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Exciton diffusion is crucial for the performance of organic semiconductors in photovoltaic and solid
state lighting applications. We propose a first-principles approach that can predict exciton dynamics
in organic semiconductors. The method is based on time-dependent density functional theory to
describe energy and many-body wave-functions of excitons. Non-adiabatic ab initio molecular dy-
namics is used to calculate phonon-assisted transition rates between localized exciton states. Using
Monte Carlo simulations, we determine exciton diffusion length, lifetime, diffusivity and harvesting
efficiency in poly(3-hexylthiophene) (P3HT) polymers at different temperatures, which agree very
well with experiments. We find that exciton diffusion is primarily determined by the density of
states of low-energy excitons. A widely speculated diffusion mechanism, namely an initial downhill
migration followed by thermally activated migration, is confirmed and elucidated by the simula-
tions. Some general guidelines for designing more efficient organic solar cells are obtained from the
simulations.

PACS numbers: 72.80.Le, 71.10.Li, 71.15.Pd

I. INTRODUCTION

Exciton diffusion is of great importance to the per-
formance of organic optoelectronic devices, including or-
ganic photovoltaics and solid state lighting. For instance,
in organic solar cells high exciton mobility is desirable be-
cause excitons have to migrate to the donor/acceptor in-
terfaces for charge separation within their lifetimes.1 In
contrast, in electroluminescent devices such as organic
light emitting diodes, efficient exciton diffusion would in-
crease the probability that the excitons reach the quench-
ing sites, contributing to the degradation of the devices
performance.2 Therefore, the ability to control exciton
dynamics in organic semiconductors, either by facilitat-
ing or hindering exciton diffusion is crucial to the de-
sign of the optoelectronic devices. However, such ability
hinges upon fundamental understanding of exciton dif-
fusion mechanism. In addition, it is highly desirable to
be able to predict exciton diffusion so that promising
materials can be identified or pre-screened computation-
ally prior to their synthesis. Here we propose a first-
principles approach that can predict exciton dynamics in
organic semiconductors and elucidate exciton diffusion
mechanism. Such a theoretical tool can greatly expand
our capability to rationally design more efficient organic
optoelectronic materials.

Earlier theoretical work has employed Forster type en-
ergy transfer model to calculate exciton transition rates
based on the empirical Miller-Abrahams form;3,4 these
approaches are not material specific and contain empiri-
cal parameters, thus have limited predictive power. To be
more predictive, quantum chemical methods have been
put forward in conjunction with a distributed monopole
model to determine the exciton transition rates employ-
ing the Fermi golden rule.5–8 However, all these meth-
ods assume a Gaussian distribution of exciton density
of states as well as perturbation theories and harmonic
approximations, whose validity is not generally estab-
lished. More importantly, none of the methods above

has considered explicitly the many-body wave-functions
and energy levels of the excitons - both are important
for exciton dynamics. The proposed approach overcomes
these deficiencies and is based on the time-dependent
density functional theory (TDDFT)9 to describe exci-
ton states, including energy levels and many-body wave-
functions. The non-adiabatic ab initio molecular dynam-
ics (MD)10,11 is used to determine the phonon-assisted
transition rates between localized exciton states. In con-
junction with Monte Carlo method, this approach can
simulate exciton dynamics in semiconducting polymers
at different temperatures.

In this paper, we will study exciton diffusion in conju-
gate polymer P3HT, which is the donor material in the
state-of-the-art bulk heterojunction solar cells, reaching
the power conversion efficiency of 5 - 7 %.12–14. The
knowledge gained from this study is expected to be trans-
lated to other organic semiconductors as well. In real-
istic photovoltaic devices - either pure P3HT films or
the bulk heterojunctions, there always exist amorphous
interphases15 and interfaces16; since exciton diffusion in
these amorphous phases limits the overall exciton dy-
namics, in this paper we will focus on exciton diffusion
in amorphous P3HT.

II. METHODOLOGY

We have developed a theoretical framework that can
predict the exciton dynamics including exciton diffusion
length, diffusion lifetime, diffusivity and harvesting effi-
ciency from first-principles simulations. The multiscale
framework integrates ab initio Born-Oppenheimer MD,
TDDFT (with range-separated exchange-correlation
functional), non-adiabatic ab initio MD and Monte Carlo
simulations; the coherent integration of the computa-
tional components is summarized in the flowchart shown
in Fig. 1, which will be elaborated in the following.
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FIG. 1. Flowchart of the multiscale simulation framework.

