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Topological insulators in free fermion systems have been well characterized and classified. How-
ever, it is not clear in strongly interacting boson or fermion systems what symmetry protected
topological orders exist. In this paper, we present a model in a 2D interacting spin system with
nontrivial on-site Z2 symmetry protected topological order. The order is nontrivial because we can
prove that the 1D system on the boundary must be gapless if the symmetry is not broken, which
generalizes the gaplessness of Wess-Zumino-Witten model for Lie symmetry groups to any discrete
symmetry groups. The construction of this model is related to a nontrivial 3-cocycle of the Z2 group
and can be generalized to any symmetry group. It potentially leads to a complete classification of
symmetry protected topological orders in interacting boson and fermion systems of any dimension.
Specifically, this exactly solvable model has a unique gapped ground state on any closed manifold
and gapless excitations on the boundary if Z2 symmetry is not broken. We prove the latter by devel-
oping the tool of matrix product unitary operator to study the nonlocal symmetry transformation
on the boundary and revealing the nontrivial 3-cocycle structure of this transformation. Similar
ideas are used to construct a 2D fermionic model with on-site Z2 symmetry protected topological
order.

PACS numbers: 71.27.+a, 02.40.Re

I. INTRODUCTION

Topological phases of matter are gapped quantum sys-
tems containing nontrivial orders which are not due to
spontaneous symmetry breaking in the ground states.
While topologically ordered systems all have exponen-
tially decaying correlation and appear quite simple from
a classical point of view, various exotic quantum features
have been discovered which reveal the surprisingly rich
structure of topologically ordered systems. For example,
some systems have ground state degeneracy which de-
pends on the topology of the closed manifold the system
is on;1,2 some have protected gapless edge excitations if
the system has a boundary;3,4 some have nontrivial en-
tanglement structure in the ground state;5,6 and some
have bulk excitations with nontrivial statistics.7–9 How to
obtain a clear picture of topological phases among such
a variety of phenomena? First we find that topological
phases can be divided into two general classes according
to its level of stability under perturbations.

The first class has ‘intrinsic’ topological order.1 Sys-
tems in this class must go through a phase transition to
a trivial phase no matter what kind of local perturba-
tion is added. Or using the local unitary equivalence
between ground states we find that this class of sys-
tems have ground states which cannot be mapped to a
product state under ANY local unitary transformation
as defined in Ref. 10. We say that this kind of states
have long range entanglement. Example systems in this
class include quantum Hall(integer or fractional),11,12

p + ip superconductor,13,14 string-net models,9 Z2 spin
liquid,15–17 and chiral spin liquid.18,19 It has been discov-
ered that systems with ‘intrinsic’ topological order usu-
ally have topology dependent ground state degeneracy,1,2

nontrivial topological entanglement entropy5,6 and frac-

tional statistics of bulk excitation.7–9 In the following dis-
cussion we will use the term ‘topological order’ to specif-
ically refer to this class of systems.

The second class has ‘symmetry protected’ topological
order. This kind of system has certain symmetry and
its non-degenerate ground state does not break any of
the symmetries. If arbitrary perturbations are allowed,
systems in this class all belong to the same phase as a
trivial state. Its ground state can be mapped to a product
state with local unitary transformations and hence are
short range entangled(SRE). However, if only symmetric
perturbations are allowed, systems in this class are in
different phases from the trivial phase. Therefore, we
say that the topological order in this class is symmetry
protected. We will call these phases ‘symmetry protected
topological’ (SPT) phases. Example systems in this class
include Haldane phase in one dimensional spin chain20

and topological insulators.21–26 Systems with SPT order
have non-degenerate ground states on closed manifold
and usually have nontrivial edge degrees of freedom if
the system has a boundary.21–27

Many efforts have been made to obtain a more com-
plete understanding of topological and symmetry pro-
tected topological orders. In particular, topological
and SPT orders have been completely classified in one-
dimensional spin systems.28,29 It was found that one-
dimensional spin systems cannot have nontrivial topo-
logical order but different SPT orders exist for sys-
tems with certain symmetry. Similarly, a classifica-
tion of fermion systems (interacting) in one dimension
is also possible.30–32 The picture changes dramatically in
higher dimensions. First of all, nontrivial topological or-
der does exist in two or higher dimensions. A lot has
been learned about possible topological orders9,10,33–35

although a complete understanding is still missing. In
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this paper, we are going to focus only on the SPT phases.
Most SPT phases in two and higher dimensions have
been identified in free fermion systems due to the sim-
plicity and versatility of the formalism. A classification
of possible SPT phases in non-interacting fermion sys-
tems has been obtained.36–38 The major open question
about SPT phases is in general which of these phases re-
main and what new SPT phases are possible when the
system is strongly interacting. In boson systems, even
less is known as non-interacting bosons are necessarily
topologically trivial.39

