

1 +
√
εr
σ′′xy . (91)

The validity of these approximations depend on the
photon frequency as it can be seen in Fig. 11. In what
follows, the exact expression will be used in all numerical
studies.

In our simulations of the Faraday effect, we assume
broadenings of the order of 10 meV. Our assumption is
consistent with the values found in pump-probe exper-
iments performed in exitaxial and exfoliated graphene
samples49,50, and on infrared spectroscopy studies of the
Drude conductivity of graphene.51
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Figure 11: Faraday rotation angle (given in degrees), normal-
ized transmittance, and ellipticity of electromagnetic radia-
tion passing through graphene subjected to a perpendicular
magnetic field. The graphene sample is assumed to have a fi-
nite electronic density, EF = 0.3 eV, and to be on top of SiO2

(εr = 3.9). Top six panels: simulation of θF , T (B)/T (0), and
δ, considering a broadening of Γ = 7 meV. Bottom six panels:
simulation of the same quantities as above for Γ = 3.7 meV.
In all panels, the dashed lines correspond to approximate cal-
culations, as given by Eqs. (89)-(91), and T = 17 K.

B. Fit to experimental data in the high-density
regime

Fig. 12 shows fits for two sets of experimental data for
θF

33, measured when electromagnetic radiation passes
through graphene epitaxially grown on silicon carbide
(data taken at a temperature of 6 K). According to the
experiments by Crassee et al. (Ref. 33) it was pos-
sible to produce a single graphene sheet grown on the
Si-terminated surface of 6H-SiC (the sample underwent
H-passivation of the Si dangling bonds, resulting in quasi-
free standing single layer graphene). Two sets of exper-
imental data are shown in Fig. 12 (top panel), corre-
sponding to two magnetic field intensities, B = 7 T and
B = 3 T.

Figure 12: The Faraday effect in doped graphene. Top: The
Faraday rotation angle (given in degrees) when graphene is
grown on silicon carbide. Fit to the experimental values of
θF , at a magnetic field of B = 7 T (left panel) and B = 3 T
(right panel), using the semiclassical approach (green dashed
line) and the full quantum calculation (red solid line). The
parameters are: EF = 0.3 eV, Γ = 10.5 meV, T = 6 K
and εr = 4.4. Bottom: The theoretical optical conductivity
[Eqs. (42) and (55)] for the same parameters used to fit the
experimental data: B = 7 T (left panel) and B = 3 T (right
panel).

In the course of the experiments it was found that
the bare substrate did not reveal any Faraday effect,
and therefore the measured rotation angle is intrinsic
of graphene. This statement is confirmed by the model
developed in Sec. III A. ARPES measurements on the
used sample indicated a Fermi energy of the order of
EF ' 0.34± 0.01 eV.

In order to fit the data we have used EF = 0.3 eV. We
do not expect a perfect fit because we are considering a
lossless dielectric. Nevertheless the fit is fairly accurate,
given the simplicity of the model. Moreover, the value of
εr was set to 4.4 which is not the relative permittivity of
SiC and must be understood as an effective number, given
that the experimental data was taken with epitaxially
grown graphene. Although the calculation of Sec. IID
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does not include this fact explicitly, the fits are satisfac-
tory for they reproduce the main features of the exper-
imental data: a decrease of θF with the photon energy
until a minimum is reached for ~ω ≈ 26 meV (20 meV)
when the magnetic field intensity is 7 T (3 T).

Comparing the top and bottom panels of Fig. 12, it
can be seen that the minimum (maximum) of the Fara-
day rotation angle coincides roughly with the maximum
(minimum) of σ′xy. The latter fact agrees well with what
could be concluded from the approximated result stated
in Eq. (89). In order to interpret the variation of the
Faraday rotation angle with the photon energy, it is suf-
ficient to use the simplified results derived in Sec. IID for
T = 0, namely, Eqs. (57)-(63). (This is plainly justified
given the low temperature in the experiment of Ref. 33;
the respective thermal energy corresponds to about 0.01
times the level spacing ∆1 = E1−E0 [see Eq. (45) for the
definition of ∆n] for both intensities of magnetic field.)

For a magnetic field of 7 T (3 T), intraband transitions
n = 9→ n = 10 (n = 22→ n = 23) control the variation
of θF , from positive up to negative values, as the pho-
ton energy varies. Here, the index n denotes LLs with
energy given by En = sign(n)

√
2|n|~vF /lB [see Eq. (5)

and text therein]. The remaining transitions contribut-
ing to the Hall conductivity are interband-like and occur
at much higher photon energies ~ω ' 2EF , and thus it
does not influence the Faraday rotation in the range of
energy plotted in Fig. 12.

In this example, intraband transitions involve a very
small difference of energy, even when the magnetic field
is 7 T. The value of the intraband gap [Eq. (45)] is ∆NF '
16 meV (∆NF ' 7 meV) for B = 7 T (B = 3 T), which is
comparable to Γ (here NF denotes the last occupied LL
for a given Fermi energy). The exact calculation shows
that the extrema points of the real part of the intraband
Hall conductivity [Eq. (57)] occur at ω = 0, and,

ωintra± =
1

~
Re
√

∆2
NF

+ Γ2 ± 2Γ
√

∆2
NF

+ Γ2 . (92)

Substituting the values given in the caption of Fig. 12
into the latter formula, we obtain ωintra+ ' 27 meV
(ωintra+ ' 20 meV) for a field intensity of 7 T (3 T). As
above-mentioned, these are the points where the Faraday
rotation reaches its minimum value. Increasing further
the photon energy, ~ω > ~ωintra+ , the Faraday rotation in-
creases towards zero, essentially because at large ω, below
the interband threshold, the Hall conductivity becomes
very small (Fig. 12) and no distinction arises between
σ− and σ+, and thus t+ ≈ t−. Increasing the photon
energy up to ~ω ∼ 2EF , the interband transition comes
into play and drives the Faraday rotation. Interband
transitions are important in samples with low electronic
densities, as explained in the following section.

The curves for θF , computed either from the semi-
classical expressions for the conductivity [Eqs. (73)-(74)]
or via the EOM expressions [Eqs. (42) and (55)] are al-
most indistinguishable (see Fig. 12, top panel), in the
range of photon energies considered, except for ~ω ≈

Figure 13: The low electronic density limit. Top: Faraday
rotation angle (given in degrees) for free-standing graphene
(εr = 1) for different LLs occupations: from left to right,
NF = 0, 1 and 2. The magnetic field intensity is B = 7 T,
Γ = 10.5 meV and T = 0. Adding a dielectric substrate to
graphene decreases the maximum amount of Faraday rota-
tion that is achievable, without introducing major qualitative
changes (see Eq. 89). Bottom: The real part of the quantum
conductivity tensor for the Fermi energies considered in the
top panel.

10 meV, where a very small deviation is observed when
the intensity of the magnetic field is 7 T.

