
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quasiballistic heat transfer studied using the frequency-
dependent Boltzmann transport equation

A. J. Minnich, G. Chen, S. Mansoor, and B. S. Yilbas
Phys. Rev. B 84, 235207 — Published 15 December 2011

DOI: 10.1103/PhysRevB.84.235207

http://dx.doi.org/10.1103/PhysRevB.84.235207


Quasiballistic heat transfer studied using the frequency-dependent Boltzmann
transport equation

A. J. Minnich,1 G. Chen,2, ∗ S. Mansoor,3 and B. S. Yilbas3

1Department of Mechanical and Civil Engineering
California Institute of Technology

Pasadena, CA 91106
2Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
3Department of Mechanical Engineering

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Quasiballistic heat transfer occurs when there is a temperature gradient over length scales com-
parable to phonon MFPs. This regime has been of interest recently because observing quasiballistic
transport can lead to useful information about phonon mean free paths (MFPs), knowledge of which
is essential for engineering nanoscale thermal effects. Here, we use the Boltzmann transport equa-
tion (BTE) to understand how observations of quasiballistic transport can yield information about
MFPs. We solve the transient, one-dimensional, frequency-dependent BTE for a double layer struc-
ture of a metal film on a substrate, the same geometry that is used in transient thermoreflectance
experiments, using a frequency-dependent interface condition. Our results indicate that phonons
with MFPs longer than the thermal penetration depth do not contribute to the measured thermal
conductivity, providing a means to probe the MFP distribution. We discuss discrepancies between
our simulation and experimental observations which offer opportunities for future investigation.

PACS numbers:

I. INTRODUCTION

Classical size effects in heat transfer, where the characteristic length scales of a system are comparable to phonon
mean free paths (MFPs), have long been of interest.1–4 The ability to create nanostructured materials has led to many
observations of modified thermal properties in nanoscale systems.4,5 Another type of size effect can occur if there is a
temperature gradient over length scales comparable to phonon MFPs.6 In this case, local thermal equilibrium does not
exist and the transport is quasiballistic. Transient ballistic transport has been studied experimentally using heat pulse
techniques and x-ray diffraction techniques.7,8 A nonlocal theory of heat transport was proposed as a modification of
diffusion theory9. It was also predicted that the heat conduction from a nanoparticle is significantly reduced from the
Fourier law prediction10.

Recently, several workers have used observations of quasiballistic heat transfer to infer information about phonon
mean free paths (MFPs).11–14 In particular, Koh and Cahill reported that varying the thermal penetration depth by
changing the modulation frequency in a transient thermoreflectance (TTR) experiment can yield information about
MFPs.12 They explained their experimental observations using a simplified model based on the phonon Boltzmann
transport equation (BTE).15

The full phonon BTE is often used to calculate heat transfer in the quasiballistic regime. The BTE has been solved
using various numerical techniques in recent years, including with discrete ordinates2,16, Monte Carlo techniques17–19,
and a finite volume approach.20 However, many studies used frequency averaged properties. In a material such as Si,
where phonon MFPs can vary by six orders of magnitude over the Brillouin zone,21 this assumption is not realistic.
While some studies did include frequency dependence,2,16,18,20 several of these studies made other simplifying assump-
tions regarding the calculation of the equilibrium distribution function which are not self-consistent. A calculation
of the phonon transport through a single material, including dispersion and polarization, has been reported,20 but
phonon transmission through an interface was not included.

Here, we numerically solve the transient, one-dimensional, frequency-dependent BTE, including polarization, both
to examine how phonon MFPs can be extracted from measurements of quasiballistic heat transfer and to better
understand Koh and Cahill’s observations. We solve the equation for a double layer structure of a metal film on a
substrate, the same geometry as that used in TTR, using the method of discrete ordinates. We use a frequency-
dependent interface condition to account for differences in phonon dispersion between the two materials. Our results
indicate that phonons with MFPs longer than the thermal penetration depth do not contribute to the measured
thermal conductivity, providing a means to probe the MFP distribution. We discuss discrepancies between our
simulation and experimental observations which offer opportunities for future investigation.
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II. THEORY

The transient, one-dimensional, frequency-dependent phonon BTE is given by:2

∂fω
∂t

+ µvω
∂fω
∂x

= −fω − f
0
ω

τω
(1)