In this paper, we present a generic picture for under-
standing SPT phases in interacting systems through the
explicit construction of a simple example. Instead of
starting from free fermions, we take a different approach
and generalize our understanding of one dimensional in-
teracting SPT phases to construct a two dimensional spin
model with on-site Z2 symmetry protected topological
order. We call this model the CZX model for reason
that will become clear later. On a closed surface the
CZX model looks simple. Its Hamiltonian is composed
of commuting projectors. Its symmetric gapped ground
state is a product of local loops and hence short range
entangled. However, the model becomes highly nontriv-
ial if it has a boundary. The boundary must have gapless
excitation as long as symmetry is not broken, a signature
of nontrivial SPT order. We prove this fact by relating
effective symmetry transformation on the boundary with
a nontrivial 3-cocycle of the Z2 group.

The construction of the CZX model signifies the close
relation between SPT phases and nontrivial cocycles of
the symmetry group. This idea is not limited to two
dimensional systems. In another paper,40 we generalize
the formalism and construct nontrivial SPT phases in
any d dimension with on-site unitary and anti-unitary
symmetries G based on (d+ 1)-cocycles of G. We expect
that this construction gives a complete classification of
d-dimensional SPT phases.

The effective theory on the boundary can be seen
as a generalization of the Wess-Zumino-Witten (WZW)
model.41,42 The WZW model describes conformally in-
variant 1D systems with an internal symmetry of a com-
pact Lie group. The WZW model obtained by adding
a topological term (the WZW term) to the usual dy-
namical term in the Lagrangian of the nonlinear sigma
model, is exactly solvable in semiclassical limit. It ex-
plains the physics of 1D gapless systems with a global
Lie group symmetry. However, the construction of the
model depends crucially on the fact that the symmetry
group is continuous and does not apply to, for exam-
ple, the Z2 group. Our proof of the gapless-ness of the
1D effective theory on the boundary of the CZX model
hence generalizes the understanding of the WZW model
to discrete groups. Our method based on the nontrivial
3-cocycles applies to both continuous and discrete sym-
metry groups, although it does not give the conformal
field theory of the system directly. Also our proof is non-
perturbative, not relying on semiclassical approximation.

The connection between the CZX model and the WZW
model is not particularly clear in the formulation of this
paper, as the WZW model is usually given in the La-
grangian form. In another paper40, we reformulate our
models (including the CZX model and those for all other
symmetries and in all dimensions) in the Lagrangian lan-
guage where the connection with the WZW model would
become obvious.

The paper is organized as follows: in section II, we re-
view our understanding of the entanglement structure of
SPT phases in one dimension. In generalizing such entan-
glement structure to higher dimension, we first present a
naive attempt which fails to produce interesting phases.
Identifying the missing element, we construct the CZX
model in section III. We give explicitly the symmetry of
the system, its Hamiltonian and its ground state. In or-
der to show the nontrivial-ness of this model, we study
its effective boundary theory in section IV. We identify
the effective degrees of freedom, effective Z2 symmetry
and show that in simple cases the boundary cannot be in
a gapped symmetric phase. In order to prove this conclu-
sion in general, we use the tool of matrix product unitary
operators(MPUO). Introduction to the matrix product
unitary operators formalism is given in appendix D in-
cluding its definition and some simple properties. In sec-
tion V, we show how to represent the effective symmetry
on the boundary of the CZX model using MPUO. We find
that the transformation rule between the MPUO’s is re-
lated to a nontrivial class of 3-cocycles in the third coho-
mology group H3(Z2, U(1)) of Z2.43 Using this relation,
we prove that the boundary cannot have a gapped sym-
metric ground state. This result applies in general to any
MPUO related to a nontrivial 3-cocycle in H3(G,U(1)).
Hence we conclude that the CZX model is in a nontriv-
ial SPT phase protected by on-site Z2 symmetry. Using
similar ideas, we construct in section VII a fermion sys-
tem with on-site Z2 symmetry whose boundary is also
nontrivial.

II. FROM 1D SPT PHASES TO 2D

In this section we first review our understanding of
the entanglement pattern at the fixed point of 1D SPT
phases which we then try to generalize to higher dimen-
sions. However, we are going to show that a straight
forward generalization fails to give nontrivial SPT order.
We identify the missing elements and prepare for the con-
struction of nontrivial model in the next section.