The agreement between the quantum and the semi-
classical solutions is explained by the similarity of the
intraband gap ∆NF and the cyclotron energy ~ωc [see
Eq. (71)]. The values for these quantities are ∆NF '
6.62(15.6) meV and ~ωc ' 6.58(15.4) meV for a field
of 3(7) T. The agreement between both methods breaks
down near the interband threshold, ~ω ' 2EF ' 0.6 eV,
where the quantum contribution, arising from the inter-
band transition cannot be neglected.

C. Quantum jumps in the Faraday rotation: the
low electronic density limit

When small Fermi energies are considered, energy
quantization becomes important (see Secs. IID and II E).
The limiting case occurs for 0 ≤ EF <

√
2~vF /lB ,

i.e., NF = 0. In such case, at T = 0, the LLs with n ≥ 1
are all empty, and a single type of transition contributes
to the Hall conductivity, n = 0 → n = 1. Since this
transition is interband-like it cannot be explained within
the semi-classical treatment (Secs. IID and II E). This
situation is illustrated in Fig. 13 (bottom panel): when
NF = 0, the real part of the Hall conductivity (solid line)
has a finite (non-zero) value around ω ' (E1 + E0)/~
[note: the extrema of the interband Hall conductivity
can be obtained from Eq. (92) making the replacement
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∆NF → ~∆ΩNF , with ∆ΩNF given by Eq. (48)]. The
Faraday rotation given by the semi-classical model is ob-
viously zero (dashed line) since EF = 0 [Eq. (74)]. The
respective Faraday rotation angle (top panel) is approx-
imately proportional to −σxy(ω).

At higher Fermi energies (i.e., NF > 0), two types of
transitions contribute to the Hall conductivity: in gen-
eral, for ENF < EF < ENF+1, with NF ≥ 1, the allowed
transitions are i) interband between the hole’s LLs with
n = −NF and the electron’s LLs with n = NF + 1 and,
ii) intraband between LLs with n = NF and n = NF + 1
(Sec. IID). The maximum intensity of σ′xy falls off with
the inverse of the energy difference associated with a
given electronic transition [Eqs. (62)-(63)]. Since, up to
a good degree of approximation, the Faraday effect is
controlled by σ′xy, the latter means that the amount of
Faraday rotation induced by the interband transitions at
ω = ∆ΩNF will be smaller than the Faraday rotation due
to intraband processes.

The above-mentioned facts can be appreciated in
Fig. 13, where numerical data for θF (top panels), σ′xx
and σ′xy (bottom panels) is shown with Fermi energy
increasing from the left to the right. As higher LLs
in the conduction band become occupied, the spectral
weight for the interband contribution to σ′xy shifts to-
wards higher energies (that is, ~∆ΩNF increases→ ωinter±
increases). The opposite occurs for the intraband tran-
sitions, since in this case, the relevant energy scale ∆NF

decreases with increasing EF . As a result, the intraband
part of σ′xy concentrates its spectral weight at the lower
edge of the plotted spectrum, and displays a much larger
amplitude than its interband counterpart, as explained
above. Similar conclusions do apply to θF as direct in-
spection of the bottom and top panels do show.

When NF = 1, a significant departure from the
semi-classical behavior can be appreciated in the intra-
band region (0−100 meV). Remarkably, though, already
for NF = 2, the semi-classical Hall conductivity ap-
proximates well the quantum result, with a significant
deviation only occurring near the interband threshold
(≈300 meV), where the semi-classical approach must nec-
essarily fails. These features are in accordance with the
general conclusions drawn in Sec. IID.

For comparison, the real part of the longitudinal con-
ductivity is also shown in the bottom panel of Fig. 13.
The longitudinal current can be induced by photons
which are resonant with any interband transition allowed
by the Pauli principle (that is, ~ω > ~∆ΩNF ' 2EF ) and
hence many absorption peaks can be observed. On the
contrary, the Faraday rotation essentially depends on σ′xy
and therefore is driven only by two resonances.
Dependence on the Fermi energy and magnetic field.—

We have seen that when few LLs are occupied, quantum
effects come into play and the semi-classical solution no
longer gives an accurate description of the Faraday ef-
fect. The latter can even happen in the intraband region
(see e.g. Fig. 13, mid panel), embodying the departure
of the intraband gap ∆NF from its semi-classical anal-

Figure 14: Quantization of the Faraday effect in graphene.
Top: Faraday rotation angle (given in degrees) for free-
standing graphene as function of the Fermi energy at a mag-
netic field of B = 7 T for ~ω = 10 meV (left panels) and
~ω = 50 meV (right panels). The respective semi-classical
result is plotted in the dashed lines. Other parameters:
Γ = 10.5 meV and T = 12 K. Bottom: The same as the
top panel but with Γ = 2 meV.

ogous, the cyclotron energy, ~ωc (see Table I). Given
the importance of energy quantization for low electronic
density, we expect θF to display abrupt behavior when
the Fermi energy crosses the first few LLs. The latter
behavior should reflect directly the step structure of the
optical (or ac-) Hall conductivity σ′xy(ω).19

Figure 14 shows the Faraday rotation angle against
EF for fixed magnetic field, B = 7 T. The heights of the
steps are not uniform since the optical Hall conductivity
no longer obeys the dc quantization rule [Eq. (64)]. When
the Fermi energy crosses higher LLs, the smooth semi-
classical result (dashed curves) is recovered.

Combining the approximated formula for θF , Eq. (89)
[valid for cµσ′∓(ω) � 2 and θF . 1], and the exact Hall
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conductivity at T = 0 [Eqs. (57)-(58)], explicit formulae
for the steps heights can be obtained. When the Fermi
energy crosses LLs with n > 1, the expression for ∆θF
becomes somewhat cumbersome. Nevertheless, simple
analytical expressions can be obtained in some regimes.
For instance, when the small photon energy compared to
relevant scales, ~ω � Γ� E1, the steps are predicted to
be approximately uniform,

∆θ
(n→n+1)
F ' 2cµe2

h
= 4α ' 0.03 rad, (93)

where α denotes the fine structure constant, α =
e2/(4π~ε0c). In Ref. [19] for a estimative of the mag-
nitude of the effect it has been assumed that the step
height of σ′xy is approximately given by ∆σ′xy(ω) ' e2/h,
resulting in ∆θF ' α. Rigorously, the step height for the
transitions n = 0→ n = 1 is about 4e2/h, hence explain-
ing the extra factor of four in our expression. In fact, in
the limit ~ω � Γ� E1, the steps in the Hall conductiv-
ity will all have approximately the same height, as in the
dc case [see Eq. (64)].

