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We realize a gapless Majorana Orbital Liquid (MOL) usingitaibdegrees of freedom and also an SU(2)-
invariant Majorana Spin Liquid (MSL) using both spin anditabdegrees of freedom in Kitaev-type models
on a 2-leg ladder. The models are exactly solvable by Kisagatton approach, and we obtain long-wavelength
descriptions for both Majorana liquids. The MOL has one gaplmode and power law correlations in energy
at incommensuare wavevectors, while the SU(2) MSL has thapéess modes and power law correlations in
spin, spin-nematic, and local energy observables. We ghelgtability of such states to perturbations away
from the exactly solvable points. We find that both MOL and M&In be stable against allowed short-range
parton interactions. We also argue that both states pesist allowingZ> gauge field fluctuations, in that the
number of gapless modes is retained, although with an expbset of contributions to observables compared
to the free parton mean field.

I. INTRODUCTION of gapless modes. The local energy observables obtain new
contributions beyond the mean field, and in this sense the par

Since the experimental realization of gapless quantum spifPns become “less free”, but their bosonized fields stillagm
liquids (QSL}~¢ in two-dimensional (2D) organic com- Very convenientfor characterizing the MOL phase.
pounds x-(ET);Cu,(CN); and EtMegSb[Pd(dmit}],,1"28
there have been many theoretical propa$atéfor such in-
triguing phases. Among them, the proposal of an SU(2)

invariant Majorana spin liquid (MSL) by Biswaet al.®* is _
at each site of the 2-leg ladd®The system can be reduced

fascinating and in need of more careful consideration. ) - ‘
In an earlier work, we constructed an exactly solvable mi-to three species of Majorana fermions coupled to background

croscopic modéF in Kitaev's spirif® to study the properties Z5 gauge fields such that it is exactly solvable and has gapless

of such SU(2)-invariant MSL with Fermi surfaces of partons.Partons with incommensurate wave vectors. We formulate
However, we allowed very low symmetries—lack of parity, |0ng-wavelength description in terms of 1tjhree right-mayin
inversion, and time reversal symmetry (TRS)—to sidestef@d left-moving complex fermions'f,, /5, .. ff,.) that
discussing possible perturbations such as Cooper paiting i transform as a vector under spin rotation. Because there
stability, which can destabilize the gapless QSL phasey awds no global U(1) symmetry, in addition to familiar four-
from the exactly solvable limit. In order to study the sta- fermion residual interactions expressed8/21 7, f2, there
bility of such new class of gapless QSL and further exploreare other allowed terms such #8777 /71 f27. Despite of
their properties, we realize such states on a 2-leg squdre lahaving more allowed interactions, a weak coupling renormal
der and show that they represent new quasi-one-dimensionightion group (RG) analysis gives a large regime of a stable
(1D) phases. phase. Similarly to the MOL case, we argue that such MSL
We first consider a gapless Majorana Orbital Liquid (MOL) with gapless matter can be also stable agaihsgauge field
realized in a Kitaev-type model on the 2-leg ladder usingfluctuations even in (1+1)B/:4142
orbital degrees of freedom. The system can be reduced to
one species of Majorana fermions coupled to backgratind
gauge fields such that it is exactly solvable and has gapless The paper is organized as follows. In Sec. Il, we realize
partons with incommensurate Fermi wave vectors. We formuthe MOL with one fermion species in a Kitaev-type mdfel
late a long-wavelength description in terms of right-mayvin on the 2-leg ladder and consider its long-wavelength proper
and left-moving complex fermiongg,;, and show that local ties and stability against perturbations. In Sec. lll, wal+e
energy observable has power law correlations at incommenze the SU(2) MSL and use weak coupling RG analysis to
surate 2k " wavevectors. Going away from the exactly solv- study the stability of such phase against residual parten in
able point, we first consider allowed residual parton irtera teractions and also discuss the stability against gauge fiel
tions and find that there is only one valid four-fermion termfluctuations. We conclude in Sec. IV with some discussions.
and it is strictly marginal; hence, the MOL is stable to suchin Appendix A, we consider more abstractly the stability of
perturbations. gapless U(1) matter againgt, gauge field fluctuations in
An important question is the stability of the MOL to allow- (1+1)D. In Appendix B, we give long-wavelength description
ing Z, gauge field fluctuations, as these lead to confinemerf the SU(2) MSL and discuss observable properties. In Ap-
of partons in gapped phases in so-called eifggauge the- pendix C, we consider Zeeman magnetic fields on the SU(2)
ories in (1+1)D'37 We argue that because of the nontrivial MSL. In Appendix D, we realize the SU(2) MSL in a model
momenta caried by the gapless partons, there is a destrugith explicitly broken time reversal symmetry and show that
tive interference forZ, vortices (instantons) in space-time, this case has a larger window of stability to weak perturba-
and hence these are suppressed and do not affect the cotions.

_ We next realize an SU(2)-invariant Majorana Spin Liquid
(MSL) using both spin-1/2 and orbital degrees of freedbih



Il. GAPLESS MAJORANA ORBITAL LIQUID (MOL) ON A unit cell
TWO-LEG LADDER Xr Z ')5_3' ':X 4 X 3 X
<+ > T (= S
We begin with a “spinless” (one species) MOL realized in IZ“ IS 7 \ A7’
a Kitaev-type model on a 2-leg ladder shown in Fig. 1(a). The ‘; R !‘ N P
Hamiltonian is y‘:_ 1 _i_ i _Iy 1 x 2 S’
H=MHo+Kg, Y Wo, +Kg,. > Wg,. . (1) @)
[y Oy €k
where
Ho = Z TRt TR, ) 2 Band-1
A—link, (jk) A
Wo,, =1irdriry, 3
A " Band-2,
Oy = T271 7473 - - L2 /R n
The 7 Pauli matrices can be thought of as acting on two-level _

orbital states. Thé&V/, terms, withp = O, orJ,.. formed by

x andz ory andz links respectively, are plaquette operators
which commute among themselves and with all other terms in , , ,
the Hamiltonian and are added to stabilize particular flx se G- 1- (8) Graphical representation of the exactly solvatitaev-

tor. see Fig. 1(a). Following Kitaev's approach. we introelu type model on the 2-leg ladder and its solution in the zero ke
0, g.1(a). . 9 PP ’ tor. Thec Majoranas propagate with pure imaginary hopping am-
Majorana representation as

plitudes specified by the couplings., J,, J., andJ.; the signs
(5) in our chosen gauge are indicated by the arrows and the figur-s

unit cell is also indicated. (b) Dispersion of complex feoms that
solve the Majorana problem for parametéts,, J,, J., J.} =
{1.2, 0.8, 1.0, 1.1}.