Each 1D SPT phase in systems with on-site symme-
try G can be well understood from the entanglement
pattern of its ground state at fixed point, as shown in
Fig.1. At fixed point, each site contains two spins. On
each site, symmetry is represented linearly. But on each
spin, symmetry only needs to be represented projectively.
(A simple example of projective representation is given
by SO(3) symmetry on a spin 1/2. For an introduction
to projective representations and the second cohomol-



3

ogy group H2(G,U(1)) see appendix A. More generally,
group cohomology is introduced in appendix B.) If sym-
metry on the left spin belongs to the projective represen-
tation of class ω in H2(G,U(1))(for example spin 1/2 un-
der SO(3)), then on the right spin it belongs to −ω(again
spin 1/2 under SO(3)) so that together they form a linear
representation. The ground state of the system is a prod-
uct of dimers between spins on neighboring sites. Each
dimer is an entangled state of two spins which forms a
one dimensional representation of G. The ground state is
hence a total singlet under the symmetry. The nontrivial
feature of the system shows up when we cut the chain
into a finite segment. There are free degrees of freedom
at the ends of the segment, each forming a projective
representation of G. Two 1D systems belong to the same
SPT phase if their end degrees of freedom belong to the
same class of projective representation ω ∈ H2(G,U(1)).

FIG. 1. Fixed point ground state of 1D SPT phase with on-
site symmetry of group G. Each site contains two spins, which
form projective representation of class ω and −ω respectively.
Connected spins form a dimer which forms a one-dimensional
representation of G. On a finite segment of the 1D chain, the
boundary spins form projective representations of G.

This simple picture can be generalized to two or higher
dimension to give a ‘bond’ state. Consider the 2D state
in Fig. 2.

FIG. 2. A 2D ‘bond’ state which is short range entangled
and is symmetric under on-site symmetry of group G. Each
site contains four spins, each forming a projective represen-
tation of G. Two spins connected by a bond form projective
representations of class ω and −ω respectively. The ‘bond’
represents an entangled state of the two spins which forms
an one-dimensional representation of G. On a lattice with
boundary, the boundary degrees of freedom are spins with
projective representation ω(−ω.)

Every site contains four spins. Each spin forms a pro-
jective representation of on-site symmetryG, but the four
spins on each site together form a linear representation of
G. Two spins on neighboring sites which are connected
by a bond forms projective representation ω and −ω re-
spectively and the bond represents an entangled state

between the two spins which forms a one dimensional
representation of G. Similar to the 1D case, the total
state is invariant under on-site symmetry G. The state
is short range entangled and can be the gapped ground
state of a simple Hamiltonian(sum of projections onto
the entangled pairs). If the system is defined on a disk
with boundary, there will be free degrees of freedom at
each site on the boundary which form projective repre-
sentations of G.

It might seem that states with different projective rep-
resentations at each site on the boundary correspond to
different SPT phases, just like in the 1D case. How-
ever, this is not totally true. If translation symmetry is
required, each boundary spin is well defined and the pro-
jective representation they form do label different phases.
On the other hand, in the absence of translation sym-
metry, boundary spins can be combined and their pro-
jective representations can add together. As projective
representations form an additive group (the second coho-
mology group H2(G,U(1)) of G), combining boundary
spins would change the projective representations from
one class to another and in particular, to the trivial class.
Therefore, without translation symmetry, all 2D states
with a bond form as shown in Fig.2 belong to the same
phase.

On the other hand, SPT phases are known to exist
in two and higher dimensions without the protection of
translation symmetry, for example in topological insula-
tors. The simple bond picture above therefore cannot
account for their SPT order. In order to have nontriv-
ial SPT order, we need to generalize the bond state in
two ways: (1) the local entanglement structure is not
bonds between two spins, but rather plaquettes among
four spins on sites around a square. This alone is not
enough to construct new SPT order. We also need (2)
symmetry transformation on each site does not factorize
into separate operations on each of the four spins. That
is, the total linear symmetry operation on each site is
not a tensor product of four projective representations
as otherwise the state can be reduced to a bond state.

Following this line of thought, we construct the CZX
model in section III. The CZX model has an on-site Z2

symmetry that does not factorize into projective repre-
sentations and the symmetry protected topological order
of the state is robust against disorder. The boundary ef-
fective degrees of freedom in CZX model has an effective
Z2 symmetry which cannot be written in an on-site form.
Moreover, the boundary cannot be in a gapped symmet-
ric state under the effective symmetry. In other words,
the boundary must either break the Z2 symmetry or have
gapless excitations. This is different from the bond state
discussed above(Fig.2). In the bond state, the boundary
degrees of freedom are the boundary spins with projective
representations. The effective symmetry is still on-site.
Several boundary spins can form a singlet if their pro-
jective representations add up to a linear representation.
Therefore, in the bond state, the boundary can be in a
gapped symmetric state under on-site symmetry simply
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by breaking translation symmetry. However, in the CZX
model, this is not possible.

III. CZX MODEL

In this section, we construct the CZX model explicitly
which turns out to have nontrivial SPT order protected
only by on-site Z2 symmetry.