In Fig. 14, a decrease of the step’s height relative to the
estimative value in Eq. (93) can be observed, already for
the first step. This happens because the condition Γ �
E1 is too restrictive, and hence we relax this condition
to Γ . E1, but at the same time keeping the low photon
energy condition, ~ω � Γ. Doing so, leads to a better
approximation,

∆θ
(n→n+1)
F ' 1

1 + (6 + 4n+ δn,0)γ̃2

1

1 + 4nγ̃2
× 4α ,

(94)
where we have defined the dimensionless parameter γ̃ =
Γ/E1. Using this parameter, the validity condition of
Eq. (94) reads, γ̃ . 1 and ~ω � Γ.

Two physical scenarios where the Faraday steps are not
uniform are shown in Figure 14. In the bottom panel,
the transitions n = 0 → n = 1 (EF ' 100 meV) come
with a variation of θF of roughly 1.8◦ (' 0.031 rad)
for ~ω = 10 meV against −5.1◦ (' −0.089 rad) for
~ω =50 meV, which does not agree with the neither the
rough uniform estimative nor with Eq. (94). The reason
for this discrepancy is that the condition ~ω � Γ is not
fulfilled for the photon frequencies considered in that fig-
ure. Recall that in graphene, Γ is about about 10 meV,
and thus infrared photons have ~ω & Γ. It is therefore
useful to derive approximate formulae for ∆θF that is
valid in the regime ~ω � Γ. Defining ω̃ = E1/(~ω), we
arrive at

∆θ
(n→n+1)
F ' 4α

1− 2(1 + 2n)ω̃2 + ω̃4

1− ω̃4

1− 2(3 + 2n)ω̃2 + ω̃4
.

(95)
Substituting for the respective values of ω̃, we obtain
∆θ

(0→1)
F = 1.8◦ and ∆θ

(0→1)
F = −5.3◦, for ~ω = 10 eV

and ~ω = 50 meV, respectively, which agrees well with
the numerical results reported in Fig. 14 for Γ = 2 meV.

As for the steps observed in the top panel of the same
figure, they cannot be explained accurately with Eq. (95)
since in that case we have ~ω ≈ O(Γ). We stress that
Eqs. (94)-(95) are only accurate when the statement
Eq. (89) provides a good description of the Faraday effect
in graphene, which in practice means very high photon
energies ~ω (see also Fig. 11). For the parameters used
in Fig. 14, where the photon energies are not too high,
our analytical expressions for ∆θF are accurate only for
the first few steps.

Figure 15 shows the variation of θF with the magnetic
field for two cases, i) low doping (EF = 0.05 eV) and ii)
high doping (EF = 0.3 eV). In the latter case, we are
well inside the semi-classical regime even for the maxi-
mum intensity of the magnetic field considered (B =7T),
and thus no distinction can be made between the curves
computed using the semi-classical conductivity tensor or
the EOM formulae. In this regime, the Faraday effect
increases monotonously with the magnetic field.

For low electronic density, on the other hand, the
agreement between the Boltzmann and EOM formalisms
only takes place for low magnetic field. For increasing
values of the magnetic fields such agreement ceases to
occur as soon as the intraband gap does not match the
cyclotron energy ~ωc. Then, energy level quantization
becomes important and the EOM expressions must be
considered (i.e., NF is small; see Sec. II E) — this ex-
plains the departure from the semi-classical value for θF
observed in the right panel at B ≈ 1 T for ~ω = 10 meV
[B ≈ 0.5 T for ~ω = 30 meV]. If the magnetic field in-
tensity is higher than a given value, we necessarily have
NF = 0 (for 0.05 eV this value is about 1.9 T). In such
case, the Hall conductivity, at T = 0, is fully determined
by a single type of interband transition, and, assuming
E1(B)� ~ω,Γ, we obtain [see Eq. (58)],

σ′xy '
large B

−2e2

h
⇒ θF ' 2α ' 3× 10−4 ◦ . (96)

The latter considerations explain the plateau formed at
B ≈ 2 T (blue solid line) in the right-panel of Fig. 15.
The red dashed double dotted line corresponds to pho-
tons with higher energy, shifting the formation of the
plateau towards higher fields. Eq. (96) is indeed the high
magnetic field limit [E1(B)� energy scales] of the Fara-
day rotation induced by single-layer graphene.

Although the measured Faraday rotation angle is re-
markably large given that it comes from a single graphene
layer, in both low and high doping regimes (see Fig. 15),
so it is the needed magnetic field, B & 1 T. The goal
in then to obtain large Faraday rotation angles using
graphene and modest fields at the same time. A simple
idea that uses the non-reciprocity of the Faraday effect is
to enclose graphene in between two mirrors. We discuss
this possibility in the following section.
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Figure 15: Faraday rotation angle (given in degrees) as func-
tion of the magnetic field for EF = 0.30 eV (left panel) and
EF = 0.05 eV (right panel). In each panel two photon ener-
gies are represented: ~ω = 10 meV (blue solid line) and for
~ω = 30 meV (red dashed double dotted line) with respective
semi-classical counterparts in dashed lines. Other parameters
as in top panel of Fig. 14.

D. Enhancement of Faraday rotation in a cavity
geometry

We have seen that the existence of intraband and in-
terband transitions in graphene permit to generate finite
(non-zero) Faraday rotations in different ranges of the
electromagnetic spectrum. In doped graphene (NF ≥ 1),
for instance, the intraband gap is bounded from above
by

Eintra ≤ ∆1 = E2 − E1 ' 15
√
BmeV · T−1/2 , (97)

implying that, by using magnetic field intensities ∼ 1T,
graphene can be exploited for magneto-optical applica-
tions from the microwave up to the far-infrared regimes
f = E/h . 3.6 THz (an example of THz Faraday ro-
tation driven by intraband transitions can be found in
Fig. 12). Another possibility is to make use of transi-
tions connecting the valence and conduction Dirac cones,
whose interband gaps are bounded from below,

Einter ≥ ~∆Ω1 = E1 ' 36
√
BmeV · T−1/2 , (98)

thus accomplishing for far-infrared up to visible light
light frequencies (an example of mid-infrared Faraday
rotation driven by interband transitions is shown in
Fig. 13). We recall that increasing the electronic density
in order to obtain even larger interband gaps (~∆Ωn with
n > 1), and thus shifting the magneto-optical response of
graphene above the mid-infrared, ~ω ∼ ~∆ΩNF ' 2EF ,
originates optical Hall conductivity peaks with low inten-
sity. As a consequence, very small Faraday rotations are
produced already in the near-infrared regime. A good

estimate for the maximum achievable interband-induced
Faraday rotation can be obtained from Eqs. (63) and
(89),

max |θF | '
(
eBv2

F

2ωΓ

)
× α , (99)

which, for example, taking B = 7 T , Γ = 10 meV
and ~ω = 1 eV leads to max |θF | ' 10−3. Although
the amount of THz Faraday rotation, ~ω ' O(meV),
reported in our figures are well within state-of-art ca-
pabilities [the resolution for Faraday measurements in
THz time-domain spectroscopy is presently limited to one
mrad20 (∼0.06 degrees)], high magnetic fields ∼ 1 T are
still needed which can be a disadvantage for specific ap-
plications; moreover, according to Eq. (99) the needed
magnetic field increases as higher photon frequencies are
to be probed.