A. Determining exciton states

We first carry out ab initio MD based on the Kohn-
Sham (KS) DFT to capture the effect of static and dy-
namic disorder on the ground state electronic structure.
At each MD time-step, we determine the energy levels
and many-body wave-functions of the excitons from the
KS eigenvalues ǫiσ and eigenfunctions φiσ following the
TDDFT formulation of Casida17. To this end, we solve
the following non-Hermitian pseudo-eigenvalue equation
at each MD step:
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∗

)(
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YI

)

= ωI
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0 -1

)(
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YI

)

, (1)

where the pseudo-eigenvalue ωI is the Ith exciton energy
level; the matrix elements of A and B in the basis of KS
states {ijσ} are given by

Aijσ,klτ = δi,kδj,lδσ,τ (ǫjσ − ǫiσ) +Kijσ,klτ ,

Bijσ,klτ = Kijσ,lkτ .
(2)

Here K is the coupling matrix where indices i and k
indicate the occupied orbitals, and j and l represent the
virtual orbitals. According to the Assignment Ansatz
of Casida, the many-body wave-function of the exciton

state I, ΦI , is written as

ΦI ≈
∑

ijσ

XI,ijσ +YI,ijσ√
ωI

â†jσâiσΦ0, (3)

where âiσ is the annihilation operator acting on the ith
KS orbital with spin σ, and Φ0 is the ground state many-
body wave-function taken to be the single Slater deter-
minant (SD) of the occupied KS orbitals.
To describe charge transfer excitations accurately, we

incorporate a range-separated exchange-correlation (XC)
functional18,19 into the TDDFT formalism. The range-
separated XC functional combines Hartree-Fock (HF) ex-
change to reproduce −1/r asymptotic behavior of the
exchange potential at a long-range and the Generalized
Gradient Approximation (GGA) at a short-range; it has
been shown to describe π → π∗ transitions accurately in
conjugated polymers20. The range-separated functional
can be expressed as E′

xc = Exc,GGA − ELR
x,GGA + ELR

x,HF,

where Exc,GGA is the GGA energy functional, ELR
x,GGA is

the long-range part of the GGA exchange energy func-
tional, and ELR

x,HF is the long-range part of Hartree-Fock
exchange integral. We have recently proposed an efficient
range-separated XC method21 which is used to correct
the KS eigenvalues and eigenfunctions in the TDDFT
formalism. These corrections are carried out at each MD



3

step as indicated in the flowchart Fig. 1. In the fol-
lowing, the superscript prime is denoted for quantities
that are corrected by the range-separated XC functional
from the GGA results. Indices a and b run over occu-
pied orbitals (i) and virtual orbitals (j). In the basis of
KS eigenfunctions φaσ, the corrected Hamiltonian matrix
elements are:21

Ĥ ′
abσ = ǫaσδab −

∫

φ∗
bσ(r)V

LR,σ
x,GGA[ρσ(r), ρτ (r)]φaσ(r)dr

−
occ
∑

c

[φ∗
bσφcσ|

erf(µr)

r
|φ∗

cσφaσ].

(4)

Here V LR,σ
x,GGA is the long-range part of the GGA exchange

potential for spin σ; ρσ is the charge density of spin σ cal-
culated as ρσ(r) =

∑occ
c φ∗

cσ(r)φcσ(r), and the Coulomb

product [f | 1r |g] =
∫ ∫ f(r1)g(r2)

|r1−r2|
dr1dr2 has been intro-

duced here. µ is the range-separation parameter chosen
as 0.62 Å−1 which has been well validated18,21. The index
c includes all occupied orbitals. The KS eigenvalue ǫ′aσ
and eigenfunction φ′

aσ can be obtained via a direct diago-

nalization of the Hamiltonian matrix Ĥ ′, and are used in
the TDDFT calculation with Eq. (1). With the corrected
eigenvalues and eigenfunctions, the coupling matrix K is
given by

Kijσ,klτ = [φ
′∗
iσφ

′

jσ |
1

r
|φ′

kτφ
/∗
lτ ]− δστ [φ

′∗
iσφ

′

kτ |
erf(µr)

r
|φ′

jσφ
′∗
lτ ]

+

∫

φ
′∗
iσ(r)φ

′

jσ(r)
δ2(Exc,GGA − ELR

x,GGA)

δρσ(r)δρτ (r′)
φ

′

kτ (r
′)φ

′∗
lτ (r

′)drdr′.