—
J zbj cj,

with the constrainD; = b7b4b%c; = 1. The Hamiltonian can
be rephrased as

Ho=i Z AgteTjicicre (©) this end, we can proceed as follows. For a general Majorana
il problem specified by an anti-symmetric pure imaginary ma-
Wp—(0,..0,.} = — H Uk , (7)  trix Aj,, we diagonalize4,;, for spectra, but only half of
(jkyep the bands are needed while the rest of the bands can be ob-
tained by a specific relation and are redundant. Explidibly,
whered,;, = —ibjby for A-link (jk) and the product in the 3 system witl2m bands, we can divide them into two groups.
last line is circling the plaquette. The first group contains bands frolto m with eigenvector-

Following familiar analysis in Kitaev-type models, we ob- eigenenergy pair§ vy, e, 1}, whereb = 1,2,...,m are
serve that in the enlarged Hilbert spaag, commute among pand indices, and the second group contains bands/fran
themselves and with the Hamiltonian, and we can proceed by 241, related to the first 9rouUPL Ty —mb.k» €0/ —mib i} =
replacing them by their eigenvaluégsl and interpreting as {# ., —eb—x}. Using only the bands with = 1 to ;n, we

static Z, gauge fields. ThéV, terms, withK), > 0 assumed  can write the original Majoranas in terms of usual complex
to be sufficiently large, can be used to stabilize the secithr w fermions as

zero fluxes through all elementary plackets, and this caa giv 5 m

a gapless phase. In our work, we fix the gauge by taking ..y ,) — Xy () £ (k) + Hoe.

uji, = 1 for bondsj — k as shown by the arrows in Fig. 1(a). (X, a) V Nuc ;kgz [ bk(a) (k) J’
There are four physical sites per unit cell, so there are four . R

Majoranas per unit cell. From now on, we replace the sitevhere Ny is the number of unit cellsB.Z. stands for the

labeling j with j = {X,a}, where X runs over the one- Brillouin Zone, and the complex fermion fielti satisfies the

dimensional lattice of unit cells of the ladder amduns over  usual anticommutation relatiqrﬁfJ (k), for (K')} = Govr Ok

the four sites in the unit cell, see Fig. 1(a). The Hamiltania In terms of the complex fermion fields, the Hamiltonian be-

can be written as, comes
- 1
H=> ciljper= > cxaAXax acxa- H=> Y 2k [ TR fo (k) — 5] : (8)
(3k) ((X,a),(X",a’)) b=1 keB.Z.

There is translational symmetry between different unitsgel In the present cas@m = 4 and therefore two bands are suf-
andAx a:x7.0 = Agar (X — X'). ficient to give us the full solution of the Majorana problem.

In order to give a concise long-wavelength description, it The above approach can be applied to any general Majorana
will be convenient to use familiar complex fermion fields. To problem and is needed when we consider a model lacking any



symmetries in Appendix D. In the present case, we requirethe A. Fixed-point theory of Majorana orbital liquid and

model to respect time reversal symmétrgnd leg interchange observables
symmetry, which allows us to introduce convenient complex
fermion fields already on the lattice scale as follows In this subsection, we first give the fixed-point theory of
. the MOL and then we will consider bond energy operators
hXx) = (X, 1) +ic(X,4) , (9) to characterize such gapless phase. We use Bosonization,
. 2 re-expressing the low-energy fermion operators with Bason
fr(X) = —ic(X,2) + ¢(X, 3) . (10) fields43-45
2
_ i(¢+PO)
The Hamiltonian becomes fp=e ’ (15)
Z with canonical conjugate boson fields:
H=2 3 {7 COA0) + L0 1) -
a ! lp(@), ()] = [B(), 6(=")] =0, (16)
[p(2),6(a")] = inO(z — '), (17)

- [0 + 2 CORK + 1+ 1] | g .
whereO(z) is the Heaviside step function.

where we ignored constant contribution. Itis easy to cateul ~ 'he fixed-point bosonized Lagrangian of such gapless

the band dispersions, MOL is
1 2
=J £ \/(J;)2 J2 4 J2 420, d, cos(k),  (11) Lvor =500 15 L(0:0)” + (2,07 (18)
with J£ = (J. + J/)/2. The spectrum is gapless for For free fermions,g = 1 andv = wvp, the bare Fermi

velocity. Later when we discuss the stability of such a
phase in Sec. II B, we will see that there is only one strictly
marginal interaction which introduces one Luttinger pagam

ter g. To detect the gaplessness of the phase using physical
%{; rr2n’| 00 ni’ i;.(l):’igl..ll}&ba;nlgsglz\(ljv ]tc?:ngvzgpb?:%i)g;::eagogﬂgf(l(gauge—invariant) observables, here we consider bondygne

. operators!® Bs/2(X), which we further categorize into sym-
and band-2. We note that the gapless p_hase oceurin a la_rgrgetric or anti-symmetric with respect to the leg interchang
parameter regime and there is no fine tuning here. The specif

parameters are chosen to emphasize that we do not require a mmetry. The specific microscopic operators are
symmetries other than time reversal and leg interchange. BS/“(X) = 77(X,1)7%(X,2) £ 7°(X, 4)7"(X, 3)
_ The band-2 crosses zerofatr andkry, = —krgr from — iuae(X, 1)e( X, 2) + iugse(X, 4)e(X, 3), (19)
time reversal. For long wavelength physics, we can focus
on this band and introduce continuum complex fermion fieldsvhere we used Majorana representation, Eq. (5). In our gauge
[r/r; for the lattice Majoranas, we obtain the expansion,  after expansion in terms of the continuum complex fermions

. using Eq. (12), the Fourier components are organized as fol-
(X, a) ~ Z [e*rPX gy pla)fp(X) +He] . (12)  lows

|Jo — Jy| < \/J.J. < J, + Jy, where without loss of gen-
erality we assumed all couplings to be positive. For an4llus
tration of the energy spectrum, we také,, J,, J., J.} =

P=R/L 0
. . . o Biyo~ fhfr+ flfr == 20
From the detailed band calculation, at the right Fermi point =0~ Jrfr ¥ L]E (20)
Bl ey ~ ILIr = i€, (21)
B = | | £ (13) Biyibe, ~ fufr = —ic'®. (22)
) + )
AT _52 [Note that with TRS, the wave vectér + krr is the same
asQ = 0; to be more precise, we should write a Hermitian and
where ¢ = (J, + J,e*#r)/J!.  Using time reversal lime reversal symmetric combinatioig,_, = ifrfr+H.c]
invariance, for the left Fermi point we get, ;(a) =  1NUS, the symmetric bond-energy correlations are expected
(—1)7*+Lv3 ,(a). The effective low energy Hamiltonian den- to decay with oscillations at incommensurate wave vectors
sityis +2krgr, while the anti-symmetric bond-energy correlations
decay without oscillations. Such a sharp difference can be
H=vp f;(_iam)fR — fz(_iam)fL , (14)  confirmed in exact numerical calculations.

In the bosonized form, the scaling dimension of each term
describing a one-dimensional Dirac particle with Fermi ve-is apparent,
locity vp = J,Jy sin(krr)/J;. We list the symmetry trans-

formations of the continuum fields in Table | (ignoring the A[B‘;?:O] =1 (23)
“spin” indices there). In particular, the leg interchangens AlB3k,.] = 9, (24)
metry prohibits terms of the fornfiz fz from the continnum 1

Hamiltonian that would gap out the spectrum. AlBG—o] = g (25)



|<B(0)BS(X)>|

100 200 %

0.01¢
0.001-

104,

10—5,

106,

(a)Leg-symmetric energy correlation ‘ ‘ ‘ 'q
2 2

[<B2(0)B?(X)>|
2 5 10 20 50 100 200

X

0.01

0.00%

1074

10°5}

(b)Leg-anti-symmetric energy correlation

- —

FIG. 2. Figures (a) and (b) illustrate power law behaviorhefsym- Y = q
metric and anti-symmetric bond energy correlations, viti® de- 2 2

fined in Eq. (19), in the exactly solvable model with non-iatging (b)Leg-anti-symmetric energy structure factor
partons. The system hag0 unit cells and we use the same param-

eters as in Fig. 1. We plot absolute values and indicate grewsith  F|G. 3. Figures (a) and (b) illustrate the symmetric bondrgy
filled circles (blue) for positive correlations and open @@uboxes  ang anti-symmetric bond-energy structure factors comesing to
(red) for negative correlations. The log-log plots cleathypw X —2 Figs. 2(a) and 2(b) respectively. Both cases clearly shoimgukar-