Here fω = ~ωD(ω)g(ω)/4π is the desired distribution function, where ~ is Planck’s constant divided by 2π, ω is the
angular frequency, D (ω) is the phonon density of states, and g(ω) is the occupation function; f0

ω is the equilibrium
distribution function, µ = cos θ is the cosine of the angle between the propagation direction and the x-axis, and τω is
the frequency dependent relaxation time. The equilibrium distribution f0

ω is given by

f0
ω(T ) =

~ωD (ω) fBE(T )

4π
(2)

where fBE(T ) = (exp(~ω/kBT ) − 1)−1 is the Bose-Einstein distribution function and T is the temperature of the
distribution. The factors of 4π normalize the distribution by the solid angle. Other treatments of the BTE2,16 have
written the equation in terms of the intensity Iω = fωvω; however, for transient transport optical phonons must be
included in the calculation but have essentially zero group velocity. To allow for the case of zero group velocity, we
remove velocity from the definition of the distribution function.

For this study, we will take the materials to be an Al film on a Si substrate because these materials are commonly
studied using TTR. The Al film requires additional examination. The total thermal conductivity of metals is often
in the hundreds of W/mK range but electrons carry most of the heat. Here we only consider the thermal conduction
due to the lattice to remove the thermal resistance from electron-phonon coupling.22 The lattice thermal conductivity
of the metal is not known with certainty; we use a value of kl ≈ 30 W/mK. Phonon relaxation times are also not well
known in metals, and we take the relaxation time τ to be a constant so that k = 1/3

∫
Cωv

2
ωτdω gives the specified

thermal conductivity.
We now discuss several important details of the calculation which must be treated properly to obtain a self-consistent

solution.

A. Calculation of the equilibrium distribution

The equilibrium distribution f0
ω can be determined by integrating Eq. 1 with respect to frequency and angle and

invoking conservation of energy.2 The result is:∫ ωm

0

∫ 1

−1

fω
τω
dµdω =

∫ ωm

0

∫ 1

−1

f0
ω

τω
dµdω (3)

In the past, this equation has been satisfied by enforcing equality at each frequency, or f0
ω = 1/2

∫ 1

−1
fωdµ.2,16

However, it has been shown that this approximation will not give the correct solution to the BTE.18 Therefore, it is
necessary to determine the temperature T by integrating Eq. 3 over frequency and angle. To simplify the calculation,
we approximate that the temperature difference throughout the domain is not too large. We can then linearize the
equilibrium distribution:

f0
ω(T ) =

~ωD (ω) fBE(T )

4π
≈ f0

ω(T0) +
Cω
4π

∆T (4)

where ∆T = T − T0. This gives a simpler equation for the temperature of the equilibrium distribution:

∆T =
4π∫ ωm

0
(Cω/τω)dω

∫ ωm

0

∫ 1

−1

fω − f0
ω(T0)

τω
dµdω (5)

The equilibrium distribution then follows immediately from Eq. 4.
Solving for the equilibrium distribution in this manner significantly complicates the solution. Since all the frequen-

cies are coupled, Eq. 5 must be solved at each spatial point. In silicon, phonon MFPs can vary from a few nanometers
for zone-edge phonons to millimeters for long wavelength phonons, a six order of magnitude difference. To obtain a
correct solution for short mean free path phonons, the numerical spatial grid must have a small step size. However,
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to obtain a correct solution for the fast, long MFP phonons requires a large spatial domain. Since the solution must
be known at every spatial point, these contradictory requirements imply a large domain with very fine spatial step
size is required, making the solution computationally demanding. Multi-grid schemes, with a different spatial grid
for each frequency, could be used, but to simplify numerical considerations we solve the distribution function for all
frequencies on a single grid.