(5)

Thus in the calculation of Eq. (2), the eigenvalues ǫiσ
should be replaced by ǫ′iσ, with the coupling matrix de-
termined by Eq. (5).

B. Exciton charge density and spatial positions

Given the many-body wave-functions, one can deter-
mine the charge density of the exciton. Here, we con-
sider the spin-restricted case to focus on singlet excitons
although the same approach can be generalized to triplet
excitons. In an N -electron system, the density operator

is ρ̂(r) =
∑N

n=1 δ(r − rn). Hence the charge density of
the Ith excited state can be derived as

〈ΦI |ρ̂(r)|ΦI〉 = ρ0(r) +
∑

i,jj′

z∗I,ijzI,ij′φ
∗
j (r)φj′ (r)

−
∑

ii′,j

z∗I,ijzI,i′jφ
∗
i′ (r)φi(r),

(6)

where ρ0(r) =
∑occ

c φ∗
c(r)φc(r) is the charge density of

the KS ground state and zI,ij = (XI,ij + YI,ij)/
√
ωI .

Since an exciton is a bond state of a quasi-electron and a
quasi-hole, the second term on the right hand side of Eq.

FIG. 2. Charge density of the lowest energy exciton in amor-
phous P3HT. The computational box is of a dimension of 1.8
nm. The blue (yellow) iso-surface illustrates the charge den-
sity distribution at +(-) 0.005 Å−3. The positive (negative)
charge density corresponds to the quasi-electron (hole). The
gray, white, and yellow spheres denote C, H, and S atoms,
respectively.

(6) represents the charge density of the quasi-electron
and the third term corresponds to the charge density
of the quasi-hole. This identification is consistent with
the fact that the index i refers to the occupied orbitals
(holes), while j refers to the virtual orbitals (electrons)
as in Eq. (2). Therefore one can represent the charge
density of an exciton by the corresponding densities of
its quasi-electron and quasi-hole. This representation is
convenient because it reduces the many-body object (the
charge density of the exciton) to the single-particle den-
sities, which can be easily visualized and analyzed. For
amorphous P3HT, we find that the quasi-electron and
quasi-hole are localized on the same P3HT chain shown
in Fig. 2, consistent with experimental observation of
intra-chain Frenkel excitons22–24. With increased crys-
talline order, we find that the excitons acquire both intra-
and inter-chain characteristics, also agreeing with exper-
imental observations24. In addition, we estimate that
the first excitation energy of the crystalline P3HT ranges
from 1.5 eV to 2.4 eV, comparing well to the correspond-
ing experimental value of ∼ 2.0 eV25. For the crystalline
P3HT, we find that the first excitation energy depends
sensitively on the stacking order of π−π wave-functions,
and the two numbers cited above correspond to two op-
posite stacking orders. Overall, the TDDFT calculations
provide an accurate description of the static properties
of excitons in P3HT.

To simulate exciton diffusion, it is often useful to de-
fine spatial positions of the excitons. With the position

operator r̂ =
∑N

n=1 rn, the position of the exciton I in
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the N -electron system is given by

〈ΦI |r̂|ΦI〉 =
∫

ρ0(r)rdr+
∑

i,jj′

z∗I,ijzI,ij′ 〈φj |r|φj′ 〉

−
∑

ii′,j

z∗I,ijzI,i′j〈φi′ |r|φi〉.
(7)

On the right hand side of Eq. (7), the first term is the
sum of all electron positions in the ground state; the
second (third) term corresponds to the position of the
quasi-electron re (quasi-hole rh). We can thus define the
position of the exciton I rex as

rex =
re + rh

2
. (8)

Again the advantage of this definition is to relate the
many-body quantity of the exciton position with single-
particle quantities (re and rh).

C. Exciton transition rates

Next, we determine phonon-assisted transition rates
and the spontaneous emission rates of the excitons.
We attribute exciton diffusion to the phonon-assisted
transitions, including adiabatic evolution of the excited
states and the non-adiabatic hopping between the excited
states. The thermal fluctuations of the ions could lead
to overlap between the exciton states in space and en-
ergy, and thus promote exciton transitions between the
localized exciton states. Since these transitions can be
non-adiabatic, the non-adiabatic ab initio molecular dy-
namics is used to describe the phonon-assisted transi-
tions. During a molecular dynamics trajectory, the time-
dependent many-body wave-function of the exciton state,
Ψ(t), can be expanded by a linear combination of a com-
plete basis set consisting of the adiabatic ground state
and the excited states ΦI(R(t)) at the present ionic po-
sitions R(t):

Ψ(t) =

∞
∑

I=0

CI(t)ΦI(R(t)), (9)

where CI(t) is the expansion coefficient. Let the exciton
start in a pure state I at t = 0, i.e., Ψ(0) = ΦI(R(0));
then the coefficient CJ(t) in Eq. (9) can be labeled as

C
(I)
J (t) with the initial condition that C

(I)
J (0) = δI,J .