decay (straight lines) with incommensurate oscillationthie sym- ity at @ = 0, while the symmetric case also shows singularities at
metric case and no oscillations in the anti-symmetric cage.char- o

acteristic wavevectors can be determined from the stredactor
study shown in Fig. 3.
XYZ energy terms but not present in the exactly solvable
model; this will be also useful for the subsequent discussfo
In the non-interacting parton limity — 1, we expect to see the MOL stability. First, operators like¥ (X, 1)7¥(X, 2) and
all components of bond-energy correlations decay as. 7#(X,1)7*(X, 2) have ultra-short-ranged correlations as they
For illustration, we calculate correlations in the exactly contain unpaired localize-fermions. It is more interesting
solvable model, taking the same parameters as in Fig. 1. Figo consider operators like” (X, 1)7%(X, 4) defined on the-
ure 2(a) shows log-log plot of symmetric bond-energy corretype (vertical) links in Fig. 1. In this case, even though the
lations in a finite system with00 unit cells, while Figure 2(b) local operator contains unpairéeéMajoranas, in the physical
shows anti-symmetric bond-energy correlatiéhg/e can see  Hilbert space these can actually be paired at the expense of
the overallX 2 envelope in both figures and also incommen-introducing a string product of the gaples#ajoranas. For
surate oscillations in the symmetric bond-energy corieiat ~ €xample, consider calculating correlation between rungs a
which confirm the theoretical analysis above. andX":
I_D_owe_r-law correlations in rea_l space correspond to si_ngu-A(X7 X') = 77(X, 1)7(X, 4) (X, 1)7%(X", 4) =
larities in momentum space, which we can study by consider-

ing the corresponding structure factors. Figure 3(a) shthers = H (=D)e(X", 1)e(X",4)c(X",2)e(X", 3) x
symmetric bond-energy structure factor and Fig. 3(b) shows x<x <x’
the anti-symmetric bond-energy structure factor. It isacle H UZ\J (26)

that the singularities in the symmetric case occur exadtly a

Q =0 andQ = :E(kFR — kFL) = +2kpp = £2kF (WhICh

we also mark using values obtained by extracting the Fermjyhere the last product contains all links on the ladder ketat

points of band 2), while there is only = 0 singularity for  petween the two vertical links excludigX, 1), (X,4)) and

the anti-symmetric case. including ((X’,1), (X’,4)) and oriented as shown in Fig. 1.
Let us now consider some other operators similar to generi¢he second line i$ in our chosen gauge, and we then have a

((X,1),(X,4)) < A=link (ij) < ((X',1),(X’,4))
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FIG. 4. Figure illustrates power-law behavior of the caatiein
F(X—-X") = (F(X,X")), defined in Eq. (26). The system ha¥)
unit cells in chain length and the same parameters as in Fig/el
show the absolute values [oF (X)| and indicate the sign with filled
circles (blue) for positive correlations and open squaneebdred)

for negative correlations. The log-log plot clearly shaws'/? en- . . . . .
velope (straight line in the figure). The irregular behav®odue to ~ 9auge fields, and we will address stability agalns.t Conflmlme_
incommensurate oscillations. shortly. In the language of usual complex fermions, there is

only one valid 4-fermion interaction,

FIG. 5. Structure factor corresponding to Fig. 4; we alsoknihe
expected locations of the singularitielsk .

factor of Hine = uf b frfifr - (29)

(=D)e(X", 1)e(X", 4)e(X",2)e(X",3) = This interaction is strictly marginal, and therefore thelgas
il XA X4 A (X) (X)) 27) MOL is §tablg also W|thH,§m and has one gapless mode. This
interaction will renormalize the Luttinger parameter ahd t

for each unit cell, where we used Egs. (9)-(10). In the preserf €rmi velocity to be
gauge, we can write schematically’ (X,1)7%(X,4) ~ m
[Ty oy (—De(X7, 1)e(X",4)e(X”,2)e(X",3), and see -5z (30)

that this contains non-local Jordan-Wigner-like string@tor L+ 5

in terms of the gapless partons. In the bosonization languag 5

the string operator becomes v = opi 1 < u > 7 (31)
27TUF

H A (XA DX (X)) Fil6(X)+77X] (o)
Xrex which completes our description of the fixed-point theory in
Eq. (18) and will modify the power laws of various correla-
This has scaling dimensioty4 in the free-fermion case and tjons as discussed above in Sec. Il A.
hence the above correlation decaysias'/> power law and We now want to address the issue of confinement, more
oscillates at wavevectarn = kp from Fig. 1(b). It may precisely, the stability of the MOL theory when we allow
seem unusual that this appears to contain the specific gaugctuations in theZ, gauge fields. As we discuss in Ap-
tion we used the specific gauge to set the last line in Eq. (263pace-time is like allowing half-vortices in the phase field
to unity, and the final result is independent of the gauge. the bosonized harmonic liquid description and corresptmds
Evaluating expectation value of the string operator in theallowmg terms\; /5 cos(0 + krX + ay/2) in the dual har-
free fermion ground state leads to a Pfaffian of a matrixnonic liquid description, Eq. (18). The key point is thatsthi
formed by the Majorana contractions and can be easily comerm is oscillating for generiér and hence averages out to
puted numerically for reasonable siZ€sThe results are zero (the underlying physics is destructive interferenge
shown in Fig. 4 for a system with00 unit cells*’ The cor-  Berry phases). Thus, our gapless MOL with incommensurate
responding structure factor is shown in Fig. 5. We can ofearl momenta carried by the fermion fields persists also in the-pre
see the singularities atk and confirm our theoretical anal- ence ofz, gauge field dynamics even in (1+1)D, in the sense
ysis. that we retain the gapless mode.
One may worry about the precise connection between the
present system and the schematicgauge theory plué/(1)
B. Stability of Majorana orbital liquid matter at incommensurate density considered in Appendix A.
Indeed, the connection is only crude, and we do not have one-
Let us now consider going away from the exactly solvableto-one correspondences. Nevertheless, we can bolster-our a
point. First, we consider perturbations that are local i th gument by considering explicitly some allowed perturbagio
continuum fermion fields. This ignores fluctuations in #ig  to the exactly solvable model. Consider, e.g., adding small



6

general XYZ interactions_ .y >, . 0JL7/'t} on all  Hj is a Kugel-Khomskii-like Hamiltonian witl# being the
bonds in a manner respecting the underlying lattice symmespin-1/2 Pauli matrices and being the Pauli matrices act-
tries. As we have discussed earli&7?* terms on the:-type  ing on the orbital states, while th&€, . andWp, . terms are
bonds and.J*** terms on the;-type bonds have short-range given in Egs. (3)-(4).

correlations and hence constitute irrelevant perturbatiof Introducing Majorana representation of spin-1/2, we write
course, they can renormalize the Luttinger parameter)h@n t the spin and orbital operators as

other hand¢J*:¥ terms on the:-type bonds have power law i

correlations. However, these correlations oscillate atitth o =—3 Zeo‘ﬁ'ycfc} , (34)
commensurate wavevector, see Fig. 4 and Fig. 5. Hence such By

terms, whose structure is similartg, cos(6+kr X +ay /o), i

cf. Eq. (28), are washed out from th/e low energy Hami/ltonian. =735 > evald) (35)
Thus, the fixed point description is the same as described ear By

lier, but with the additional remark that now generic energyq
correlations that are symmetric under the leg intercharitje w
also obtain a contribution oscillating at wavevectagr with
scaling dimensiog /4.

n each sitej of the 2-leg ladder, we realize the physical
four-dimensional Hilbert space using six Majorana fernsion

cf, ¢, ci, df, df, and d;, with the constraintD; =

it eEdrdYdr = ‘
Finally, we remark that th&, gauge fluctuations do lead to ieje;¢jdjdyd; . ! (namerL for any ph}/rilcalfstate
confinement in our 2-leg model in gapped regimes, e.g., whef)phys: We require D;|®)pnys = |@)phys). eretore,

the J. terms dominate over thé,, .J, terms in the original U?Tf|q’>phys = iC?‘d@@phys- In terms of the Majoranas,
Hamiltonian Eq. (1). In this regime, we can start with effec- the Hamiltonian can be rephrased as

tive (super)-spins on the rungs formed by the laiggerms . R oo
(e.g., after conveniently making thé coupling ferromag- Ho = Zzuﬂ'kjjk Z G Ch> (36)
netic). We perturbatively derive effective Hamiltonianvgo (7k) a=ay,2

erning these effective spins, which works out to be an ISingznq the iy, terms are the same as in Eq. (7) with, =
like chain and has two degenerate ground states. Adding th@z‘d*dg for?/\-link (jk) '
¢ .