The situation is very different in other two-dimensional
electron gases, for which θF is proportional to the sam-
ple’s thickness (as the light travels farther through the
material, more Faraday rotation accumulates). Single-
layer graphene, on the other hand, being one-atom thick
an hence truly two-dimensional, requires the use of high
magnetic fields in order to detect Faraday rotations. It
is therefore natural to ask whether it is possible to con-
ceive a setup leading to accumulation of Faraday effect;
ideally, such setup would avoid the use of several sam-
ples and, at the same time, take advantage of the broad
magneto-optical response of single-layer graphene.

In what follows, we discuss a graphene-based system
that can enhance the intrinsic graphene’s Faraday rota-
tion at any frequency and thus can cope with the dif-
ficulty above-mentioned. The idea consists in enclosing
graphene into an optical cavity: due to intra-cavity inter-
ference, photons undergo several round trips within the
cavity before leaking out. Loosely speaking, due to non-
reciprocity of the Faraday effect, accumulation of θF then
takes place each time a photon passes through graphene
— a sketch of the experimental apparatus is shown in
Fig. 16.

Explicit calculations (see below) show that giant Fara-
day rotations are achieved even when the optical finesse
of the cavity is modest. The optical finesse can be eas-
ily tuned by changing the reflectivity of the end-mirrors:
the higher the latter quantity, the larger is the number of
round trips of photons inside the cavity and hence further
Faraday accumulation occurs. Indeed, the cavity geom-
etry gives a straightforward solution to mimic the effect
of a sample’s thickness (absent in single-layer graphene).

Following the steps of Sec. IIIA, we write the boundary
conditions of the electromagnetic field in terms of circu-
larly polarized waves. Employing similar notation, we
define the input and output circular vector amplitudes,

E in
± =

(
Ein
± , E

r
±
)T

, (100)

Eout
± =

(
Et
± , 0

)T
, (101)
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Figure 16: Schematic of the graphene-optical cavity system:
linearly polarized light shines into an optical cavity with
graphene placed at the center. The field inside the cavity
perceives graphene as an extra boundary and hence the two
halves of the cavity operate as independent cavities of effective
size L/2. Matching the light frequency ~ω with a resonant fre-
quency of the cavity ω = nπc/L (n ∈ N ) traps photons inside
the cavity for several round trips. As a consequence, Fara-
day rotation accumulates due to multiple passages through
graphene leading to an output field with a large Faraday ro-
tation.

respectively (see also Fig. 16), where Ein
± = Ein

x ± iEin
y

(the reflected Er
± and transmitted waves Et

± having anal-
ogous definitions). The first (second) component of the
vectors Eq. (100)-(101) refers to the complex amplitude
of light traveling in the positive (negative) z direction.

The output field, Eout
± , and thus the total Faraday ro-

tation angle, can be more conveniently computed using
the transfer matrix formalism. The method is explained
in detail in Appendix A. Here, we just state the basic
results: the T−matrix, by definition, connects the input
and output vector amplitudes, according to

E in
± = T in→out

± Eout
± , (102)

where T in→out
± is a product of individual t-matrices

for each boundary (optical component, metallic surface,
etc.). Its inverse permits to compute Eout

± given the in-
put field E in

± , and hence the optical characteristics of
the cavity-graphene system. In particular, the circu-
lar transmitted amplitudes, t± = Et

±/E
in
± , are given by

t± = 1/[T in→out
± ]1,1.

For the geometry posed in Fig. 16, the input-output
T−matrix reads

T in→out
± = Tm ·

[
e−iωL/2c 0

0 eiωL/2c

]
· T g
±

·

[
e−iωL/2c 0

0 eiωL/2c

]
· Tm . (103)

Each operator in Eq. (103) propagates the electric field
to the right until a boundary is reached. Tm encodes the
effect of the first interface, a mirror, and depends only
on the mirror’s transmission and reflection amplitudes, t

Figure 17: Faraday rotation angle of a cavity-graphene sys-
tem in the semi-classical and quantum regimes. Top pan-
els: Left—θF as function of the photon energy for a cavity-
graphene system in a magnetic field of 7 T . The Fermi en-
ergy reads EF = 0.3 eV and the cavity mirrors have r = 0.99.
Other parameters: Γ = 10.5 meV and T = 12 K. Right—
θF versus the reflection amplitude r for ~ω = 19 meV. Bot-
tom panels: In the left (right) panel, the Fermi energy reads
EF = 0.05 eV (EF = 0.1 eV) which corresponds to a Landau
level occupation of NF = 0 (NF = 1). The orange dashed
line shows θF as obtained with the semi-classical conductiv-
ity tensor.

and r, respectively. It can be written as

Tm =
1

i|t|

[
1 |r|
−|r| −1

]
. (104)

(For a derivation, see e.g. Ref. 52.) After interaction with
the left-end mirror, photons can enter into the cavity and
propagate for a distance of L/2 before the next interac-
tion. This means that another T−matrix is needed; free
propagation merely adds a phase to the electric field [see
Eq. (A5) and text therein] and thus is represented by a di-
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agonal matrix, which is the second operator in Eq. (103).
At z = L/2, photons arrive at the air-graphene-air inter-
face, whose T−matrix we denote by T g

±. (More involved
types of interfaces could be considered: for example, air-
substrate-graphene-air. The present choice has the ad-
vantage of keeping the mathematical expressions elegant;
generalization to other configurations using the present
formalism is straightforward.) The graphene’s T−matrix
depends on the magnetic field intensity, electronic den-
sity, temperature, and LL broadening, via the complex
optical conductivity of graphene σ±(ω); its explicit form
is

T g
± =

1

2

[
2 + Z0σ∓(ω) Z0σ∓(ω)

−Z0σ∓(ω) 2− Z0σ∓(ω)

]
, (105)

where Z0 = µ0c denotes the vacuum impedance—see Ap-
pendix A for a detailed derivation. Finally, the second
line of Eq. (103) propagates the field in free space for a
distance of L/2 and adds the right-end mirror.

The Faraday rotation angle is obtained from θF =
(1/2)arg(t+/t−), with the circular amplitudes ratio
t+/t− given by [T in→out

− ]1,1/[T
in→out
+ ]1,1 [Eq. (A7)]. Af-

ter some algebra, we arrive at

t+
t−

=
2 + Z0σ+(ω)− |r| [Z0σ+(ω)− 2] eiωL/c

2 + Z0σ−(ω)− |r| [Z0σ−(ω)− 2] eiωL/c
, (106)

from which θF can be immediately deduced. Setting r =
0 in the latter expression leads to the previous result in
the absence of a cavity [compare with t± as obtained from
Eq. (83) with εr = 1].