FIG. 3. CZX model (a) each site (circle) contains four
spins (dots) and the spins in the same plaquette (square)
are entangled. (b) on-site Z2 symmetry is generated by
UCZX = X1X2X3X4CZ12CZ23CZ34CZ41 (c) a local term
in the Hamiltonian, which is a tensor product of one X4 term
and four P2 terms as defined in the main text.

Consider a square lattice with four two-level spins per
site, as shown in Fig. 3(a) where sites are represented by
circles and spins are represented by dots. We denote the
two levels as |0〉 and |1〉. The system has an on-site Z2

symmetry as given in Fig. 3(b). It is generated by

UCZX = UXUCZ (1)

where

UX = X1 ⊗X2 ⊗X3 ⊗X4 (2)

Xi is Pauli X operator on the ith spin and

UCZ = CZ12CZ23CZ34CZ41 (3)

where CZ is the controlled-Z operator on two spins de-
fined as

CZ = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11| (4)

As defined, CZ does nothing if at least one of the spins is
in state |0〉 and it adds a minus sign if both spins are in
state |1〉. Different CZ operators overlap with each other.
But because they commute, UCZ is well defined. Note
that UCZ cannot be decomposed into separate operations
on the four spins and the same is true for UCZX . UX and
UCZ both square to I and they commute with each other.
Therefore, UCZX generates a Z2 group.

The Hamiltonian of the system is defined as a sum of
local terms around each plaquette. Plaquettes are repre-
sented by squares in Fig. 3. H =

∑
Hpi , where the term

around the ith plaquette Hpi acts not only on the four
spins in the plaquette but also on the eight spins in the
four neighboring half plaquettes as shown in Fig. 3(c)

Hpi = −X4 ⊗ Pu2 ⊗ P d2 ⊗ P l2 ⊗ P r2 (5)

where X4 acts on the four spins in the middle plaquette
as

X4 = |0000〉〈1111|+ |1111〉〈0000| (6)

and P2 acts on the two spins in every neighboring half
plaquette as

P2 = |00〉〈00|+ |11〉〈11| (7)

Pu2 , P d2 , P l2, P r2 acts on the up, down, left and right
neighboring half plaquettes respectively. For the remain-
ing four spins at the corner, Hpi acts as identity on them.
The P2 factors ensure that each term in the Hamiltonian
satisfies the on-site Z2 symmetry defined before.

All the local terms in the Hamiltonian commute with
each other, therefore it is easy to solve for the ground
state. If the system is defined on a closed surface, it has
a unique ground state which is gapped. In the ground
state, every four spins around a plaquette are entangled
in the state

|ψpi〉 = |0000〉+ |1111〉 (8)

and the total wavefunction is a product of all plaquette
wavefunction. If we allow any local unitary transforma-
tion, it is easy to see that the ground state can be disen-
tangled into a product state, just by disentangling each
plaquette separately into individual spin states. There-
fore, the ground state is short range entangled. However,
no matter what local unitary transformations we apply
to disentangle the plaquettes, they necessarily violate the
on-site symmetry and in fact, the plaquettes cannot be
disentangled if the Z2 symmetry is preserved, due to the
nontrivial SPT order of this model which we will show in
the next sections.

It can be checked that this ground state is indeed in-
variant under the on-site Z2 symmetry. Obviously this
state is invariant under UX applied to every site. It is
also invariant under UCZ applied to every site. To see
this note that between every two neighboring plaquettes,
CZ is applied twice, at the two ends of the link along
which they meet. Because the spins within each plaque-
tte are perfectly correlated (they are all |0〉 or all |1〉),
the effect of the two CZ’s cancel each other, leaving the
total state invariant.

Therefore, we have introduced a 2D model with on-
site Z2 symmetry whose ground state does not break the
symmetry and is short-range entangled. In particular,
this on-site symmetry is inseparable as discussed in the
introduction and therefore cannot be characterized by
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projective representation as in the bond state. We can
add small perturbation to the system which satisfies the
symmetry and the system is going to remain gapped and
the ground state short range entangled and symmetric.
It seems that the system is quite trivial and boring. How-
ever, we are going to show that surprising things happen
if the system has a boundary and because of these special
features the system cannot be smoothly connected to a
trivial phase even if translation symmetry is not required.

IV. CZX MODEL BOUNDARY

The non-trivialness of this model shows up on the
boundary. Suppose that we take a simply connected disk
from the lattice, as shown in Fig.4(a).

FIG. 4. (a)CZX model on a disk with boundary (b) boundary
effective degrees of freedom form a 1D chain which cannot
have a SRE symmetric state (c) two boundaries together can
have a SRE symmetric state which is a product of entangled
pairs between effective spins connected by a dashed line.