At t > 0, ions move and Ψ(t) becomes a mixed state.

Therefore |C(I)
J (t)|2 represents the probability that the

exciton makes a transition from the state I to the state
J during a small time interval of δt (in this case δt =
t− 0). The phonon-assisted exciton transition rate from
the state I to J , γPhonon

I,J is thus given by

γPhonon
I,J = 〈 |C

(I)
J (t)|2
t

〉δt. (10)

The average is taken over a short MD trajectory of δt.
Here, we use δt = 100 fs to determine the phonon-

assisted transition rates. The evolution of C
(I)
J (t) can

be determined on-the-fly from the non-adiabatic ab initio
molecular dynamics. Substituting Eq. (9) into the time-
dependent Schrodinger equation, one arrives at the fol-
lowing equation involving the expansion coefficient CJ (t):

∂

∂t
CJ(t) = −

∑

K

CK(t)(
i

h̄
ωKδJK +DJK). (11)

A standard second-order finite-difference method with a
time-step of 10−3 fs is employed to propagate the coef-
ficient CJ (t). And DJK is the non-adiabatic coupling
between two many-body electronic states J and K,

DJK ≡ 〈ΦJ |∇R|ΦK〉 · dR
dt

= 〈ΦJ |
∂

∂t
|ΦK〉. (12)

Substituting Eq. (3) into Eq. (12), we can obtain DJK

as

DJK =
∑

ii′jj′

z∗J,ijzK,i′j′〈Φij |
∂

∂t
|Φi′j′ 〉

=
∑

i,j 6=j′

z∗J,ijzK,ij′djj′ −
∑

i6=i′,j

z∗J,ijzK,i′jdi′i,
(13)

where Φij = â†j âiΦ0 is a single SD of the KS orbitals, pro-
moting an electron from an occupied state i to a virtual
state j. djk = 〈φj | ∂∂t |φk〉 is the non-adiabatic coupling
between the KS orbitals. One can show that

〈Φij |
∂

∂t
|Φi′j′〉 =











0, if i = i′ and j = j′,
djj′ , if i = i′ and j 6= j′,
0, if i 6= i′ and j 6= j′,
−di′i, if i 6= i′ and j = j′,

(14)

where dii = 0 has been used. Hence 〈Φij | ∂∂t |Φ0〉 = dji,
and the non-adiabatic coupling between the exciton state
J and the ground state is obtained as

DJ0 =
∑

i,j

z∗J,ijdji. (15)

Although the non-adiabatic coupling between the ground
state and the excited states DJ0 can be rigorously deter-
mined by TDDFT26, there is no such rigorous formula-
tion for the non-adiabatic coupling between the excited
states, therefore approximate many-body wave-functions
in Eq. (3) have to be used in calculating Eq. (12).
Excitons can decay from a higher energy to a lower

energy or even to the ground state (i.e., exciton annihila-
tion) through the so-called spontaneous emission mech-
anism. Based on the transition dipole moment approx-
imation, we can estimate the spontaneous emission rate
between two exciton states as

γDipole
I,J =

4n(ωI − ωJ)
3|〈ΦI |r̂|ΦJ〉|2

3c3
, (16)
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where c is the vacuum speed of light and n is the refrac-
tive index which takes a value of 1.5 for P3HT27. Similar
to Eq. (7), the transition dipole moment can be evalu-
ated as

〈ΦI |r̂|ΦJ〉 =
∑

i,jj′

z∗I,ijzJ,ij′〈φj |r|φj′ 〉

−
∑

ii′,j

z∗I,ijzJ,i′j〈φi′ |r|φi〉,
(17)

where I and J are the exciton states, and

〈ΦI |r̂|Φ0〉 =
∑

i,j

z∗I,ij〈φj |r|φi〉, (18)

represents the dipole moment between the exciton state
I and the ground state.
Although the spontaneous emission contributes only

to the energy downhill transitions, the phonon-assisted
transitions could take place both downhill and uphill. To
ensure detailed balance, the thermal equilibrium transi-
tion rate γI,J can be defined as28

γI,J =

{

γPhonon
I,J exp(−ωJ−ωI

kBT ), if ωJ ≥ ωI ,

γPhonon
I,J + γDipole

I,J , if ωJ < ωI ,
(19)

where kB is the Boltzmann constant and T is tempera-
ture.