When r > 0, interference takes place and photons
can make several round trips before being transmitted
through the cavity. On a intuitive basis, we then expect
that the Faraday rotation angle can be enhanced due to
multiple passages of photons through graphene, which
indeed is the case as shown in Fig. 17. Hereafter, the
size of the cavity is set to L = nπc/ω, with n odd. The
solid line shows θF for the cavity-graphene system and
the dashed-dot line shows θF for free-standing graphene
for the same parameters: clearly, in the range of frequen-
cies considered, the Faraday effect is greatly enhanced.
For example, for low frequency ~ω ≈ 10 meV, θF has
increased by a factor of about 5, reaching a value of
55 degrees, whereas for ~ω ≈ 19 meV, θF increases by
a factor of about 20, reaching a value of approximately
25 degrees.

Direct inspection of Eq. (106) discloses the observed
boost of Faraday effect: when r → 1 and the phase factor
exp(iωL/c) = −1, the constant factor of 2 in the both
the denominator and numerator cancels, leading to,∣∣∣∣ t+t−

∣∣∣∣ e2iθF '
n odd
r'1

σ+(ω)

σ−(ω)
, (107)

which can present large arguments, 2θF . The opposite
limit, r → 0, in which the isolated graphene system is

recovered, leads to much smaller arguments, since gen-
erally 2 � Z0Imσ±, which implies that the real part of
Eq. (83) is predominant. Choosing a cavity mode with
n odd and r ' 1 is fully equivalent to take a large num-
ber of equally prepared graphene sheets placed in a row
(Appendix B). The cavity geometry therefore permits to
take advantage of large Faraday rotation accumulation
using a single graphene sheet.

In a cavity geometry, the Faraday rotation is no longer
dominated by the behavior of σ′xy(ω) [see Eq. (89)], for θF
now depends on the full conductivity tensor [Eq. (107)].
The most visible consequence of the latter fact is that
photons with ~ω ≈ 20 meV undergo considerable Faraday
rotation angles in a cavity geometry, whereas, in a sin-
gle passage through graphene, photons with such energy
do not produce Faraday rotation at all (Fig. 17). This
apparently counter-intuitive result is due to induced ellip-
ticity in single passages and is explained in Appendix B.
Semi-classical versus quantum regimes in a cavity ge-

ometry—Fig. 17 (top panel) considers the case of EF =
0.3 eV and B = 7 T, well inside the semi-classical regime,
for which the ac conductivity is dominated by intraband
contributions in a wide range of frequencies (Sec. II); the
corresponding intraband Faraday rotation is seen to be
greatly enhanced in the cavity geometry.

The low electronic density regime of the cavity-
graphene system is shown in the bottom panel of Fig. 17.
Remarkably, for energies above the interband threshold,
namely, ~ω & E1 ' 95 meV for NF = 0 (left panel) and
~ω & E1+E2 ' 230 meV for NF = 1 (right panel), θF (ω)
presents a qualitative different behavior from an isolated
graphene sheet (black dot double-dashed curve): oscilla-
tions do emerge. These oscillations are hindered in single
photon passages through graphene (see also Fig. 13), but
for multiple photon passages, in the high frequency limit,
Shubnikov–de Haas oscillations in the longitudinal con-
ductivity σxx(ω) (Fig. 4) are critical in defining the ori-
entation of the light polarization axes. These oscillations
are obviously absent in the semi-classical Boltzmann cal-
culation (orange dashed curve). In the top panel, where
EF = 0.3 eV, such oscillations are not present because the
represented photon energies are well below the threshold
for interband transitions ~ω ' 2EF .
Near infrared and visible range Faraday rotation— We

finish this section by mention an important application of
the cavity-graphene system: interband-induced Faraday
rotations in the near-infrared and visible regimes. Fig-
ure 18 shows that energetic photons can attain θF & 1
by tuning the Fermi energy to sufficiently high values.
In this regard, the top panel shows numerical data for
graphene with EF = 0.85 eV; such high doping level of
graphene samples are feasible using chemically synthe-
sized graphene with ferroelectric substrates (instead of
the conventional SiO2).53

Given the mirrors reflection amplitude considered, r =
0.99, photons are trapped for a large number of round
trips. This means that is highly probable that photons
get absorbed by graphene before leaking the cavity. This
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Figure 18: Faraday rotation boost in the infrared and visible
ranges. Left panels: Faraday rotation angle versus photon
energy of a cavity-graphene system with EF = 0.85 eV (top)
[EF = 0.3 eV (bottom)]. Right panels: The transmissivity
of the cavity-graphene system for the same parameters con-
sidered in the left panels (Inset: transmissivity of intrinsic
graphene for the same parameters). Other parameters as in
Fig. 17. In order to obtain a measurable Faraday rotation at
~ω ≈ 1.7 eV (red light) [~ω ≈ 0.5 eV (infrared)] it is necessary
to tune the intraband resonance according to EF ' ~ω/2.

explains why the transmissivity of the cavity-graphene
system, as shown in the right panel of Fig. 18, is well
below one (but still large enough that the effect can be
measured). One way of increasing the transmissivity of
the cavity-graphene system is to decrease the quality of
the mirrors at the expense of decreasing the maximum
achievable θF .

We finally remark that, non-linearity associated with
next-neighbor hopping t′ in the honeycomb graphene lat-
tice can play a role for photons with ~ω & 1 eV, and hence
corrections to the Dirac cone approximation (Sec. II A)
and thus to the EOM solutions may exist; such correc-
tions are however expected to be very small.14

IV. CONCLUSION AND OUTLOOK

In the first part of this work, the EOM method has
been adapted to the study of magneto-optical trans-
port of electronic systems. To illustrate the method,
the magneto-optical conductivity tensor of single-layer
graphene in the Dirac cone approximation has been
derived, accounting for both intraband (semi-classical)
transitions and interband transitions between the valence
and conduction bands.

The general regularization procedure to obtain the reg-
ular conductivity tensor from the solutions of the EOM
for the current operator has been established; such pro-
cedure is shown to lead to the correct formulae without
the need for evaluating the Kubo formula. To the best of
the authors knowledge such procedure has not been dis-
cussed so far in the literature. In addition, quantitative
comparisons between the quantum EOM solutions and
the semi-classical Boltzmann formulae, in the full opti-
cal spectrum, and both in low and high doped graphene
samples, have been given throughout.

In a second part, the Faraday rotation effect in single-
layer graphene has been studied in detail; in particular,
simple formulae for the steps’ heights in the quantum
Hall regime have been derived. Our results have been
shown to account well for available experimental data in
the semi-classical regime.

Last, we have proposed a simple experimental appa-
ratus based on a optical cavity that permits to enhance
the Faraday rotation of graphene by orders of magnitude,
thus allowing to obtain giant Faraday rotation angles in
the infrared region and modest Faraday rotation angles
in the visible region.