The reduced density matrix of spins in this region is
invariant under on-site symmetry in this region. The
reduced density matrix is a tensor product of individual
terms on each full plaquette, half plaquette and corner of
plaquette respectively. On a full plaquette

ρ4 = (|0000〉+ |1111〉)(〈0000|+ 〈1111|) (9)

On a half plaquette

ρ2 = |00〉〈00|+ |11〉〈11| (10)

On a corner of a plaquette

ρ1 = |0〉〈0|+ |1〉〈1| (11)

The state of spins on the plaquettes totally inside this
region is completely fixed. But on the boundary there
are free degrees of freedom. However, unlike in the bond
state, only part of the total Hilbert space of the spins
on the boundary is free. In particular, two spins in a
half plaquette on the boundary are constrained to the
two-dimensional subspace |00〉〈00| + |11〉〈11| and form
an effective spin degree of freedom if we map |00〉 to |0̃〉
and |11〉 to |1̃〉.

In Fig. 4(b), we show the effective degrees of freedom
on the boundary as diamonds on a line. Projecting the

total symmetry operation on the disk to the space sup-
porting reduced density matrix, we find that the effec-
tive symmetry operation on the boundary effective spins

is ŨCZX =
∏N
i=1 X̃i

∏N
i=1 C̃Zi,i+1, with Pauli X̃ on each

effect spin and C̃Z operation between neighboring effec-
tive spins. The boundary is periodic and C̃ZN,N+1 acts
on effective spin N and 1. This operator generates a Z2

symmetry group.
This is a very special symmetry on a 1D system. First

it is not an on-site symmetry. In fact, no matter how
we locally group sites and take projections, the sym-
metry operations are not going to break down into an
on-site form. Moreover, no matter what interactions we
add to the boundary, as long as it preserves the sym-
metry, the boundary cannot have a gapped symmetric
ground state. We can start by considering some simple
cases. The simplest interaction term preserving this sym-
metry is ZiZi+1. This is an Ising interaction term and
its ground state breaks the Z2 symmetry. In the trans-
verse Ising model, the system goes to a symmetric phase
if magnetic field in the x direction is increased. However,
Xi breaks the Z2 symmetry ŨCZX on the boundary and
therefore cannot be added to the Hamiltonian. In fact,
we are going to prove that the boundary cannot have
SRE symmetric ground state (actually a more general-
ized version of it) in the next section. This is one special
property that differs the CZX model from the bond state
in Fig.2. In the bond state, the symmetry operations on
the boundary are just projective representations on each
site. Without translational invariance, there can always
be a SRE symmetric state with this symmetry.

The special property on the boundary only shows up
when there is an isolated single boundary. If we put two
such boundaries together and allow interactions between
them, everything is back to normal. As shown in Fig.4(c),
if we have two boundaries together, there is indeed a SRE
symmetric state on the two boundaries. The state is a
product of entangled pairs of effective spins connected
by a dashed line. The entangled pair can be chosen as
|0̃0̃〉 + |1̃1̃〉. In contrast to the single boundary case, we
can locally project the two effective spins connected by
a dashed line to the subspace |0̃0̃〉〈0̃0̃| + |1̃1̃〉〈1̃1̃| and on
this subspace, the symmetry acts in an on-site fashion.

This result should be expected because if we have two
pieces of sheet with boundary and glue them back into
a surface without boundary, we should have the origi-
nal SRE 2D state back. Indeed if we map the effective
spins back to the original degrees of freedom |0̃〉 → |00〉
and |1̃〉 → |11〉, we see that the SRE state between two
boundaries is just the a chain of plaquettes |0000〉+|1111〉
in the original state.

This model serves as an example of non-trivial SPT or-
der in 2D SRE states that only needs to be protected by
on-site symmetry. In order to prove the special property
on the boundary of CZX model and have a more com-
plete understanding of possible SPT orders in 2D SRE
states with on-site symmetry, we are going to introduce
a mathematical tool called Matrix Product Unitary Op-
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erator. We will show that 2D SPT phases are related to
elements inH3(G,U(1)) which emerge in the transforma-
tion structure of the matrix product unitary operators.
The definition of matrix product unitary operator and
some basic properties are given in appendix D. The dis-
cussion in the next section is general, but we will work
out the CZX example explicitly for illustration.

V. MATRIX PRODUCT UNITARY
OPERATORS AND ITS RELATION TO 3

COCYCLE

In this section, we discuss the matrix product unitary
operator (MPUO) formalism and show how the effective
symmetry operation on the boundary of CZX model can
be expressed as MPUO. Moreover, we are going to relate
MPUO of a symmetry group to the 3-cocycle of the group
and in particular, we are going to show that the CZX
model corresponds to a nontrivial 3-cocycle of the Z2

group.
A matrix product operator acting on a 1D system is

given by,44

O =
∑

{ik},{i′k}

Tr(T i1,i
′
1T i2,i

′
2 ...T iN ,i

′
N )|i′1i′2...i′N 〉〈i1i2...iN |

(12)

where for fixed i and i′, T i,i
′

is a matrix with index α
and β. Here we want to use this formalism to study
symmetry transformations, therefore we restrict O to be
a unitary operator U . Using matrix product represen-
tation, U does not have to be an on-site symmetry. U

is represented by a rank-four tensor T i,i
′

α,β on each site,

where i and i′ are input and output physical indices and
α, β are inner indices. Basic properties of matrix product
unitary operators are given in appendix D.