B. Role of optical phonons

Optical phonons are typically neglected in studies of phonon transport, as they contribute little to the thermal
conductivity due to their near zero group velocity.21 However, in transient heat transport, optical phonon modes with
large specific heats act as a thermal capacitance and thus affect the transport, even if the modes do not actually
transport any heat themselves.20 We incorporate these phonons in Si (Al does not have optical phonons) simply as
another mode with zero group velocity. We must also specify an optical phonon relaxation time; we use a value of
3 ps.23 The solution is not sensitive to the precise value. The optical phonon specific heat is given by the Einstein
model assuming three degenerate optical branches:24

Cop = 3NkB

(
~ωop
kBT

)2
exp(~ωop/kBT )

(exp(~ωop/kBT )− 1)2
(6)

where N is the number density of the material and ωop is the optical phonon frequency, equal to 63 meV in Si.25

C. Interface condition

After the phonons travel through the metal film they reach the interface between the metal and substrate, where
phonons are either transmitted or reflected. Presently, the details of these transmission or reflection processes are
largely unknown. Molecular dynamics simulations have been used to study phonon transmission through coherent
interfaces,26,27 but it is not clear if these results are applicable to the imperfect interfaces encountered in experiment.
Due to this lack of knowledge, we use a simplified frequency dependent interface condition. We assume elastic, diffuse
scattering and neglect any type of mode conversion: phonons do not change frequency or polarization as they cross
the interface, but are scattered equally in all directions. These assumptions allow the transmission and reflection
processes for each phonon frequency to be treated independently. A diagram with the dispersions of Al and Si, along
with the allowed scattering modes, is shown in Fig. 1.

To fully specify the phonon distribution at the interface, it is necessary to obtain the outgoing distributions from
the interface, which are the backward-going phonons on side 1, f−ω1, and the forward-going phonons on side 2, f+

ω2;
as a function of the incoming distribution to the interface, which are the forward-going phonons on side 1, f+

ω1, and
the backward-going phonons on side 2, f−ω2. These outgoing distributions are obtained by enforcing that the heat
fluxes from f−ω1 and f+

ω2 are equal to the reflected and transmitted heat fluxes from f+
ω1 and f−ω2. Because we assume

elastic scattering and neglect mode conversion, the heat flux equality condition must be satisfied for each frequency
and polarization. The conditions are:

q+
ω1 =

∫ 1

0

f+
ω1vω1µdµ (7)

q−ω2 =

∫ 0

−1

f−ω2vω2µdµ (8)

f+
ω2vω2 = 2

(
T12(ω)q+

ω1 −R21(ω)q−ω2

)
(9)

f−ω1vω1 = 2
(
−T21(ω)q−ω2 +R12(ω)q+

ω1

)
(10)

Here T12(ω) is the transmission coefficient from side 1 to 2, R21(ω) is the reflection coefficient from side 2 back into
side 2, and so on. These equations allow f−ω1 and f+

ω2 to be determined and thus fully specify the distribution function
at the interface.

We now examine the frequency dependent transmission and reflection coefficients. In order to be consistent with
the two materials’ dispersions and to satisfy the principle of detailed balance and the conservation of energy, there
are several restrictions on the coefficients. Let us assume the frequency-dependent transmissivity from medium 1 to
medium 2, T12(ω), is specified. First, under the assumption of elastic scattering and the neglect of mode conversion,
some high frequency phonons are unable to transmit from one material to the other due to a lack of a state. For Al
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FIG. 1: Phonon dispersions of Al (left) and Si (right). Scattering is permitted between phonons of the same polarization and
frequency. High frequency phonons lacking a corresponding state are diffusely backscattered, indicated by the cutoff mismatch
in the figure.

and Si, this occurs for phonons in the Al transverse branch and the Si longitudinal branch. These phonons are not
able to transmit and therefore have zero transmissivity; this is indicated by ‘cutoff mismatch’ in Fig. 1.

Next, the principle of detailed balance must be satisfied. This principle requires that when both materials are at
an equilibrium temperature T , no net heat flux can transmit across the interface. This condition applies for every
phonon mode on each side of the interface28:

T12(ω)f0
ω1(T )vω1 = T21(ω)f0

ω2(T )vω2 (11)

Thus, even if T12(ω) is frequency independent, T21(ω) will in general be frequency dependent. Because we have
assumed diffuse scattering, none of the transmission or reflection coefficients are angle-dependent and no further
restriction is necessary.