We hope that the present work further stimulates the
research of magneto-optical properties of ultra-thin two-
dimensional gases and graphene-based solid state devices.
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Appendix A: Transfer matrix formalism

The transfer matrix (T−matrix ) approach is a widely-
used method in optics and related fields and provides an
efficient mean of calculating the amplitude and phase of
transmitted electric fields through and arbitrary number
of interfaces. In this appendix, we give a self-contained
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Figure 19: Schematic of an optical system consisting of an
array of interfaces separated by different types of dielectric
media. An electromagnetic wave, Ein = E+

1 , coming from a
medium with dielectric permittivity ε1 interacts with an in-
terface α12. As a result, it is partially reflected and partially
transmitted into the medium ε2. Equivalent events take place
at the remaining interfaces. The vectors with superscript
+(−) denote the component of the electric field traveling in
the positive (negative) direction of z. An uniform static mag-
netic field B = Bey is assumed.

review of the method and derive explicitly the T−matrix
for a general two-dimensional conducting media.

1. General formalism

For concreteness, we assume that an incident electro-
magnetic wave of frequency ω, travels in the z direction
through a set of N metallic interfaces, placed normal
to the direction of propagation, with labels αn,n+1, and
located at positions z = zn (n ∈ 1, 2, ...N). These in-
terfaces are separated by dielectric mediums — Fig. 19
shows the configuration we have in mind.

The electric field is separated according to the direction
of propagation: E+

n (z) represents the part the electric
field traveling in the positive direction of z, within the
region n, whereas E−n (z) represents the part traveling in
the opposite direction.

As shown below, the calculation of transmitted and re-
flected amplitudes becomes easier by writing the bound-
ary conditions in terms of circularly polarized waves (see
also Sec. III A). Therefore, we focus on the circular am-
plitudes,

E±n,τ (z) = E±n,x(z) + iτE±n,y , (A1)

where τ is the polarization index: τ = ±1 [+1(−1) means
right-handed (left-handed) circular polarization]. Indeed,
in a given region i, the total (complex) electric field is the
sum of both components,

En(z, t) = E+
n (z)e−iωt +E−n (z)e−iωt . (A2)

The physical electric field is obtained by taking the
real part of the latter expression. We omit the time-
dependence in the remainder of the appendix.

The T−matrix connects the amplitude of the electric
field to the left and to the right of a given boundary

(interface). Take for instance, the interface labeled α1,2

in Fig. 19. The respective T−matrix, T̂ 1,2, is defined as,(
E+

2,τ (z+
1 )

E−2,τ (z+
1 )

)
= T̂ 1,2

τ

(
E+

1,τ (z−1 )

E−1,τ (z−1 )

)
, (A3)

where z±1 denote the position where the electric field is to
be evaluated: right after (+) or before (−) the interface
located at z = z1. For ease of notation, we define the
vector of amplitudes,

En,τ (z) =

(
E+
n,τ (z)

E−n,τ (z)

)
, (A4)

and drop the superscripts in the coordinates zn.
If more than one interface is present, the light propa-

gates a given distance before interacting with the next
component. Propagation of light through a dielectric
medium merely adds a phase to each τ circular com-
ponent of the electric field. Indeed, its action can be
represented by a diagonal matrix,

En,τ (zi) =

[
e−ikn∆zn 0

0 eikn∆zn

]
En,τ (zi+1) , (A5)

where the index n just takes the values for which there is
intermediate light propagation, i.e., n = 1, ..., N − 1, the
wave vector depends on the dielectric medium according
to kn = ω

√
εn/c and ∆zn = zn+1−zn is the width of the

region n. Note that Eq. (A5) defines a particular case of
a T−matrix, which we denote by F̂n.

The problem of finding how the output electric field,
of definite polarization τ , immediately after leaving the
last interface, E+

N+1,τ (zN ), relates to the incoming elec-
tric field, with the same polarization τ , E+

1,τ (z1), then
amounts to take the product of the individual t-matrices,

E1,τ (z1) = T̂ 1,2
τ F̂2T̂

2,3
τ ...T̂N−1,N

τ F̂N T̂
N,N+1
τ︸ ︷︷ ︸

T̂ in→out
τ

EN+1,τ (zN ) .

(A6)
The total T−matrix T̂ in→out

τ has the desired information,

E+
N+1,τ

E+
1,τ

= 1/
[
T̂ in→out
τ

]
1,1

. (A7)

As for the relation between the output field and the re-
flect field at the first boundary, E−1,τ (z1), we obtain,

E+
N+1,τ

E−1,τ
= 1/

[
T̂ in→out

]
2,1

. (A8)

In what follows, we show how to construct the
T−matrix for a general two-dimensional conducting
medium. Knowledge of the t-matrices allows to deter-
mine the characteristics of transmitted and reflected light
through a general set of conducting two-dimensional thin
films, mirrors, etc., by employing Eq. (A6).
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2. T -matrix for a general conducting 2D interface

We restrict the present derivation to non-magnetic me-
dia, and assume the standard constitutive relations do
hold,

D(r, ω) = ε(r, ω)E(r, ω) , (A9)
J(r, ω) = σ̂(r, ω)E(r, ω) , (A10)

where D, ε, and σ denote the displacement field, permit-
tivity and conductivity, respectively. Also, and without
prejudice, we take the two-dimensional conducting inter-
face to be located at z = 0. The T−matrix is defined
as(

E+
a,τ (z = 0−)

E−a,τ (z = 0−)

)
= T̂ (ab)

τ

(
E+
b,τ (z = 0+)

E−b,τ (z = 0+)

)
, (A11)

where a (b) is the keep-booking index for the medium at
the left (right) of the interface.

Various constraints emerge due to continuity of E (and
its derivative) at the 2D conducting interface. Indeed,
Maxwell equations imply,

Ea(0) = Eb(0) , (A12)(
∂Ea
∂z

)
z=0

−
(
∂Eb
∂z

)
z=0

= iωµ0σ̂Eb(0) , (A13)

where the conductivity tensor reads

σ̂ = σij(ω)δ(z) . (A14)

The conductivity depends on the light frequency ω, and
generally also on other quantities (Fermi energy of the
interface, temperature, etc.). In the latter expression,
the subscripts i, j = x, y are Cartesian coordinates. In
terms of circularly polarized fields, Eq. (A13) reads,

ka(E+
a,τ − E−a,τ )− kb(E+

b,τ − E
−
b,τ ) = ωµ0×
× (E+

b,τ + E−b,τ )σ−τ (ω) ,

(A15)

where we have admitted an isotropic medium, σxx = σyy,
and have defined

σ±(ω) = σxx(ω)± iσxy(ω) . (A16)

The statement Eq. (A15) shows that the two circularly
polarizations are decoupled, even in the presence of a
complex conductivity σ±(ω). This is the reason why it is
advantageous to write the boundary conditions in terms
of circularly polarize fields (Sec. III A).