In particular, the symmetry operator UCZX (we omit
the ∼ label for effective spins in following discussions) on
the boundary of the CZX model can be represented by
tensors

T 0,1(CZX) = |0〉〈+|,
T 1,0(CZX) = |1〉〈−|,
other terms are zero

(13)

where |+〉 = |0〉 + |1〉 and |−〉 = |0〉 − |1〉. It is
easy to check that this tensor indeed gives UCZX =
CZ12...CZN1X1...XN .

The other element in the Z2 group–the identity
operation–can also be represented as MPUO with ten-
sors

T 0,0(I) = |0〉〈0|,
T 1,1(I) = |0〉〈0|,
other terms are zero

(14)

These two tensors are both in the canonical form as de-
fined in appendix D.

If two MPUO T (g2) and T (g1) are applied subse-
quently, their combined action should be equivalent to

T (g1g2). However, the tensor T (g1, g2) obtained by con-
tracting the output physical index of T (g2) with the in-
put physical index of T (g1), see Fig. 5, is usually more
redundant than T (g1g2) and might not be in the canon-
ical form. It can only be reduced to T (g1g2) if certain
projection Pg1,g2 is applied to the inner indices (see Fig.
5).

FIG. 5. Reduce combination of T (g2) and T (g1) into T (g1g2).

Pg1,g2 is only defined up to an arbitrary phase fac-

tor eiθ(g1,g2). If the projection operator on the right side
Pg1,g2 is changed by the phase factor eiθ(g1,g2), the projec-
tion operator P †g1,g2 on the left side is changed by phase

factor e−iθ(g1,g2). Therefore the total action of Pg1,g2
and P †g1,g2 on T (g1, g2) does not change and the reduc-
tion procedure illustrated in Fig.5 still works. Moreover,
from the discussion in the appendix D, we know that this
is the only degree of freedom in Pg1,g2 . Up to a phase fac-
tor, Pg1,g2 is unique (on the unique block in the canonical
form of T (g1, g2)).

Let us illustrate how the reduction is done for the
symmetry group (I, UCZX). For example, if we apply
UCZXUCZX the totally action should be equivalent to I.
However the tensor T (CZX,CZX) is given by

T 0,0(CZX,CZX) = |01〉〈+− |,
T 1,1(CZX,CZX) = |10〉〈−+ |,
other terms are zero

(15)

This tensor is reduced to T (I) if projection

PCZX,CZX = (|01〉 − |10〉)〈0| (16)

and its Hermitian conjugate are applied to the right and
left of T (CZX,CZX) respectively.45 Adding an arbi-
trary phase factor eiθ(CZX,CZX) to PCZX,CZX does not
affect the reduction at all. By writing PCZX,CZX in the
above form, we have made a particular choice of phase.

Below we list the (right) projection operators for all
possible combinations of g1 and g2 of this Z2 group.

PI,I = |00〉〈0|
PCZX,I = |00〉〈0|+ |10〉〈1|
PI,CZX = |00〉〈0|+ |10〉〈1|
PCZX,CZX = (|01〉 − |10〉)〈0|

(17)

Note that in giving Pg1,g2 we have picked a particular

choice of phase factor eiθ(g1,g2). In general, any phase
factor is allowed.

Nontrivial phase factors appear when we consider the
combination of three MPUO’s. See Fig. 6.
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FIG. 6. Different ways to reduce combination of T (g3), T (g2)
and T (g1) into T (g1g2g3). Only the right projection operators
are shown. Their combined actions differ by a phase factor
φ(g1, g2, g3).

There are two different ways to reduce the tensors. We
can either first reduce the combination of T (g1), T (g2)
and then combine T (g3) or first reduce the combination
of T (g2),T (g3) and then combine T (g1). The two differ-
ent ways should be equivalent. More specifically, they
should be the same up to phase on the unique block of
Tg1, g2, g3. Denote the projection onto the unique block
of T (g1, g2, g3) as Qg1,g2,g3 . We find that

Qg1,g2,g3(I3 ⊗ Pg1,g2)Pg1g2,g3 =
φ(g1, g2, g3)Qg1,g2,g3(Pg2,g3 ⊗ I1)Pg1,g2g3

(18)

From this we see that the reduction procedure is asso-
ciative up to a phase factor φ(g1, g2, g3). According to
the definition of cocycles in appendix B, we see that
φ(g1, g2, g3) forms a 3-cocycle of group G. That is,
φ(g1, g2, g3) satisfies

φ(g2, g3, g4)φ(g1, g2g3, g4)φ(g1, g2, g3)

φ(g1g2, g3, g4)φ(g1, g2, g3g4)
= 1 (19)

Let’s calculate φ(g1, g2, g3) explicitly for the group gen-
erated by UCZX .