0J%¥ perturbations on the-type bonds gives locébngitudi-
nal fields in this Ising chain and immediately lifts the degen-

eracy. Hence, there is a unique ground state. ¢ ¢ f = f* a = z,y,> We now have three fermion

Furthermore, creating a single domain-wall-like exciafi  ghecies with identical dispersion taken to be similar td tha
which behaves as a free particle in the exactly solvable inode;,, Fig. 1(b), and we introduce right and left moving complex

requires infinite energy in the presence of the longitudinatsrmion fieldsfg/L as in the spinless case. Under SU(2) spin

field. On the other hand, a pair of domain walls, kink and am"rotations, the triplef-¥* transforms in the same way as the
physical spiny*:¥-#.

kink, are allowed, but to separate one from the other require

'T’Egg}glrlgesdgﬁgfforetlr?LTral;Iatt(i)orEZeogIfr::-qceebk?(gvr:gsn i\t/f;em. Just as in the MOL case in Sec Il, we first establish the fixed

linear con’finement o? particles that were %/rl?ee at the gexactl oint structure ignor_ir_lg the gauge field quctuaFions: In or-
. ; . ) er to study the stability of such gapless SU(2)-invariaat M

solvable point, and this applies to all particles that cgayge jorana spin liquid under weak perturbations, we write down

most general four-fermion interactions and perform Renor-

charge with respect to thg, gauge field in the exactly solv-
malization Group (RG) studies. The allowed four-fermion in

able model.

teractions are highly constrained by symmetry. In addition
to the SU(2) spin rotation invariance, these terms must be
preserved by Projective Symmetry Group (PEQ@) spatial
translational symmetry, time reversal symmetry, and leg in

. ) o ) terchange symmetry. We list the symmetry transformations
We now want to consider Majorana spin liquids with more;, rapje | and write the allowed non-chiral interactions (.

degrees of freedom, in particular with physical spin degreeconnecting right and left movers) as
of freedom, and see what new issues and features arise in this

For long-wavelength description, much of the development
in Sec. Il can be directly applied here with the replacement,

Ill. GAPLESS SU(2)-INVARIANT MAJORANA SPIN
LIQUID (MSL) ON THE TWO-LEG LADDER

case. In order to construct spin SU(2)-invariant Kitagpety Hint = upIRTL — w1 Ir - Jr + UaQI]T%LIRL
model, we follow Refs. 35, 38, and 39 to take a system with + ws (InpIps + He) (37)
both spin and orbital degrees of freedom on each site. The LVRLIR o
complete Hamiltonian is where we defined

Hsu() = Hy+ Ko,. > Wo,. + Kn,. > Wa,..(32) Tp=>_ flfe, (38)

Dzz Dyz “
a_ afy BT gy
where jp = 1525 fp fPa (39)
Y

M= DL () @ea . @) Inn =3 fifE. (40)

A—link, (jk)



and are marginally irrelevant; finally, flows to zero as long

underT,. (spatial translation symmetry® (time reversal transfor- asu, t> 0 a?hd '? |rr1relev?nt. '{husl, WAe havedpng Luttlnger fha'
mation plus gauge transformatio) M (leg interchange transfor- '&@MeLEr In the “charge” sector. In Appeéndix b, we give the
mation plus gauge transformation). We also note that unpier s fixed-point theory of the SU(2) MSL and list observables that

rotation, fp = (f&, f%, f2) andfh = (fof £4f, f21) trans-  €@N be obtained as fermion bilinears. We find that spin op-
form as 3-dimensional vectors. Note that beldw,= R/L and  €rator, Eq. (B8), spin-nematic operator, Eq. (B10), ancdson
P=-P=LJ/R energy operator, Eqg. (B9), have correlations that decay in a
power law with oscillations at incommensurate wave vegtors

TABLE |. PSG transformation properties of the continuumdgel

_ pri _ _ ‘@ : MQ which is one of the hallmarks of such Majorana spin liquids
f;—) fiPkaiT f§T5 L flzf as we discussed in Ref. 35 in a 2d example.
r_ N fp fplii— i tp The inclusion of theZ, gauge field fluctuations in this

quasi-1d gapless MSL can be discussed as in the spinless case

(see also Appendix A). The space-time gauge field fluctu-
The general expressioH;,; in Eq. (37) contains familiar- ations are suppressed by the destructive interferendegris
looking four-fermion terms ngffo%fg that conserve from the incommensurate momenta carried by the fermion

fermion number, and also terrﬁ%fﬁf}fﬁ that do not con-  Tields. Thus, the system retains three gapless modes, but the

serve the fermion number but are nevertheless allowed by affcal €nergy observable obtains new oscillating contrimst
symmetries of the problem. The less familiar terms need to be We can also consider directly allowed perturbations going
considered since the microscopic Majorana HamiltoniarsdoeP€yond the exactly solvable model. For exampfes; terms

not havel/ (1) particle conservation, which is a new feature jn 0N the vertical links(ij) can be expressed as a product of
such Majorana liquids. threec-fermion strings, one for each flavor, and will oscillate

: ) ) H —3/2 ;
We remark that the time reversal and translation symmetrig&l WavevectoBky with power law.X /% in the free parton
alone would allow yet other terms expressedfg%fﬂf”f‘s case. This is consistent W_|th the sche_mat|c analysis in Ap-
and in fact would also allow a bilinear teril fHRCL) pendix A extended to multiple parton fields, where a vison

in the Hamiltonian that would immediately open a gap in theCan be seen as introducing a half-vortex for each flavor. The

spectrum. However, these terms are prohibited if we also re(jescnbed low-energy theory is hence stable to generic per-

quire the leg interchange symmetry, which is hence cruoial f turbations in the sense of retaining the gapless fields,ewhil
the time-reversal invariant SU(2) M’SL the local energy observable that is symmetric under the leg-

The weak-coupling differential RG equations are interchange obtains additional contributions oscillg&t3
(which in turn induces new contributions to other obsergabl

1 as discussed in Appendix B).

. 2 2
U, = 5 (ug2 + 2Ug1Ugoy — 4w4) , (42)
. 1 2
ot = 5 (1 + 2ug1tion) (42) IV. DISCUSSION
1
'a' =— (-3 2 —6 ollUco —14 2 B 43 . . . .
Y2 = o ( Uoz T Dllo1to? w4) (43) Motivated by recent proposal of SU(2)-invariant Majorana

1 Spin Liquids by Biswaset al.3* and the realization of the
(=201 — s — dup) wa, (44) SU(2) MSL in an exactly solvable mod&383°we studied

. : . : the MOL and SU(2) MSL on the 2-leg ladder. Perturbing
wherewv is the Fermi velocity of right and left movers and away from the exactly solvable points, in the MOL, there is

O = dO/d¢ with ¢ being logarithm of the length scale. The X ) S . .