According to the definition of T−matrix [Eq. (A11)],
we need to relate E+

a,τ with E±b,τ and E−a,τ with E±b,τ ,
separately. To do so, we make use of the continuity con-
dition Eq. (A12) written in circular waves, E+

a,τ +E−a,τ =

E+
b,τ + E−b,τ , in order to arrive at,

±2kaE
±
a,τ = kb(E

+
b,τ − E

−
b,τ )

+ [ωµ0σ−τ (ω)± ka](E+
b,τ + E−b,τ ) . (A17)

Combining Eq. (A11) and the latter expression, we ar-
rive at the desired result,

T̂ (ab)
τ =

1

2ka

[
Λabτ,++ Λabτ,−+

Λabτ,−− Λabτ,+−

]
, (A18)

where

Λabτ,±± = ka ± kb ± ωµ0σ−τ (ω) . (A19)

3. Example: T-matrix of suspended graphene

The T−matrix of suspended graphene can be obtained
immediately from Eq. (A16). Admitting that the medi-
ums at left and right of the single-layer graphene sheet
are air, we obtain,

T̂ graph
τ =

1

2

[
2 + Z0σ

graph
−τ (ω) Z0σ

graph
−τ (ω)

−Z0σ
graph
−τ (ω) 2− Z0σ

graph
−τ (ω)

]
,

(A20)
where Z0 = µ0c is the vacuum impedance.

Appendix B: Faraday Effect

In the present section, we derive the exact analytical
conditions for existence of Faraday rotation and discuss
their modification when graphene is enclosed in an op-
tical cavity. Despite the focus on graphene, most of the
conclusions drawn here apply generally for systems pos-
sessing in-plane symmetry. Once again, for simplicity, we
consider the case of suspended graphene; generalization
to the case of graphene on top of a substrate is straight-
forward using the general formulae given in Appendix A.

1. Conditions for Faraday effect in free space

We consider a target graphene sheet, placed on the xy
plane, subjected to a normally incident electromagnetic
wave, linearly polarized along the x axis, Exe−iωt. The
magneto-optical Faraday effect takes place when a mag-
netic field B = Bez is applied. Then, Lorentz force acts
on free carriers producing a Hall electronic ac-current,
which in specific conditions (see below), will produce out-
of-phase radiation polarized transversely to the imping-
ing field, Eye−iωteiφ. As a consequence, the resulting
electromagnetic wave sees its polarization plane rotated.

Without loss of generality, consider the graphene sheet
to be placed at z = 0. In the circular basis, eτ =
(1/2)(ex + τiey), the electromagnetic field at z = 0−,
reads,

E(0−) = E0e
−iωt(e+ + e−) . (B1)

Note that the actual electric field is given by the
real part of the latter equation. After interaction with
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graphene, each of the circular components τ = ±1 change
according to Eq. (A20). The field right after the graphene
plane is given by

E(0+) = E0e
−iωt

[
1

1 + β−
e+ +

1

1 + β+
e−

]
, (B2)

with β± = Z0σ±(ω)/2. To determine whether the plane
of polarization has rotated, we write the latter equation
in the Cartesian basis,

E(0+) =
E0e

−iωt

2(1 + β+)(1 + β−)
×

× [(2 + Z0σxx) ex − Z0σxyey] , (B3)

where we have used the definition of β± to simplify the
term inside brackets. Obviously, no Faraday rotation
takes place when σxy(ω) = 0. On the other hand, hav-
ing σxy(ω) 6= 0 does not suffice to rotate the polarization
plane; linear polarization can change to elliptic polariza-
tion with main axes along x and y (this is the case for
B = 5 T and ~ω ≈ 15 meV, as shown in the top panel of
Fig. 11: elliptic polarized light leaves the graphene sheet,
δ ≈ 0.15, but still θF = 0). For this reason, the actual
condition for existence of Faraday rotation is

|σxy| > 0 ∧ Arg
(

2 + Z0σxx
Z0σxy

)
6= ±(2m+ 1)

π

2
,m ∈ N0 .

(B4)
The amount of Faraday rotation is given by Eq. (85) and
thus can be obtained directly from Eq. (B2), reading,

θF =
1

2
Arg

(
2 + Z0σ−
2 + Z0σ+

)
. (B5)

In many situations (e.g. high photon energies and high
electronic density), the longitudinal conductivity obeys
Z0σ

′′
xx � 2 + Z0σ

′
xx, thus leading to the approximate

condition, |σ′xy| > 0 ⇒ θF > 0. This is consistent with
the approximated formula derived for the Faraday rota-
tion angle [Eq. (89)] which states that θF is proportional
to σ′xy (see also Fig. 11).

2. Conditions for Faraday effect in an optical cavity

In Sec. IIID, we have seen that large Faraday rotations
θF can be achieved in the cavity-graphene system, even
for such photon energies that do not originate Faraday
rotation in free space. An example is given in Fig. 17:
in free space, impinging light with ~ω ≈ 20 meV does
not change its polarization direction, θF = 0, whereas θF
can be as large as 25º for graphene mounted on a cavity
geometry.

In order to explain the above-described phenomenon,
it is sufficient to consider the simplified situation where a
normally incident photon interacts with graphene twice
in a row. For concreteness, we take two graphene sam-
ples, equally prepared, separated by a given distance W .

Let the photon frequency ω̄ be such that no Faraday rota-
tion is produced in the passage through the first graphene
sample, that is,

Arg
[

2 + Z0σxx(ω̄)

Z0σxy(ω̄)

]
= ±(2m+ 1)

π

2
, (B6)

for some m ∈ N0 [see Eq. (B4)]. In the latter expression,
it is assumed that σxy(ω̄) 6= 0 which is the case when a
magnetic field is present. In these conditions, after the
first passage, the electric field [Eq. (B3)], can be written
as

E1 =
E0e

−iω̄t

2[1 + β+(ω̄)][1 + β−(ω̄)]
eiφ×

× [|2 + Z0σxx(ω̄)| ex ± i |Z0σxy(ω̄)| ey] , (B7)

where φ = Arg[2 +Z0σxx(ω̄)] and the sign ± depends on
the actual argument of σxy(ω̄). The latter equation de-
scribes a field elliptically polarized with main axes along
x and y (i.e., θF = 0). We thus see that although no
Faraday rotation occurs when Eq. (B6) is fulfilled, the
polarization changes from linear to elliptic, an unavoid-
able consequence for Lorentz force enforces some radia-
tion to be emitted that is polarized along the y axis.