φ(I, I, I) = 1 φ(I, I, CZX) = 1
φ(I, CZX, I) = 1 φ(CZX, I, I) = 1
φ(I, CZX,CZX) = 1 φ(CZX,CZX, I) = 1
φ(CZX, I, CZX) = 1 φ(CZX,CZX,CZX) = −1

(20)
We can check that φ is indeed a 3-cocycle. The last
term shows a nontrivial −1. This minus one cannot be
removed by redefining the phase of Pg1,g2 in any way.
Therefore φ corresponds to a nontrivial 3-cocycle for the
Z2 group.

What does this nontrivial mathematical structure im-
ply about the physics of the CZX model? In the next
section we are going to answer this question by prov-
ing that MPUO related to a nontrivial 3-cocycle cannot
have a short range entangled symmetric state. That is,
the boundary of the CZX model cannot have a gapped
symmetric ground state. It either breaks the symmetry
or is gapless.

VI. NONTRIVIAL 3-COCYCLE OF MPUO AND
NONEXISTENCE OF SRE SYMMETRIC STATE

In this section we will show that a symmetry defined
by a MPUO on a 1D chain can have a SRE symmetric
state only if the MPUO corresponds to a trivial 3-cocycle.
Therefore, the boundary of the CZX model must be gap-
less or have symmetry breaking. For this proof, we will
be using the matrix product state representation of SRE
states.

Suppose that the symmetry on a 1D chain is repre-

sented by tensors T i,i
′

α,β(g). WLOG, T (g) is single-blocked
and in the canonical form as defined in appendix D. As-
sume that it has a SRE symmetric state represented by
matrices Aiλ,η which is also single-blocked and in the
canonical form. For a review of matrix product state
formalism including its canonical form and single-block
property see appendix C.

Based on the result in Ref. 46 and Ref. 47 we can show
that (see appendix D)

Ai = V †(
∑
i′

T i,i
′
(g)Ai

′
)V (21)

where V †V = I and V is unique on the single block of∑
i′ T

i,i′(g)Ai
′

up to phase. This is saying that we can

reduce the MPS obtained from
∑
i′ T

i,i′(g)Ai
′

back to
the original form Ai by applying V † and V to the left
and right of the matrices respectively. See Fig. 7.

FIG. 7. Reduction of the combination of T (g) and A into

A. Here T i,i′(g) is a MPUO, Ai is a matrix product state

symmetric under T i,i′(g).

For a fixed representation of the SRE state Ai and fixed
representation of the MPUO symmetry T (g), V is fixed
up to phase. We can pick a particular choice of phase for
V .

Now we consider the combined operation of T (g1) and
T (g2) on A. See Fig.8.

FIG. 8. Two ways of reducing the combination of T (g2), T (g1)
and A into A. Only the right projection operators are shown.
Their combined actions differ by a phase factor ϕ(g1, g2).

We can either first combine T (g2) and A and then
combine T (g1) and A or first combine T (g1) and T (g2)
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and then combine T (g1g2) and A. The right projection
operator for these two methods differ by a phase factor
ϕ(g1, g2). This phase factor can be arbitrarily changed by
changing the phase of Pg1,g2 . For following discussions,
we fix the phase of Pg1,g2 and hence ϕ(g1, g2).

This is all the freedom we can have. If we are to com-
bine three or more T ’s with A, different reduction meth-
ods differ by a phase factor but the phase factor are all
determined by ϕ(g1, g2). Consider the situation in Fig.
9, where we are to combine T (g3), T (g2) and T (g1) with
A.

FIG. 9. Different ways of reducing the combination of T (g3),
T (g2), T (g1) and A into A. Only the right projection oper-
ators are shown. Their combined actions differ by a phase
factor written on the arrow.

To change the reduction procedure in Fig.9(a) to that
in Fig.9(c), we can either go through step (b) or steps (d)
and (e). If we go through step (b), the phase difference
in the right projection operators is

ϕ−1(g1g2, g3)ϕ−1(g1, g2) (22)

On the other hand, if we go through steps (d) and (e),
the phase difference in the right projection operators is

φ(g1, g2, g3)ϕ−1(g1, g2g3)ϕ−1(g2, g3) (23)

But these two procedures should be equivalent as the
initial and final configurations are the same whose phases
have been fixed previously. Therefore, we find that

φ(g1, g2, g3) =
ϕ(g1, g2g3)ϕ(g2, g3)

ϕ(g1g2, g3)ϕ(g1, g2)
(24)

and φ(g1, g2, g3) must be a trivial 3-cocycle (see Eq.
B13).