: ; Y o only a strictly marginal four-fermion interaction and herit
only fixed points haver,, = ugy = wi = 0. Stability to is stable to residual interactions. In the SU(2) MSL, there
small deviations inv, requiresu, > 0. Ifwe consider small are several allowed four-fermion t.erms butitis stableimg’ a
deviations inu,1 andu,2 settingw; = 0, the RG equations : : ’

: these in a large parameter regime. Furthermore, we also show
can be written as . A i
that such gapless Majorana liquids persist agaifisgauge

Wy = ——
2mv

dp = 31, + g = 0, (45) _field fluctuations. Some time ago, Shastry _and5$extud—_

1 ied an SU(2) MSL for a 1d Heisenberg chain at mean field
Up1 = %(—uil + 2Up1Ug2), (46)  level. Our description of the microscopically realized sjtia

1 1d SU(2) MSL can be viewed as providing a theory beyond
llyo = - (—3uZy — 6Ug1Us2), (47)  meanfield for more general such states and distinguishes the

from the Bethe phase of the 1d Heisenberg chain. The stable
and the last two equations are essentially identical to tBe R MOL and SU(2) MSL phases that we find are new quasi-1d
equations in a level-one SU(3) Wess-Zumino-Witten (WZW)phases, and we suggest numerical studies such as Density Ma-
model discussed by Itoi and Kat8.Translated from their trix Renormalization Group (DMRG] to test our theoretical
analysis, the stability to small deviation in,; andu,- re- ideas of their stability. The DMRG studies can also deteemin
quiresu,1 > 0, us1 + uy2 > 0. In a stable flowy, reaches the Luttinger parameters of the fixed-point MOL and SU(2)
some fixed valuey;, > 0, and is strictly marginaly,, and ~ MSL theories.

uy2 approach zero from the specific region described above The presence of gapless matter fields is the key against con-
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fining effects of Z; gauge field fluctuations in (1+1)D, see ations. It is well-known that the simplest so-called evén
Appendix A. Without such gapless matter, the gapped phaseguge theory is confining in (1+1)D; this persists also in the
realized in Kitaev-type models on 2-leg ladders in our modepresence of gapped matter fields, and quasi-1d Kitaev-type
are likely unstable to general generic perturbations, ared t models with gapped partons would suffer from this instabil-
prediction can be checked by DMRG studies. This is remidity. We will argue, however, that gapless parton fields can
niscent of a picture where gapless matter fields can suppresiiminate this instability, particularly when they carncom-
monopoles in a (2+1)D compact electrodynamics and thusensurate momenta.

make gapless U(1) spin liquids with sufficiently many Dirac  We first give a heuristic argument. Let us consider the sim-
points or with Fermi surfaces stabté&,'°while gapped U(1) plest model of &, gauge field coupled to a U(1) matter field,
spin liquids would be unstable to confinement in (2+1)D. Anwith (1+1)D action

interesting finding is that allowing’, gauge fluctuations in

our quasi-1d Majorana liquids leads to new contributions to ¢ = —# Z ajk cos (¢ — ¢k) — KZ 012023034041 (A1)

various observables, with different characteristic waetors (k) o
and potentially slower power laws compared to the mean fieldror K — ~o, we choose the gauge; = 1 and obtain an
cf. Appendix B. XY model in the¢ variables. There is a Kosterlitz-Thouless

Let us discuss possible extensions of this work. Throughtransition at some critica$. and gapless phase f6r > 3.
out, we focused on the MSL phase in which all couplingsNow, let us consider largél’ and larges limit. Starting
of the residual interactions, Eq. (37), converge to finitedix with no Z, fluxes and no vortices, since bathand¢ are al-
point values in RG thinking. In principle, one can analyzemost fixed, the insertion of & flux (“vison”) can be treated
situations where some of the residual interactions are releas creating ar-vortex in the¢. Explicitly, we can rewrite
vantand explore possible nearby phases and charactegize thy ;. cos (¢; — ¢r.) = cos[p; — ¢ — 7(1 — o) /2]. The vi-
properties using the observables listed in Appendix B. SucRon insertion can be carried out by changing from 1 to
theoretical analysis combined with DMRG studfesan give 1 on a cut from infinity to the vison location. This isma
a complete phase diagram. phase cut for the variables and can be best accomodated by

As discussed in Biswaet al.3* and in our earlier worR?>  a gradual winding byr as we go around the vison from one
the effects of Zeeman field on the SU(2) MSL are interestside of the cut to the other; hence, we get a half-vortex in the
ing. The Zeeman magnetic field only couplesftoand f¥ . We expect that for sufficiently large, the half-vortex in-
fermions, and we can defirﬂ = (f*t £ifvt)/v/2 which  sertions are irrelevant because of their high energy cdsthw
carry S* = +1, while f*' carriesS* = 0 and remains un- means we have a phase without proliferation of half-vostice
altered. In the presence of the Zeeman field, the spin SU(Znd then we do not need to worry about the dynamics of the
rotation symmetry is broken and onff is conserved. In Z2 gauge field which could potentially produce confinement.
Appendix C we write down general four-fermion interactions  Thus, it is possible to avoid confinement of (1+1)D
based on symmetry arguments and perform weak couplingauge fields if we have gapless matter field. For several gap-
RG analysis. Our RG equations (C3)-(C7) interestingly showess matter fields, there is a proportional increase in the en
that instabilities only occur in thg® channel but notin thg=  ergy cost of the vison insertion and hence its irrelevante. T
channel. Hence, thg* partons are always gapless no matterabove argument is valid for matter fields at integer fillirnigs|
how large the field is and can give metal-like contribution towell-known that vortices in (1+1)D U(1) systems can be fur-
specific heat and thermal conductivity, which is qualiteliy ~ ther suppressed if the matter field is at non-integer filling d
similar to what we found previously in our 2d MSL modél.  to Berry phase effects, and such a suppression is comptete fo

Last but not least, it is intriguing to understand how theincommensurate matter density. Heuristically, we expeet t
ladder descendants of the MOL and SU(2) MSL relate to the/ison insertions to obtain similar Berry phases as halfives
mother 2d phases. A systematic way to access these cou@dld hence to also experience complete suppression at incom-
be via increasing the number of legs. It seems difficult to in-mensurate density. We present a more formal derivétiai
crease the number of legs in our toy 2-leg square ladder mod#gred to our needs below.
while maintaining the spin SU(2) symmetry of the MSL, but We consider a general, gauge theory plug/(1) matter
actually it can be achieved if we consider decorated squarkeld (represented by quantum rotors) od-dimensional cu-
ladder®>5* One more interesting direction is to consider newbic lattice with a Hamiltoniaft
types of SU(2)-invariant spin liquid wave functions motae s ~ ~ U . _
by the Kitaev-like SU(2) MSL writing of the spin operators 7t = 1 D Orprcos (b — dp) + 9 > (g —n)?
and search for more realistic models in 1d and 2d that may {rr’) "
harbor such states. —K 67505365,65, —T > _ 650, (A2)

O (

rr)

Appendix A: Stability of gapless U(1) matter againstZ, gauge ~ Wheren,. is the number operator conjugate to the phasat
field fluctuations in (1+1)D site r andn is the average density. The Hilbert space con-
straint is

We need to address the issue whether the gapless parton el H 6r, =1. (A3)
field picture is stable against allowirig, gauge field fluctu-

r'er
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We proceed to treat the system using standard Euclidean pa#fter standard development of the path integral for thegsin
integral formalism in ther*-¢ basis. We implement the con- gauge fields, we can write the partition function as

straint at each site and temporal coordinate by using the
identity

1

1 T e oo
eZTrT ez r’er 2 3

5ei7rn7~_1_[7‘,€T U:lel = —

A(r,7)==%1 |

) /0 Dy ()

Z =

2.