Note that because f0
ω(T ) depends nonlinearly on T , temperature cannot be extracted from Eq. 11, meaning that

the relationship between T12(ω) and T21(ω) required to satisfy detailed balance will change depending on the phonon
temperature. However, due to the small deviations from the equilibrium temperature T0 considered here, to excellent
approximation detailed balance can be satisfied for all the phonons by evaluating Eq. 11 at T0.

Finally, conservation of energy is ensured by enforcing an equality of the heat fluxes on each side of the interface,24

giving:

R12(ω) = 1− T12(ω) (12)

R21(ω) = 1− T21(ω) (13)

All of these conditions must be satisfied at every frequency and polarization. Using the above relations, once T12(ω)
is specified all of the other coefficients can be obtained.

The transmissivity T12(ω) can be related to the interface conductance G by calculating the heat flux and equivalent
equilibrium temperature on each side of the interface.3 The interface conductance is defined as

G = q/∆T (14)

q =

∫ ωm

0

∫ 1

−1

f1vω1µdµdω (15)
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where q is the heat flux at the interface and ∆T the temperature difference across the interface. The heat flux
depends on the transmissivity, and therefore will be different from the results derived previously3 due to the frequency
dependence of the transmissivity.

The heat flux is straightforward to calculate from the distribution function f using Eq. 15, but defining the
temperature difference ∆T is more subtle. Assuming that f+

ω1 and f−ω2 have some emitted phonon temperature
Te1 and Te2, respectively, f+

ω2 and f−ω1 will be composed of reflected and transmitted phonons at these different
temperatures and will be strongly out of equilibrium.3 It has been shown that the appropriate quantity to use is
the equivalent equilibrium temperature, which represents the temperature of the distribution that a non-equilibrium
phonon distribution would reach if it were to relax adiabatically to equilibrium.3 Thus, even though the forward and
backward going phonons are strongly out of equilibrium, using the equivalent equilibrium temperature allows the
results to be compared to the Fourier’s law result which assumes local thermal equilibrium.

Using Eq. 14, the heat flux q from Eq. 15, and the equivalent equilibrium temperature,3 the modified relation
between the interface conductance and transmissivity can be shown to be:〈

T12(ω)f0
ω1vω1

〉
=

2

〈Cv〉−1
1 + 〈Cv〉−1

2 + (2G)−1
(16)

where 〈·〉 denotes integration over frequency. If the transmissivity is frequency independent then this formula reduces
to the result derived previously.3 It is important to remember that this formula assumes that the incoming distributions
to the interface, f+

ω1 and f−ω2, have a temperature. If these distributions are also out of equilibrium, then it is not
possible to relate the interface conductance and transmissivity. In this case, with the transmissivity specified, the
interface conductance will change with time until the two incoming distributions do have a temperature, at which
point Eq. 16 will be valid and the interface conductance will become a constant. Due to the transient nature of the
heat transport studied here, the two distributions never exactly achieve a thermal distribution, and so the thermal
conductance can still change slowly with time.

D. Phonon dispersion and relaxation times

We now need to specify the dispersion and relaxation times for both the Al film and the Si substrate. We use the
experimental dispersion in the [100] direction for both Al and Si and assume the crystals are isotropic.

We assume a constant relaxation time τ for all modes in Al; the value τ = 10 ps is chosen to yield the desired
lattice thermal conductivity k ≈ 30 W/mK. For Si, we use relaxation times for phonon-phonon scattering extracted
from molecular dynamics (MD) simulations29 but with an empirical term exp(−θ/T ) to extend the relaxation times
to lower temperatures.30 While other forms of the relaxation times are available, we have verified that the difference
between the various relaxation times is not sufficient to affect our analysis in the subsequent sections. We also add
boundary scattering and impurity/isotope scattering, which are important at T < 100 K, and combine the relaxation
times using Matthiessen’s rule τ−1 =

∑
i τ
−1
i . The relaxation times (in seconds) are:

τ−1
L = 2× 10−19 × ω2T 1.49 exp(−θ/T ) (17)

τ−1
T = 1.2× 10−19 × ω2T 1.65 exp(−θ/T ) (18)

τ−1
I = 3× 10−45 × ω4 (19)