D. Construction of macroscopic system and Monte

Carlo simulations

To examine exciton diffusion in a length-scale that is
relevant to experiments, we divide the entire “macro-
scopic” system of interest into Lx × Ly ×Lz cubes; each
cube should be chosen as large as computationally fea-
sible, but at minimum the cube should accommodate
the localized wave-functions of the quasi-electron and the
quasi-hole. The ab initio MD simulation is carried out
for one of the cubes, termed home cube; the KS energy
and wave-functions obtained along the MD trajectories
are used to construct the electronic states of the macro-
scopic system approximately. More specifically, to model
an amorphous structure, the KS orbitals are randomly se-
lected and rotated from the MD snap-shots of the home
cube before placing them into the other cubes. In the
same vein, we can model a crystalline structure by letting
the KS orbitals be the same in each cube (the polymer
chains in each cube can be either warped or straight).
Moreover, we can also generate a lamellar structure by
keeping the KS orbitals the same in one dimension. In
each case, the KS orbitals are used to determine the ex-
citon positions rI following Eq. (7) and (8) in the macro-
scopic system. The transition rates within each cube (or
intra-cube transition rates) are calculated by Eq. (19)
while the inter-cube transition rates are determined by

the distance between the excitons and the relevant intra-
cube transition rates. The rationale behind this approx-
imation and the detailed procedure can be found in Ref.
29 and 30. In this manner, the energies ωI , positions rI ,
and transition rates γI,J for each excitons in the macro-
scopic system can be obtained.
Exciton diffusion is modeled as random walks using

Monte Carlo (MC) simulations. For diffusion of the exci-
ton I, one can generate an event table with M + 1 tran-
sition probabilities (M is the number of excitons consid-
ered in the simulation): transition probabilities from the
exciton I to M − 1 neighboring excitons, P1,2,...,M−1 =
γI,J×∆t with J = 1, . . . , I−1, I+1, . . . ,M ; annihilation
probability, PM = γI,0 × ∆t; and the probability to re-
main at the same state I, PM+1 = 1−(P1+P2+. . .+PM ).
∆t is the time-step of the MC simulations. With these
probabilities, a diffusion trajectory of the exciton I is ob-
tained by executing MC moves until the exciton is anni-
hilated. From the trajectory, one can determine the life-
time t (the number of MC moves multiplied by ∆t) and
the maximum distance dmax of exciton diffusion for each
trajectory. Averaging over all trajectories with the same
initial exciton position gives the exciton diffusion length,
lifetime, and diffusivity by LD = 〈dmax〉, τ = 〈t〉, and
D = 〈d2max〉/τ , respectively where the brackets indicate
the average. The exciton harvesting efficiency can also
be determined from these relevant trajectories as shown
in Sec. III B. One can then repeat the same procedure
for different excitons.

III. APPLICATION TO CONJUGATED

POLYMER P3HT

A. Computational details

Ab initio Born-Oppenheimer molecular dynamics is
carried out for the home cube (shown in Fig. 2) of a
dimension of 1.8 nm with periodic boundary conditions.
The supercell contains 606 atoms, including three P3HT
chains each with eight thiophene rings, leading to a mass
density of 1.1 g/cm3, which is similar to the experimental
value. The initial structure of the P3HT chains, start-
ing from a randomly placed and warped configuration,
is fully relaxed to reach the local energy minimum. The
system is brought to a desired temperature by MD with
a repeated velocity scaling, and is then kept at the de-
sired temperature for 500 fs with 1 fs time-step to reach
the thermal equilibrium. Finally, the micro-canonical
production MD run is carried out for 1000 fs with 1 fs
time-step for each temperature. We have confirmed that
the simulated system is equilibrated during the micro-
canonical MD run29. The PAW pseudopotentials31 and
Perdew-Burke-Ernzerhof (PBE) functional32 as imple-
mented in the VASP package33,34 are used in the ab ini-
tio calculations performed at Γ point with 300 eV energy
cutoff. Six highest occupied KS orbitals and nine lowest
unoccupied KS orbitals are included in the Casida’s for-
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FIG. 3. The Fourier transform of the lowest exciton energy
level at 300 K. The frequencies of the bending and torsion
modes of the backbones are below 500 cm−1, and the stretch-
ing frequency of C=C bonds is about 1500 cm−1.