{82, (T, {nr(1)}

Usr

xXe 2

Here we used?, , to denote eigenvalues 6f,., on the spatial
links and elevated the auxiliary fieldgr, ) to become Ising
gauge fields on the temporal Iinkg(zm);(nﬁ&) = ANr,7)

(we use either field notation where more convenient); is

X e (D) =P+, ne (1) [ (T40T) = (1) 4w AT

Z e p KPSi2S5355.551 ¢ ot0T Xor (rrty S (7) €08 [60(T) =60 (T)] 5

(A4)

over all spatial and temporal plackefs, = {Kgpar, K-},
with Kgpae = K7 andtanh K, = e—2lor,

Now we can use a variant of XY duality transformafien’
to go from the¢ andn variables to real-valued “currents”
Jspat = {JrrdérsJrtens s Jrrteq) (Whereég—y 4 rep-
resent unit lattice vectors) and appearing as follows:

+00 5 1-5% (1) 2
0787 (7) cos[¢r(T) =, (T)] ~ Z 6*57 [4%'(T)*%(T)ﬂf*%pw(f)]
prT’(T):_OO
oo [e'e) 32 s (7 .. —SZ% ,(r
B +Z /+ . (T)e—r;Ti)ﬂW(r) ] (A5)
Prpr (T)=—00 " 7
+oo +00 “+oo 3
Y Flne(n) = / djr(r,r) Y e I IR (r 7)) (A6)
ny(1)=—00 e pr(r,7)=—00

In the first line, we approximated the left hand side by a stanwherepg

0)

.. is one representative of a class; the results do not

dard Villain form; we also dropped constant numerical fac-gepend on the specific choicespét) but only on the “vortic-

tors throughout. For short-hand, we write space-time gointjjeg” Qv = Voupy

asi = (r,7) and define space-time vectpy,,—1. 441 =
{ﬁspatap‘r}v Wlth ﬁspat = {pr,r-l—émpr,r-f-éga vy Prortég s
Then we can divide configurationg;,} into classesC,
equivalent under integer-valued gauge transformatigns-+
pip + V. IV; and perform the configuration summation as

+o0 [eS)
S Flpal=Y Y. Flpiw=pl) +VuNi}],
{pin}=—00 Cp Ni=—o0 |

Z =
{82, (rx(r,r)} Cp/~

xXe

e~ Zrr oz i (rm)—nP+i >, j,(r,r)[ﬂL;‘vf),g,,pso>(nT)] '

The above result holds in general (d+1ytand from now

e (2 , 1
= ety T T (e T (T) |

— V.p, characterizing the classes. Us-
ing the N, variables, we can extend thg integrations to
(=00, +00) and obtain

o0
> X / Dt Dir 8(V - Japat + Vo = 0) x e KrSiasiaSiasin
o0

—S% ,(7)
+’ —271';)5(1), (T)] y

(A7)

on we specialize to (1+1)D system. We solve theaticon-
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servation condition by writing, = ﬁ+VTr9 = w with We have only temporal plackets, on which we define “vor-

0(x,7) = mhz, x being the spatial coordinate on the dual lat-ticity” ¢ = V x p' = Vyp, — V;p, and “vison number”
tice, andj, = —¥=¢ = _V:0049) The dual field encodes n'#*" =V x (1 — S%)/2 mod 2 = 0 or 1 corresponding to
s T .
coarse-grained fluctuations in the particle number. S1253355,55; = 1 or—1. We can absorb any modulo 2 shifts
from n¥'s°" by redefiningy and write the partition function as

o vison Usr (Vz0)? 1 (V0?2 - 1. vison
z = E E / Dher Kp(1=2np™") o =3 55 === m5 —pz 12 2(0+7mna) x (g—5n""7") (A8)
g a 7T

This is the main result, which we can now analyze in a num-quasi-long-range ordered) phase of the physical bosons. In
ber of standard ways. We can integrate out the fiedthd ob-  deed, in the derived harmonic liquid description in terms of
tain a Coulomb gas representation. In the absence afihe the dual fieldd, we can change to new varialflg,ys = 6/2
gauge field (e.g.K — oo andn¥s" = 0), we get famil-  canonically dual t@,,s and note that the identified vison in-
iar integer-valued chargesrepresenting vortices of tHé(1) sertion operator’® = 2% is the same as the conventional
matter system. On the other hand, for any finifewe get  vortex insertion inp,nys. We still like to show the above more
effectively half-integer charges = ¢ — %nVis‘m € % x 7 formal derivation as it is not tied to the specific origin oéth
with only short-scale energetics difference between mteg parton fieldy. For example, in Sec. Il A the conjugate pair
and half-integer charges. We also see Berry pha%é§® {¢, 0} arose from bosonizing the long-wavelength fermionic
for a vortex insertion in the presence of non-zero backgidoun parton Hamiltonian, and we can continue using these fields in
density and halving of the Berry phase for a vison insertioncalculations but remember to include thg gauge fluctuation
Alternatively, we can consider postulating some local gaer  effects by allowing local energy terms likg /, cos(6 + 7).
ics penalty for large values of. and perfom the summation The same formal treatment also holds transparently for the

overm to obtain terms like multi-flavor generalization where the parton fields provide
a very convenient description of the unconventional gaples
A1/ cos(@ + miax) + Ay cos(20 4 2wnx) 4+ ..., (A9)  phase, which has the same number of gapless modes as in the

parton mean-field, but with the identified new contributitms
where we ommitted possible phase shifts in the cosines fdhe local energy once we go beyond the mean field and include
brevity. The); term is the familiar term in the dual sine- Z» gauge field fluctuations.
Gordon theory for a Luttinger liquid of bosons that représen
allowing vortices, while the\, /, term can be now interpreted . . . .
as effectively allowing half-vortices if the matter is cdegp ~ Appendix B: Fixed-point theory and observables in the SU(2)
to Z, gauge fields. Crucially, both vortices and visons expe- Majorana spin liquid
rience destructive interference effects for incommerntsura
On the other hand, for commensuratehe vison insertions We use Bosonization to re-express the low energy fermion
can still be rendered irrelevant by going deep enough irgo thoperators,

Luttinger phase or increasing the number of gapless fields as f2 = peilPatPoa) (B1)
discussed below. _ _ _P : .
We can generalize the above result to the case with sewith canonical conjugate boson fields:
Eral mlatt(_er fiehldsga coupr)]led teo theisaméfg galfg(‘a]isf!gld [Pa(z), 0p(2")] = [0a(z),05(z")] =0, (B2)
y replacing the Berry phasi§ + rnz) x (¢ — in¥ison) [P (), 05(2))] = inbapO(z — 2), (B3)

with 3 2(00 + Thaz) X (ga — 2nV°"). Here the sum- . o . .
mation over vison numbers leads effectively to terms likewhereO(z) is the Heaviside step function and we have intro-
A1y cos(Y, 0o + T30, fiax). We can see that for three duced Klein factors, the Majorana fermions withh,, 1} =
identical flavors with incommensurate as happens in the 2045, Which assure that the fermion fields with different fla-
SU(2)-invariant MSL, the destructive interference efagtll ~ VOrs anti-commute with one another.
wash out any vison insertions (including any combinations According to the RG analysis in Sec. IlI, at the fixed point
with non-vison terms). of the stable SU(2) MSL phase, only the couplings strictly
Looking back at the one-component case, we could ratiomarginal and will renormalize the Luttinger parametér the

nalize the above structure more quickly by thinking aboat th charge” sector. The effective bosonized Lagrangian is

theory Eq. (A2) as coming from a formal splitting of some SU(2) 1 [1 9 9

physical boson field?»»v= into two halvest! schematically, MSL o [U_ (0-05)" +v,(0:6)) }

e'Pehvs = 29 Then the described gapless phase can be pl

thought of as a (1+1)D analogue of the “Higgs phase” that is + Z — F(afeﬂ)z + v(@zQu)Q] , (B4)
expected! to reproduce the conventional “superfluid” (here, =12 2m v



where we defined

0, = %(9 +0,+90.), (BS)
1

b =5 0= =), (B6)
1

b2 = —= (0= + 0, = 26:), (B7)

and similarly for thep-s, which preserves the commutation
relations, Egs. (B2)-(B3). Stability against thg term in
Eq. (37) requireg < 1.