τ−1
B = 1.2× 106 (20)

where L and T denote longitudinal and transverse, respectively. The thermal conductivity is calculated with the
above relaxation times using the kinetic theory expression for the thermal conductivity:

k =
1

3

∑
p

∫ ωm

0

Cωv
2
ωτωdω (21)

where the sum is over polarization p. The exact dispersion is used in this calculation. As in Holland’s model the
additive term accounting for normal scattering is neglected.30

E. Numerical details and boundary conditions

We solve the BTE numerically using a discrete ordinates method.16 Both the angle and frequency are discretized
using Gaussian quadrature to minimize the number of points required. The angle is discretized into Nµ = 40 points.
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The frequency discretization is more complicated because of the cutoff frequency mismatch for zone-edge phonons.
Integrals involving the phonon dispersion are split into two integrals, one over the modes in common between Al and
Si and another over the remaining modes, which in this case is the high frequency modes of the Al T branch and the
Si L branch. These integrals are then separately discretized using Gaussian quadrature. An explicit first-order finite
difference method is used to discretize the spatial and temporal derivatives.16

In addition to the interface conditions, one boundary condition is required for each angle −1 < µ < 1. The
distribution function must be specified for angles 0 < µ < 1 at x = 0, or the top of the metal film, and for angles
−1 < µ < 0 at x = L, or the bottom of the substrate. Here L is the length of the numerical domain, taken to be
3 µm for the simulations at 300 K. We choose the boundary condition at x = 0 to be diffuse reflection so that this
surface is adiabatic. For the boundary condition at x = L, the type of boundary condition used ideally should not
matter if the domain is sufficiently long. We use adiabatic or constant temperature boundary conditions and confirm
that the solution to the BTE is the same in both cases. To verify convergence of the numerical solution, the number
of spatial points, angle points, and frequency points were all increased; the solution is again unchanged.

The initial condition is an exponentially decaying phonon temperature distribution, with the 1/e depth of the
temperature profile taken to be the light absorption depth in Al, approximately 7 nm for visible wavelengths.31 The
Al layer thickness is 100 nm.

The interface transmissivity T12(ω) is calculated using Eq. 16 for a particular value of G specified at the beginning
of the simulation. The rest of the transmission and reflection coefficients can then be calculated as described in section
II C.

III. RESULTS

To verify the code is working properly, we first consider a test case. In this simulation, performed at T=300 K, the
maximum relaxation time was truncated to 10 ps, putting the transport easily into the diffusive limit. In this case,
the solution from the BTE should be very close to the Fourier law solution. Figure 2a shows good agreement between
the surface temperature of the metal film versus time predicted by the BTE and by Fourier’s law.

We can also calculate the interface conductance G and compare it to the value specified at the beginning of the
simulation. The interface conductance is obtained from the solution to the BTE f(t, x, µ) using Eq. 14. The result is
shown in Fig. 2b; the calculated result is close to the specified value of 1.1×108 W/m2K.

This test case demonstrates that the calculation successfully reproduces the diffusive limit and is operating properly.
We now perform the same simulation, only with the restriction on relaxation times removed; relaxation times are now
given by the equations in Sec. II D and can be arbitrarily long. The same figures as before, lattice surface temperature
versus time and interface conductance versus time, are shown in Figs. 2c and 2d, respectively.

This calculation gives a different result than the test case. Examining Fig. 2c, we see that at room temperature
the solution from the BTE does not match that from Fourier’s law, indicating ballistic effects are present. This result
highlights the importance of including frequency dependence in the calculation. While the average phonon MFP is
estimated to be around 40 nm in Si,24 more detailed analyses show that MFPs vary by 5-6 orders of magnitude over the
Brillouin zone.29 In terms of the present one-dimensional simulation, these long MFP (and relaxation time) phonon
modes do not scatter over the timescale of the simulation, resulting in the failure of Fourier’s law. From Fig. 2c, we
see that the surface temperature decay curve is shallower than the Fourier law prediction, indicating that the heat
transfer in the quasiballistic case is smaller than in the diffusive case. This reduced heat flux, or, equivalently, ballistic
thermal resistance, in quasiballistic transport has been demonstrated experimentally in sapphire11, in semiconductor
alloys,12 and in silicon at cryogenic temperatures.13 The fundamental cause of ballistic thermal resistance as follows.
When applying Fourier’s law to a domain, we assume that there is phonon scattering in the domain for the heat
diffusion picture to be valid. When Fourier’s law is applied to a domain where no scattering occurs, Fourier’s law
implies fictitious scattering events take place in the domain, even though the phonon mean free path corresponding to
the bulk material’s thermal conductivity is much longer than the domain and no scattering actually happens. If we
instead use the domain length rather than the much longer MFP to calculate thermal conductivity, the effective thermal
conductivity in the ballistic case will be much smaller than the true value, yielding a larger thermal resistance.10