mulation to produce 54 exciton states. In each MD step,
we obtain the KS energies and orbitals which are then
used to calculate the many-body wave-functions and the
energies of the 54 excitons.
The entire system of interest consists of 30 × 30 × 30

cubes for which the Monte Carlo simulations are carried
out (the dimensions of the simulated system are much
larger than the diffusion length, thus are sufficient to
represent the realistic macroscopic system). By using
different random number sequences, we have constructed
100 different configurations of the entire system. And for
each configuration, 100 trajectories of exciton diffusion
are modeled by Monte Carlo. In total, we have gener-
ated 104 trajectories for each initial exciton states con-
sidered in the present work. The time-step ∆t in the
Monte Carlo simulations should be chosen judiciously so

that
∑M

m=1 Pm < 1 and the minimal time-step should be
greater than or equal to 1 fs, which is the time-step of
the MD simulations. We have performed Monte Carlo
simulations using ∆t = 1 fs and 10 fs, respectively, and
obtained the similar results for the diffusion length and
lifetime.

B. Results and discussions

The exciton diffusion consists of inter-state transitions
(the transitions between two excited states) and anni-
hilations (transitions to the ground state); these transi-
tions can be phonon-assisted or spontaneous. We find
that at 300 K the phonon-assisted transition rates range
from 108s−1 to 1013s−1 and from 106s−1 to 109s−1 for
the inter-state transitions and annihilations, respectively.
The spontaneous emission rates span from 0 to 108s−1

and from 105s−1 to 109s−1 for the inter-state transitions
and annihilations, respectively. Thus the inter-state tran-
sitions are dominated by the phonon-assisted processes,

TABLE I. Simulated diffusion length LD (nm), lifetime τ (ns),
and diffusivity D (10−8m2/s) for S1, S2, and S3 excitons at
100 K, 200 K, and 300K, respectively.

300K 200K 100K
S1 S2 S3 S1 S2 S3 S1 S2 S3

LD 5.1 6.4 7.7 2.9 4.4 6.2 1.7 4.2 6.1
τ 2.3 2.4 2.3 1.8 1.6 1.6 3.6 3.6 3.5
D 1.5 2.1 3.0 0.6 1.4 2.8 0.1 0.6 1.2

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.1

0.2

0.3

S1

S2

Low exciton states  

D
O
S

Energy (eV)

S3

Downhill migration

2.3 2.4 2.5 2.6 2.7
0.00
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0.04

  

 

 

FIG. 4. The exciton density of states for 54 excitons (black
curve) and 144 excitons (red curve) in each cube at 300 K.
Dashed circles show the energy range of S1, S2, and S3 ex-
citons. Inset: a blown-up view of DOS in the energy range
indicated by the solid black circle.

while the phonon-assisted and spontaneous transitions
contribute equally to the annihilations. From the Fourier
transform of the time-dependent exciton energy levels,
we can identify the relevant phonon modes that give rise
to the exciton-phonon coupling and the non-adiabatic
exciton transitions. As shown in Fig. 3, a number of
low frequency phonons arising from the bending and tor-
sion modes of the backbones and a much higher fre-
quency phonon from the stretching mode of C=C bonds
are responsible for the phonon-assisted exciton dynam-
ics. These results are in excellent agreement with the
experimental observations35,36.
In the following, we discuss the simulation results of

exciton diffusion in amorphous P3HT. Three representa-
tive excitons whose initial energies are labeled by S1, S2
and S3 in the Fig. 4 are considered. Here the density
of states (DOS) counts all possible exciton states at a
given energy corresponding to all atomic configurations
over the course of MD. S1 is at the low-energy tail of the
exciton DOS; S2 is 0.2 eV higher than S1 while S3 is 1.5
eV higher than S1. While the energy of S1 and S2 corre-
sponds to the efficient photon adsorption frequencies, the
energy of S3 approaches the higher-limit of the solar spec-
trum. The results of LD, τ , and D from the Monte Carlo
simulations are summarized in Table I. The experimental
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FIG. 5. The energy evolution of S3 exciton vs. diffusion dis-
tance from 104 trajectories. (a) and (c): The exciton energy
difference between two adjacent diffusion moves vs. diffusion
distance at 300 K (a) and 100 K (c). The color-coding repre-
sents different time-ranges; the time is given in ns. (b) The
exciton energy vs. the diffusion distance at 300 K. (d) The ex-
citon energy vs. diffusion distance for three randomly selected
trajectories at 300 K (solid curves) and 100 K (dash curves).
The downhill and thermally activated migration processes are
represented by the red and black curves, respectively.