In order to determine the field after the second passage,
and hence demonstrate our point, i.e., that some Faraday
rotation must be necessarily produced in multiple pas-
sages through graphene (such as in a cavity geometry),
we make use of the transfer matrix formalism. Indeed, we
approximate the total T−matrix by T̂ graph

τ · T̂ graph
τ (this

approximation is exact when the phase for free propaga-
tion in between the graphene sheets, ωW/c, equals 2mπ).
Employing Eq. (A7), we obtain,

E2 =
E0e

−iω̄t

[1 + 2β+(ω̄)][1 + 2β−(ω̄)]
×

× {[1 + Z0σxx(ω̄)]ex − Z0σxy(ω̄)ey} . (B8)

This time, the condition for zero Faraday rotation,

Arg
[

1 + Z0σxx(ω̄)

Z0σxy(ω̄)

]
= ±(2m+ 1)

π

2
, (B9)

cannot be fulfilled because Eq. (B6) fixes the photon fre-
quency in this example. Then, a finite (non-zero) Fara-
day rotation is produced in the second passage.

The case of graphene in a cavity geometry is more in-
volved because intra-cavity interference takes place. Nev-
ertheless, the physics behind the boost of Faraday rota-
tion is analogous: if, for graphene subjected to a trans-
verse magnetic field, it turns out that the first photon
passage yields θF = 0, then, it must be in the following
passages that θF > 0 — see for instance, Eq. (107), valid
for an optical cavity made of mirrors with very high re-
flection amplitudes: because |σxy(ω)| > 0, for B > 0,
then θF > 0 for all light frequencies.
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3. Row of graphene sheets

Taking a number N of graphene sheets separated by
W , such that ωW/c = 2mπ, leads to the following electric
field, right after the last graphene plane,

EN = E0e
−iωt

[
1

1 +Nβ−
e+ +

1

1 +Nβ+
e−

]
, (B10)

and hence in the limit N � 1 we obtain,

t+
t−
' σ+(ω)

σ−(ω)
, (B11)

which coincides with the result obtained for the cavity-
graphene system, given by Eq. (107).

Appendix C: Regularization of the EOM optical
conductivity

The EOM approach consists in extracting the opti-
cal conductivity from the average of the current opera-
tor J(t) (obtained through the corresponding Heisenberg
equation).

This method avoids the calculation of current correla-
tions, and hence short-circuits the calculation of σij(ω).
The crucial point of the EOM approach is the regular-
ization of the following expression,

ψij(ω) =
J̃i(ω)

Ẽj(ω)
, (C1)

where Õ(ω) (O = J ,E) is defined via

O(t) = Õ(ω)e−iωt + c.c. . (C2)

Eq. (C2) is valid for a monochromatic electromagnetic
field A = A0e

iωt + c.c., and for EOM solutions J̃i(ω) in
first order in A0. For convenience, we write the external
electric field as E(t) = E+(t) + E−(t), with E±(t) =
±iωA0e

∓iωt.
Despite the resemblance of Eq. (C1) to the Ohm’s law,

ψij(ω) is not the optical conductivity: in the linear re-
sponse regime, the EOM solution can be put into the
form

J(t) = ψ̂(ω)E+(t) + c.c. , (C3)

with ψ̂(ω) as defined in Eq. (C1). On the other hand,
the conductivity, σ̂(t), is defined via the relation

J(t) =

ˆ ∞
−∞

dτσ̂(t− τ)E(τ) . (C4)

The Fourier transform of Eq. (C4) is nothing more
than the Ohm’s law, J(ω) = σ̂(ω)E(ω), with σ̂(ω) =´∞
−∞ dtei(ω+i0+)tσ(t). The function σ̂(ω) is analytic in
the upper complex plane and therefore satisfies Kramers-
Kronig causality relations.

From Eqs. (C3)-(C4), we immediately conclude that,
ψ̂(ω) 6= σ̂(ω). The bottom line of the EOM approach
is that the tensor ψ̂(ω) can be exactly transformed into
σ̂(ω) via a simple regularization procedure, as we show
in what follows.

Without loss of generality letA0 = A0ex, withA0 ∈ R,
and consider that no current flows in the absence of ex-
ternal perturbations, 〈Jj(t)〉 = 0. Since we are interested
in the regular part of the optical response, we also take
Jj(t) = JPj (t) ≡ Jj(t); then, in first order in A0,

〈Ji(t)〉H = − i
~

ˆ t

−∞
dτA(τ)〈

[
JIx(τ), JIi (t)

]
〉β , (C5)

with i = x, y. Using the Lehman representation, and
similar notation as employed above, the latter expression
can be written as,

〈Ji(t)〉H = − i

Z~
∑
n 6=m

ˆ t

−∞
dτA(τ)〈m|Jx|n〉〈n|Ji|m〉×

× eiωmn(τ−t) (e−βEm − e−βEn) . (C6)

Since we wish to find the explicit form of ψ̂(ω), we per-
form the integration over the variable τ . We obtain,

〈Ji(t)〉H =
1

Z~
∑
n 6=m

1

ω + ωnm + i0+
〈m|Jx|n〉〈n|Ji|m〉×

×
(
e−βEm − e−βEn

)
A0e

−iωt + c.c. . (C7)

where a small imaginary part has been added to ensure
convergence. Making use of the definition Eq. (C3), we
arrive at the desired result,

ψij(ω) = − 1

Z~
1

iω

∑
n 6=m

1

ω + ωnm + i0+
×

× 〈m|Jj |n〉〈n|Ji|m〉
(
e−βEn − e−βEm

)
, (C8)

where i = x. We also have ψxy(ω) = −ψyx(ω).
On the other hand the frequency dependent conductiv-

ity is obtained from the Fourier transform of σ(t), leading
to the well-known Kubo formula

σij(ω) =
1

Z~
∑
n 6=m

1

iωnm

1

ω + ωnm + i0+
×

× 〈m|Jj |n〉〈n|Ji|m〉
(
e−βEn − e−βEm

)
. (C9)

Comparison of Eq. (C8) with Eq. (C9) yields the general
regularization procedure,

∑
n 6=m

e−βEn − e−βEm
ω

[...]→
∑
n6=m

−e
−βEn − e−βEm

ωnm
[...] .

(C10)
In a single-electron representation, the Gibbs factors
Z−1e−βEn are substituted for Fermi occupation numbers
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nF (En). This procedure was used in Sec. IID to regu-
larize the EOM solutions of graphene in the presence of
a magnetic field.

In Sec. II C, no regularization was employed to de-
rive the interband universal conductivity of graphene in
zero field, Reσxx(ω), see Eqs. (21)-(22). The reason
is that the 1

ω pre-factor [coming from the electric field
Ẽx(ω) = iωA0] is canceled by numerator in Eq. (C1) in
this particular example since, in zero field, J̃x(ω) ∼ ω. It
is straightforward to show that applying the regulariza-

tion Eq. (C10) to Eq. (21) yields exactly Eq .(22). As for
the imaginary part of the conductivity, the regularization
Eq. (C10) is compulsory in order to obtain a consistent
result—the imaginary part of Eq. (21), as it stands, di-
verges.

The regularization prescription Eq. (C10) is general
and makes the link between the solutions of the EOM
ψ̂(ω) [Eq. (C3)] and the exact regular optical conductiv-
ity σ̂(ω) of electronic systems.
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