Examining the interface conductance in Fig. 2d, we see an additional change. Instead of a constant interface
conductance close to the value of 1.1×108 W/m2K specified, the interface conductance changes with time. The reason
for this was discussed in Sec. II C. To define an interface conductance, the incoming distributions at the interface
must have a thermal distribution. Due to the long relaxation times of some phonons, local thermal equilibrium does
not exist over the short timescales of this simulation, making it impossible to define a constant interface conductance.

The effect of ballistic thermal resistance is much more apparent at T< 300 K, where phonon relaxation times can
be longer than 1 µs. The length of the domain in this case is 15 µm to remove any possibility of finite domain effects.
A typical result is shown in Fig. 3 at T=100 K; ballistic effects are clearly evident.
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FIG. 2: (a) Lattice surface temperature (relative to a reference temperature of 300 K) versus time predicted by the BTE and
the heat equation and (b) the interface conductance G calculated from the BTE with truncated relaxation times to 10 ps. (c)
and (d) are the same figures except calculated with unmodified relaxation times which may be arbitrarily long. The surface
temperature plot (a) with truncated relaxation time agrees almost exactly with the diffusive prediction, while case (c) shows
a discrepancy due to quasiballistic effects. Similarly, the truncated relaxation time interface conductance (b) is essentially a
constant close to the specified value of 1.1×108 W/m2K, while the interface conductance in the unmodified case (d) changes
with time.

IV. DISCUSSION

From the results presented, it is clear that qualitatively, the solution of the phonon BTE compared to the Fourier’s
law solution contains information about relaxation times. In particular, if the BTE solution is different than the
Fourier’s law solution, we can conclude that some phonon modes have relaxation time longer than the timescale of the
simulation. The magnitude of the difference between the two solutions also gives some information about relaxation
times: the longer the relaxation times, the larger will be the deviation and vice versa.

We would like to better understand which phonon modes are responsible for these discrepancies and determine how
to extract information about relaxation times. As discussed in the previous section, quasiballistic transport results
in a smaller heat flux than predicted by Fourier’s law, corresponding to a smaller effective thermal conductivity.
We can interpret the value of this effective thermal conductivity using an earlier work by Koh and Cahill12. Their
work proposed that ballistic phonons, which have MFPs longer than the cross-plane thermal penetration depth, have
effectively infinite ballistic thermal resistance and do not contribute to the thermal conductivity measured by the
experiment. The effective thermal conductivity keff is due to short MFP phonons:

keff =
1

3

∫ Λco

0

CωvωΛωdΛω (22)
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FIG. 3: Lattice surface temperature (relative to a reference temperature of 100 K) versus time predicted by the heat equation
and BTE with full relaxation times at T = 100 K. Ballistic effects are more apparent at low temperatures where relaxation
times are longer.

where Λco is the cutoff MFP, approximately equal to the thermal penetration depth. While Koh and Cahill’s model is
originally based on the penetration depth due to the accumulative effect of multiple pulses, to start we will consider
the single pulse penetration depth.

To determine the effective thermal properties predicted from the BTE, we fit the single-pulse BTE solution with
a Fourier’s law solution using an effective thermal conductivity keff and interface conductance Geff . The effective
properties are obtained by manually adjusting the properties in the Fourier law model until the Fourier law solution
matches the BTE solution. These properties will be smaller than the values specified in the BTE computation due to
the ballistic thermal resistance. This fit is demonstrated in Fig. 4a for T=300 K. The BTE solution, in which k = 140
W/mK and G=1.1×108 W/m2K were specified, matches a Fourier’s law solution with different effective values of
keff = 100 W/mK and Geff = 1.0 × 108 W/m2K. Based on our manual fitting, we estimate the uncertainty in the
fitted values is approximately 10%.