values of exciton diffusion length in P3HT at room tem-
perature scatter considerably: from 2.6 ∼ 5.3 nm37, 4
nm38, 8.5 nm39, to 27±12 nm40. The corresponding dif-
fusivity ranges from 5× 10−8m2/s38, 2× 10−7m2/s39, to
1× 10−6m2/s40. To understand the large variation of the
experimental values, we also consider a crystalline P3HT
structure in the Monte Carlo simulations and determine
LD, τ , and D as 17.2 nm, 0.35 ns, and 9× 10−7m2/s,
respectively. Clearly the diffusion length and diffusiv-
ity in the crystalline P3HT are much higher than those
of the amorphous P3HT, and in fact the results are in
line with the largest experimental values. Therefore, the
exciton dynamics depends sensitively on the structural
order of the polymer - more than two orders of magni-
tude increase in diffusivity can be achieved by improving
the structural order. Additionally, the calculated exciton
lifetime is ∼ 1 ns, compatible to the experimental values
that range from a few hundred ps to ∼ 1 ns41. Finally,
it is evident from Table I that the diffusion length and
diffusivity increase with the temperature and the exciton
with a higher energy has a greater diffusion length and
diffusivity.
It has been speculated that exciton diffusion in conju-

gated polymers is governed by two processes: an initial
downhill migration towards lower energies followed by
a thermally activated migration2,41,42. However, there
is no direct evidence that such processes exist and the
general behavior of the diffusion processes remains to be

understood. Our simulations have unambiguously con-
firmed that such processes indeed exist and provided
a fundamental understanding of the processes. In Fig.
5, we display the evolution of exciton energy vs. diffu-
sion distance for 104 trajectories. Each data point corre-
sponds to an MC move with increasing diffusion distance;
a positive (negative) ∆E in Fig. 5(a) and (c) corresponds
to an energy loss (gain). Therefore the initial downhill
migration is represented by the red color with positive
∆E, while the thermally activated migration is repre-
sented by the yellow and blue colors with oscillating ∆E
across the zero energy. The initial downhill migration
completes within 10−2 ns, much faster than the ther-
mally activated migration (∼ 1 ns). Shown in Fig. 5(b),
the downhill process is characterized by a smaller diffu-
sion distance (∼ 5 nm) but with a greater energy loss (>
1 eV); in contrast the thermally activated process con-
tributes to a much longer diffusion distance (up to 20 nm)
but with a much smaller energy variation (∼ 0.2 eV). It
can also be observed from Fig. 5(b) that the thermally
activated process involves exclusively the low-energy ex-
citons that are ∼ 0.2 eV above the lowest exciton energy
(i.e., the width of the blue strip is 0.2 eV); these low-
energy exciton states are also indicated in Fig. 4. By
comparing Fig. 5(a) and (c), one finds that the ther-
mally activated migration is suppressed at 100 K - there
is an absence of energy gain or negative ∆E in Fig. 5(c).

Next, we examine the general behavior of exciton dif-
fusion by focusing on the three representative excitons.
Fig. 6 shows the percentage distribution of the diffusion
distance obtained from 104 diffusion trajectories at dif-
ferent temperatures. From Fig. 6 and Table I, we find
that (i) the diffusion length increases with temperature
for all three excitons, particularly for the low-energy ex-
citons such as S1; (ii) the diffusion behavior of the higher
energy excitons (such as S2 and S3) is similar at 300 K.
These two observations can be understood from the dif-
fusion mechanism outlined above. Since exciton diffusion
in real space corresponds to transitions between excited
states in energy space, a lower exciton DOS implies fewer
possible states for a migrating exciton to make transitions
to, hence the diffusion is suppressed. This is the case for
S1 exciton - the DOS of S1 is very small and so is its
diffusion length at 100 K. At a higher temperature, how-
ever, S1 exciton can gain its energy from the phonons
promoting S1 to a higher energy state with a greater
DOS. Hence the diffusion of S1 is enhanced by increasing
temperature. In contrast, S3 can lower its energy via the
downhill migration to S2. Since the diffusion distance is
primarily determined by the thermally activated process,
S3 has a slightly larger diffusion distance than S2 (their
difference stems from the prior downhill migration from
S3 to S2). Consequently there exists an optimal exci-
tation energy, Eopt which is approximately 0.2 eV. The
energy of S2 is optimal for diffusion; below S2, exciton
diffusion at low temperatures is minimal because it has to
acquire enough thermal energy for a considerable diffu-
sion distance. On the other hand, a much higher exciton
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FIG. 6. Statistics (percentage) of exciton diffusion distance
for 104 exciton diffusion trajectories at 100 K, 200 K, and 300
K. Solid, dashed, and dotted curves correspond to S3, S2, and
S1 exciton, respectively.