For the observables characterizing the SU(2) MSL phase,

as discussed in Ref. 35, we can use spin operators,

$i ==, (88)
bond energy operators,
B, = iujkJjx za: ey, (B9)
and spin-nematic operators
PJ.J,; = SjS,j. (B10)

The latter can be related to the usual traceless rank two

guadrupolar tensor defined as

with S
metric or anti-symmetric under the leg interchange. If the
TRS is broken explicitly as in Appendix D, all the above

(&3 (63 (63 1 (63 o a
Qi = 5 (S587 +875¢) = 30775 - S, (BLY)

1
2

symmetric ¢) under the leg interchange:

Soto ==Y _ e fh+ 1D,

By

Boo = (Falfa+ i),
B

Qe =D (falfn+ FT D),
BF#a

QuEe = > (AT + AR,

P=R/L
a,a _ . B ey
SkFRJrkFL =t Z EQB’YfRfLﬁ

B

’ - B B
QggRl,lJrkFL =t Z fRfL’
BF#a
QT ke, = =i (FRFL+ FRIE).

Stante, = ~1 )€,
_ Bt £B
BzFR*kFL - ZfL fR’

BT
gg}: krr — ZfL fR’
B#a

oI Ll L Ll )

a,a B
SQka - _ZZ OtﬂVf fP7
By

a _
BkFR"FkFL -
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(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)
(B20)

(B21)

(B22)

(B23)
(B24)

= SgT, etc., andO*/* observables mean sym-

momenta are distinct. With TR%r;, = —krgr, we have
coincident moment&rgr + krpr, = 0 andkpr — kpr, =
2kpr = —2kpp. Strictly speaking, with TRS, we should

throughP}, = Q7 — Q¥ +2iQ7}.

We expand the observables in terms of the continuum coms5,* = S5+ 5% .

defineOg_, = O} + H.c., instead of Egs. (B16)-
(B19); similarly, mstead of Eq. (B24), we should define
In the present case, the listed terms

plex fermion fields and organize according to the momentunwith such equal momenta transform differently under leg in-

and the leg interchange symmetry, i.e. symmets)oof anti-

terchange, which is encoded in the above definitions.



The bosonized forms @ = 0 are:

x,s . \/3902 —¥1 \/_92
SgZo = 4in.ny cos (T) ( 7 ) (B25)
St = 4ingn; cos (%) cos (%) ,(B26)
S’é’io = 4inyn, cos (\/5(,01) cos (\/56‘1> , (B27)
. V3
Biy-o = 20,0, (B28)
xTT,S 6m91 6192
e Jafl o7z B29
Q =0 \/571’ \/67T ( )
6191 8m92
e _ Zr1_ o2 B30
QQfo \/§7T \/67T ( )
1 /2
057, = —\ﬁamez, (B31)
TV 3
QoL = dimyn; cos (\/591) sin (\/5(,01) , (B32)
z,8 . \/ge - 9 . \/_SD
020 = 4inzmy cos (%) sin ( \2/§ ) (B33)
ng o = 4in.n, cos (%) sin (%) (B34)

The corresponding scaling dimension in the fixed-pointitheo
Eq. (B4) is

A[Sy_o] = AlBh_o] = A[QYZ5] =1, (B35)

which is not modified by the strictly marginal interactions.
The bosonized forms & = krpr + kpp are:

2o _ea_e1 B — 6
S5 = 2., VPV %>COS<L\Q/§ 1>, (B36)
a . e V305 + 6
57 = 2inan.e 7 R cos (LA, (ea)
Sa’j = Qinynmei(%“ap+\/g¢2) cos(v/261), (B38)

B, = VA {261\/%"2 cos(V2p1) + eiQ\/g“”} , (B39)

Qgﬂia — iR [ei(\/gsaz—\/?sal) + e—t’%/%w] 7 (B40)
Qg = e {e“ﬁ”‘m“ + e‘”@”] . (B4D)
Qg’a = Qei(\/%“aﬁ\/?”) cos(\/igol), (B42)
Q" = 2, e FP VIR in(v20,), (B43)
yz,a i(Zp _ﬂ_i \/392 - 6‘1
Q. T 2mymze V3Tl VB (T , (B44)
2, _eaiery (V30246
Q%5 = opum, e (VE¥r \/"er/_)sm(i). B45
0. =2nn:e 7 (B45)
The corresponding scaling dimension is
= aB.a 2 1
A[Sy, 1= A[BY, | = AlQy ] = 5T (849
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The bosonized forms & = krg — kpy, are:

 qze_ o V3ps —
575 oy (0 2>COS< ) B47
. 0 0
Sg° = 2inen.e’ V3%~ ETUE) cos <M>7 (B48)
- V2
Sg° = 2inynmei(%9”+‘@02) cos(V2¢1), (B49)

B = ie' Va0 [Qei\/ge2 cos(V261) + eiz\/g%] , (B50)
ng:s _ iei%GP |:ei(\/g92—\/§91) + €_i2\/g92:| , (851)
Q;(ygy,s _ iei%Q,’) |:ei(\/§92+\/§91) + €_i2\/?02:| 7 (852)
Q57" — 2i¢/(F50tV/502) ) cos(v/261), (B53)
ng,’s = Qinynmez(ﬁe"Jr\/;%) sin(\/_gpl) (B54)
YZ,5 __ o (20 —9—2—9—1) . \/_902
QY* = 2in.nye" V3T ETVE sin ( ﬁ (B55)
(20, — 92 401 3
9y = Qinznwel(\%ep %) sin (7\/_('02 t o ) .(B56)
V2
The corresponding scaling dimension is
aBs _ 2 g
AISy 1= AB, | = A9y = +3. (B5)

The bosonized forms at ti¥ - p are:
S;]’C‘;P = 21.772%61'(%%—%—%)em(%@—%—9715)’ (B58)

1

SY® = 2ing.e TP AT H) (AN EH) (B59)
S5 = 2inynee (fgap+\/—¥,2 iP(Z0 +\/_92) (B60)
whereP = R/L = +.
“a 1 g 1
A[SQkFP] - §+§+@ (B61)

We can see that wheipn = 1, each scaling dimension is 1,
the value in the exactly solvable models with non-interagti
partons. In the stable SU(2) MSL, we requjrec 1 and hence

AlOq | < AlOg=o] < AlO2krp] < AlOg,]  (BE2)

Besides the observables constructed out of local fermitdsfie
discussed above, there are local physical observablesethat
quire non-local expressions in terms of fermion fields samil

to the string operator defined in Eq. (28). In this SU(2) case,
we can consider the “rung energy” operator which is symmet-
ric under leg interchange,

e(X) =7"(X,1)7" (X, 4). (B63)