Because the net heat transfer from the metal film is smaller than the Fourier’s law prediction, both the interface
conductance and thermal conductivity are smaller than their specified values. Understanding how the interface
conductance is affected by quasiballistic transport has not been considered previously and is an interesting topic for
future study. This effect will not be further considered here, however.

Under Koh and Cahill’s interpretation, the discrepancy between these two thermal conductivity values is due to
long MFP phonon modes. For the single pulse case, Lpd ≈ 2 ×

√
παt, where Lpd is the thermal penetration depth,

α ≈ 10−4 W/m2K is the thermal diffusivity of silicon at T=300 K, and t ≈ 5 ns is the approximate timescale of
the experiment.15 Using these values, we find that Lpd ≈ 2.5µm, suggesting that phonons with MFPs longer than a
cutoff MFP of Λco ≈ 2.5 µm do not contribute to the measured thermal conductivity. To determine if this value is
reasonable, we use Eq. 22 to calculate the thermal conductivity with a cutoff MFP of 2.5 µm. The result is k ≈ 100
W/mK, in good agreement with the value obtained from fitting the BTE solution.

The results of this fitting procedure for temperatures down to T=150 K are shown in Fig. 4b. At and below T =
100 K a satisfactory fit using Fourier’s law is difficult to obtain for reasons that are presently unclear. However, above
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FIG. 4: (a) Surface temperature (relative to a reference temperature of 300 K) versus time predicted by the BTE (solid line),
along with the solutions from Fourier’s law for k=140 W/mK (dashed line) and k=100 W/mK (dotted line) at T = 300 K.
The BTE solution almost exactly matches the curve with a reduced effective thermal conductivity of 100 W/mK. (b) Thermal
penetration depths and cutoff MFPs required to obtain the effective thermal conductivity from the BTE solution. The two
quantities agree well, supporting the idea that phonons with MFP longer than the penetration depth do not contribute to the
measured thermal conductivity.

T=100 K, there is quite good agreement between the MFP cutoff values Λco, obtained from the frequency-dependent
model of thermal conductivity, and the penetration depth Lpd. These results further support the hypothesis that
phonons with Λω > Lpd do not contribute to the measured thermal conductivity. Therefore, by performing an
experiment in which the thermal penetration depth is shorter than some phonon MFPs, the MFP distribution can be
probed by varying the penetration depth.

V. UNRESOLVED DISCREPANCIES

There are two discrepancies between our numerical analysis and experimental observations. First, while the single-
pulse numerical simulations suggest that quasiballistic effects should be observable at room temperature in silicon
at nanosecond timescales, experimentally the correct thermal conductivity is routinely measured using standard
ultrafast techniques.32 The reason for this discrepancy is presently unclear, but could be due to the accumulative
effect of multiple pulses making the effective heat transfer timescale longer than that of the single pulse case.

Second, our simulation is presently not able to explain the modulation frequency dependence of thermal conductivity
observed in Koh and Cahill’s experiment. So far, we have only numerically solved for the single-pulse response of
the BTE. As mentioned above, in a typical TTR experiment the observed response of a sample is actually due to
multiple pulses.32 Koh and Cahill’s observation of modulation frequency-dependent thermal conductivity can only be
interpreted using this multi-pulse response.

The multi-pulse response can be calculated from the single-pulse response using a procedure described in Ref. [32].
Briefly, the procedure involves adding later portions of the single-pulse response multiplied by a phase factor to the
beginning of the single-pulse response:

Z(t) =

∞∑
q=0

h(qT + t)e−iω0(qT+t) (23)

where Z(t) is the multi-pulse response at time t, h is the single-pulse response, T is the time between laser pulses, and
ω0 is the modulation frequency. The modulation frequency affects the multi-pulse response by changing the phase
factor multiplying the single-pulse response.