energy does not lead to a much longer diffusion distance
because the extra energy will be “lost” to the phonons
via inefficient downhill migration.
The diffusion distance distribution shown in Fig. 6 is

also useful to estimate exciton harvesting efficiency - an
important quantity for photovoltaic performance. For a
given diffusion distance r, the integration of the distribu-
tion percentage from r to ∞ represents the probability
p(r) that an exciton can be harvested. Consider a pla-
nar heterojunction in which P3HT donor layer is sand-
wiched between two acceptors. Let exciton be formed
at distance r from the interface and assume the excitons
are generated homogeneously in the P3HT layer. The

harvesting efficiency can be estimated as
∫ L

0
p(r)dr/L,

where L is the thickness of the P3HT layer. At 300 K
for S3 exciton, we find that the exciton harvesting effi-
ciency as 90%, 70% and 10% for L =6 nm, 10 nm and 70
nm respectively. In particular, the estimated efficiency of
70% is very close to the experimentally measured photo-
luminescence quenching efficiency of 68% for P3HT with
the same thickness43; the corresponding efficiency for S2
exciton is 62%, slightly smaller than the experimental
value.
Finally, to verify that 54 excitons in each cube is suffi-

cient to simulate the exciton diffusion in P3HT, we have
considered 144 excitons per cube in the simulations -
twelve highest occupied KS orbitals and twelve lowest un-
occupied KS orbitals in Casida’s formulation. The values
for the diffusion length and diffusivity are practically the
same as in the case of 54 excitons. This agreement can

be understood from two facts: (1) the DOS below S3 is
essentially the same for the two cases as shown in Fig. 4
and (2) the DOS above S3 is irrelevant to the diffusion.
The reason behind the second fact is that the diffusion of
S3 exciton proceeds with the downhill migration initially
as shown in Fig. 5(b), which lows its energy towards S2.
The states above S3 are not accessed in the diffusion.
On the other hand, the energy of S1 and S2 excitons is
too low to be thermally elevated above S3. Therefore
54 excitons per cube are sufficient for the diffusion of the
three excitons considered here. In general, the number of
excitons in each cube should be determined by ensuring
that the DOS below the highest relevant exciton state is
correctly reproduced.

IV. CONCLUSION

To conclude, we have developed a computational ca-
pability that could potentially guide rational design of
organic optoelectronic materials by predicting exciton
dynamics. The theoretical approach is based on first-
principles simulations without empirical input. We have
studied exciton diffusion in both crystalline and amor-
phous P3HT conjugated polymers at different tempera-
tures and obtained excellent agreements (including ex-
citon diffusion length, diffusivity, lifetime and harvest-
ing efficiency) with the experimental results. The sim-
ulations unambiguously establish the exciton diffusion
mechanism and shed light into the exciton diffusion pro-
cesses that are difficult to obtain by experiments alone.
In addition, the simulations provide following guidelines
that could be potentially useful in materials design: (1)
From a structure perspective, exciton diffusion depends
sensitively on the crystalline order - a higher structural
order renders a greater diffusion length. More than
two orders of magnitude increase in diffusivity can be
achieved by optimizing the material structure. (2) From
a materials perspective, exciton diffusion depends criti-
cally on the electronic density of states near the valence
band maximum and conduction band minimum of the
semiconductor - a higher density of states near the band
edges leads to more low-energy exciton states, yielding
a greater diffusion length. The optical gap on the other
hand does not play a role in exciton diffusion. (3) There
is an optimal photon frequency for exciton diffusion in
each material; therefore in designing tandem solar cells,
one should consider frequency-dependence both in terms
of light adsorption and exciton diffusion in each material
to gain the highest overall quantum efficiency.
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