Considering correlation function of such an operator smil
to Eq. (26) in the spinless case, we can write schematiaally i
our gauge

(X DT (X, 4)

~ 11 I

X'<X «

(X', 4)c (X', 2)c% (X, 3)(B64)
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Such non-local operator in fermionic language seems very in unit cell
tractab_le but the expression can be greatly simplified under Xl‘ n -X_f; —,X 4 X 3 y
Bosonization, T T > <+
| .o 9! < ] 9
o o o o zth:wz’. zthiiz
IT T (X De (X7, 4)e™ (X', 2)c™ (X, 3) DT T
XI<X a 7, lx 2 v 1lx 2 vV
' X I X
~ T 0(X) FrnaX] eii[ﬁ0p+3kpx] (B65) y_ LA _}(’) y
’ a
where we used the definition @f, in Eq. (B5),krr = kr €
andn, = kp/m is the average density efspecies fermion.
Thus, we can write a contribution to the leg-symmetric eperg
observable as 2 Band-1
€akpn ~ V3%, (B66) 1
with scaling dimensionAfesk,..] = 37;‘7 and esg,, = ST B?nd—ZR” k
e;km. We can also consider other rung energy operator \ 2
such asr¥(X, 1)7¥(X,4), but the long-wavelength descrip-
tion of such an operator is qualitatively the same as the (®)

abover®(X,1)7*(X,4). Finally, these local energy observ- _ _ _
ables can be combined with any observables listed earlier t6!C- - (a) Graphical representation of the exactly sokatitaev-

produce further critical operators with potentially enbeet ~ YPe model with time reversal breaking (TRB) introduced layth
and its solution in the zero flux sector. (b) Complex fermion

. . . . N s .
scaling dlmensmr;’ e'gOkFRt?kFL 63kFLOQ—AWIth spectrum, Eq. (8), for the Majorana spin liquid with TRB with
AlOfproke,) = 5+ 15 80AS5, sk, ~ €kerSokpy,  {Jor Jys e, JL, R} ={1.2, 08, 1.0, 1.1, 0.5},
H Q' _ 1 [ 1
With A[SS, o ] =5+ 45+ 3g-
HereO = dO/d¢, wherel is logarithm of the length scale
Appendix C: Zeeman magnetic field effects on the SU(2) andvy repres_ent Ferrm velocities of the" bands. We see
o AT AT ANt
In the SU(2) MSL phase, Zeeman magnetic field only + + > 0. (C8)
V4 v_ vy v

couples tof* and f¥ fermions, and we can definﬁl =
(f*t 4+ ifvt)/v/2 which carryS* = +1 and get Zeeman- Comparing the RG equations (C3)-(C7) in the presence of the
shifted, while f* carriesS* = 0 that remains unaltered. Zeeman magnetic field with those Eqgs. (41)-(44) without the
The spin SU(2) rotation symmetry is broken and ofifyis  Zeeman field, we see that the instabilities in the “spin” sec-
conserved. Using symmetry arguments, we can write generédr, u,1 andu,2, are removed by the magnetic field, and the

four-fermion perturbations in terms of long-wavelengghti ~ couplings that contain botfi* and f* do not flow (the reason

moving and left-moving complex fermions as is that interactions that could cause these to flow do not con-
) serveS?® and thus are not allowed). An interesting fact about
W = = AV L+ 5 Cc1 these RG equations is that the instabilities only occur & th
" 2N (ppmpit + Put) €D f* fermion but not in thef* channel. Hence, the gaplegs

v

e partons are always gapless no matter how large the Zeeman
tw (frfrnfrf- +He), (C2) magnetic field is and always give metal-like contribution to

with p,, = f}inI’i, W=+, — 2 andP = R/L. The specific heat and thermal conductivity.
differential RG equations are

. (uﬂr*)? Appendix D: SU(2) Majorana spin liquid with Time Reversal
AT = oy (C3) Breaking (TRB)
o (W) _ _ _ _
AT =— > , (C4) In this Appendix, we will break the time reversal symmetry
(MJ:)Q explicitly by including a term,
T T cs
7T(U++’U_)’ ( ) 7h Y _z T Y _zZ\ (= = D1
wt— T+ A —— AN HTRB—gZ (i'my 75 —737y70) (03 -01)  (D1)
Wt =~ + + ., (C6) 0.
2 | vy v_ vy +v_

A7 — AtF — A% — . (C7) + (5778 — 17 75) (G4 - G2) |.(D2)



14

Later we will see that such terms reduce the number of fourare
fermion interactions due to momentum conservation. Using 1

the Majorana representation, this term can be rephrased as Uy = ——— (425 + 2001T02] , (D6)
F(UR =+ ’UL)
. 1 )
lig) = ————— =02, + 2iip1102] D7
1 W(UR—FUL) [ 1 1 2} ( )
. 1
ligy = —————— [—302, — Blig11is2) . D8
B o o o Ug2 w(vR+vL)[ Ug2 Uluz] (D8)
Hrrp = i3 Z (34741 + G12723) Z cgef (D3)
O a=w,y,z We can give a qualitative description of the stable fl6ts.
o o If o1 > 0 anddy,i + 4,2 > 0, the couplingsi,; 2 are
— (@arfing + figlizs) Y CZCS} (D4)  marginally irrelevant and flow to zeray*;, = u’, = 0.
a=a,y,z The couplingu, approaches a fixed valug;, and is strictly

marginal; unlike the time reversal symmetric case in Séc. Il
there is no condition on the sign af;. We conclude that
the SU(2) MSL with explicit time reversal breaking is sta-
ble in a wide regime of parameters. We also note that, even

The graphical representation is shown in Fig. 6(a). Beforghough initially there is no conservation of tifefermions in

we proceed, we remark that in this case with TRB, we dahis model, breaking TRS leadske, # —krr and prohibits

not need any symmetry to protect the gaplessness, unlike tfeur-fermion interactions such &s 2 f £ andfet f7 f7 f°,

time reversal invariant case. The bilinear tefay, that could  so the fermion conservation emerges at low energy. We note

open a gap is not allowed in the Hamiltonian due to momenthat if we rewrite the couplings as

tum conservation, see below. For illustration and simglici

we proceed to take the same parameters as in Sec. Il and in- —— —Mgh (D9)
cludeh, {J., J,, J., J., h} = {1.2, 0.8, 1.0, 1.1, 0.5}. 2v/2
The complex fermion spectrum is shown in Fig. 6(b), and we . w(vr+wr) (D10)
can clearly see that due to the presence of the Time-Reversal Y= 05 (91 +92),
Breaking term, there is no Right-Left symmetry anymore (i.e the RG equations can be rephrased as
krr # —krgr). In the weak-coupling regime, the general . . .
four-fermion interactions can be written as Gp = 3Up + g2 =0, (D11)
1
n=——(3¢°+2 , D12
a1 Wi (397 + 29192) (D12)
1
o= —— (—3g3 — 2 : D13
g2 Wi (=395 — 29192) (D13)

TRB
int

= — o1 TR - T + ool Irr, (D5 :
UpIrIL = o1 Jr - Jo + lo2lpy Ine, (DS) The last two equation are exactly the same as one-loop RG

equations in an SU(3) WZW model in Ref. 50. Note that in
the SU(2) MSL the “charge”d) sector also remains gapless,
cf. Appendix B.

where 7p, Jp, and I, are defined in Egs. (38)-(40). We
can see that the number of allowed interactions is reduced be
cause there is no special relation betwéen andkr; and
additional terms are forbidden by momentum conservation.
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