In the diffusive limit, the multi-pulse response and impulse response should both correspond to the same thermal
conductivity value, regardless of the modulation frequency used. In order to measure a modulation-frequency depen-
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FIG. 5: Typical multi-pulse responses at different modulation frequencies calculated from the single-pulse response for the BTE
and Fourier’s law at T=300 K. (a) Amplitude and (b) phase responses at a modulation frequency of 15 MHz; (c) amplitude and
(d) phase responses at a modulation frequency of 6 MHz. Both fits correspond to effective thermal conductivity keff = 100
W/mK and interface conductance G = 1.0× 108 W/m2K and therefore do not not predict a modulation-frequency dependence
of thermal conductivity.

dent thermal conductivity, then, the single-pulse response must deviate from the Fourier’s law prediction such that
the multi-pulse response corresponds to different thermal conductivities at different modulation frequencies. However,
as can be seen in Fig. 4, the single-pulse BTE solution can be fit using a Fourier’s law response with an effective
thermal conductivity. Because the BTE response and Fourier’s law response with effective properties are essentially
identical, the multi-pulse response of the BTE must yield a thermal conductivity equal to its original effective value
regardless of the modulation frequency. Thus, the present BTE calculation does not predict a modulation-frequency
dependent thermal conductivity.

This lack of frequency dependence is demonstrated in Fig. 5. Here, we have used Eq. 23 to calculate the multi-
pulse response of the BTE solution and the Fourier’s law solution with the effective properties keff=100 W/mK and
G = 1.0 × 108 W/m2K. As the figure shows, this same set of effective parameters can explain both the amplitude
and phase responses of the BTE at two different modulation frequencies, 6 and 15 MHz. We have calculated the
multi-pulse responses at several different frequencies in the MHz range and obtained the same result. Calculating
the multi-pulse response at lower modulation frequencies is difficult because up to 1 µs of the BTE solution must be
computed, but based on the above discussion we do not expect to observe a frequency dependence even at these lower
frequencies.

It is interesting to note that experimentally, a modulation frequency effect has not been observed in pure silicon.
In our recent work, we measured the thermal properties of silicon at cryogenic temperatures and found only a laser
beam dependence of the thermal conductivity.13 Koh and Cahill observed the modulation frequency effect only for



11

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Time (ns)

T
em

p
er

at
u

re
 (

K
)

 

 
k=18 W/mK
BTE
k=0.6 W/mK

FIG. 6: Surface temperature (relative to a reference temperature of 300 K) versus time for silicon with a dilute point defect
scattering rate predicted by the BTE (solid line), along with the solutions from Fourier’s law for k=18 W/mK (dashed line)
and k=0.6 W/mK (dotted line) at T = 300 K. The BTE solution almost exactly matches the curve with a reduced effective
thermal conductivity of 0.6 W/mK, indicating that there is no modulation frequency dependence of the thermal conductivity.

semiconductor alloys. To determine whether the model predicts a modulation frequency dependence for alloys, we
performed the same computation except with the point defect scattering rate increased by a factor of 103. This
scattering rate corresponds to a material with a dilute point defect concentration. If a modulation frequency effect is
present in the alloy case, the BTE temperature decay curve should deviate from a Fourier’s law response. However,
Fig. 6 shows that the BTE curve can again be fit by Fourier’s law, although with a drastically different thermal
conductivity, k = 0.6 W/mK, and interface conductance, G = 0.3 × 108 W/m2K, from the input values of k = 18
W/mK and 1.1×108 W/m2K, respectively. The discrepancy is larger than in the pure silicon case, Fig. 4(a), because
the strong scattering of high frequency modes leaves a larger fraction of heat carried by low frequency, long MFP
modes. The calculation still does not predict a modulation frequency dependence of the thermal conductivity. The
discrepancy between the calculation and experiment is puzzling and is an interesting topic for further study.

VI. CONCLUSION

In this paper, we have numerically solved the transient, one-dimensional, frequency-dependent BTE, including
polarization, in order to better understand how phonon MFPs can be extracted from measurements of quasiballistic
heat transfer. We solved the equation for a double layer structure of a metal film on a substrate to facilitate comparison
with transient thermoreflectance experiments. Our results indicate that phonons with MFPs longer than the thermal
penetration depth do not contribute to the measured thermal conductivity, providing a means to probe the MFP
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distribution. The simulation also predicts that quasiballistic effects should be apparent even at room temperature
in silicon or semiconductor alloys, and did not predict a modulation frequency dependence of thermal properties,
contrary to experimental observations. These discrepancies offer opportunities for future investigation.
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