This finishes the proof that: A 1D system with symme-
try defined by matrix product unitary operators can have
a gapped symmetric ground state only if the matrix prod-
uct unitary operator corresponds to a trivial 3-cocycle.

Because we have shown that the symmetry on the
boundary of the CZX model corresponds to a nontrivial

3-cocycle of the Z2 group, the system with boundary can-
not have a gapped symmetric ground state. This shows
that the CZX model has nontrivial SPT order protected
by on-site Z2 symmetry as we have promised in section
III.

VII. GENERALIZATION TO FERMION
SYSTEM

Due to the interest in fermion SPT orders in interact-
ing systems in two and higher dimensions, in this section
we are going to give a fermionic version of the CZX model
which also has nontrivial SPT order protected only by
on-site Z2 symmetry.

In constructing this model, first we identify each spin
in the CZX model with a fermionic mode and the spin
|0〉 state with the zero fermion state, the spin |1〉 state
with the one fermion state. Each site then contains four
modes (see Fig.3). Denote the creation and annihilation

operator on each mode as c†i and ci.
Fermion system has an intrinsic fermion parity sym-

metry which is an on-site Z2 symmetry given by

Pf =

4∏
i=1

(1− 2c†i ci) (25)

This Z2 symmetry is always preserved.
Similar to the CZX model we define another on-site Z2

symmetry UfCZX , which is going to protect the nontrivial
SPT order.

UfCZX = UfXU
f
CZ (26)

where

UfX =

4∏
i=1

(c†i + ci) (27)

is a particle-hole transformation and

UfCZ =

4∏
i=1

(I − 2c†i cic
†
i+1ci+1) (28)

It can be checked that UfX and UfCZ commute with each

other and they both commute with Pf . Therefore UfCZX
commutes with Pf . UfCZX generates an on-site Z2 sym-
metry.

The Hamiltonian of the system is again a sum of local
terms around each plaquette. Hf =

∑
Hf
pi .

Hf
pi = −Xf

4 ⊗ P
u,f
2 ⊗ P d,f2 ⊗ P l,f2 ⊗ P r,f2 (29)

(see Fig.3(c))where Xf
4 acts on the four modes in the

middle plaquette as

Xf
4 = c4c3c2c1 + c†1c

†
2c
†
3c
†
4 (30)
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and P f2 acts on the two modes in every half plaquette as

P f2 = cic
†
i ci+1c

†
i+1 + c†i cic

†
i+1ci+1 (31)

For the remaining four modes at the corner, Hf
pi acts as

identity on them. It can be checked that the Hamiltonian
satisfies the fermion parity symmetry and the on-site Z2

symmetry generated by UfCZX . Moreover terms around
different plaquettes commute with each other.

The ground state is then a product of plaquette states

|ψfpi〉 = (1 + c†1c
†
2c
†
3c
†
4)|Ω〉 (32)

where |Ω〉 is vacuum state on the four modes 1 ∼ 4
around a plaquette. The ground state is short range en-

tangled and symmetric under both Pf and UfCZX . If

UfCZX can be violated, we can disentangle this state into
a product of states on each mode without violating the

fermion parity symmetry. However, if UfCZX is preserved,
this state is inequivalent from a trivial product state.

The nontrivial-ness of this model can be seen again
from the boundary. The boundary of this fermion model
is the same as that of the spin model, because the ef-
fective degrees of freedom in each half plaquette has two
states: the vacuum state on the two modes and the fully
occupied state on the two modes. These two states are
both bosonic, therefore the boundary can be treated as a
spin system just like for the CZX model. The symmetry
on the boundary is again generated by UCZX which we
have shown cannot have a SRE symmetric state. There-
fore, this fermionic CZX model has a nontrivial on-site
Z2 symmetry protected SPT order.

VIII. SUMMARY

In this paper, we have given the explicit construction
of a two dimensional interacting spin model with nontriv-
ial on-site Z2 symmetry protected topological order. We
found that the system is highly nontrivial because if it
has a boundary the boundary is either gapless or breaks
symmetry. We showed this by writing the effective sym-
metry transformation on the boundary as a matrix prod-
uct unitary operator and revealed a nontrivial 3-cocycle
structure in its transformation rule. We proved that any
matrix product unitary operator related to a nontrivial 3-
cocycle in H3(G,U(1)) cannot have a gapped short range
entangled symmetric state.

This model could have interesting implication for the
study of topological phases using tensor network presen-
tation. In the tensor network repretation of topological
phases, it has been understood that in one dimension
injective tensors provide a complete characterization of
gapped ground states and its gauge transformation under
symmetry reals the SPT order of the phase.28,29 In higher
dimensions, similar analysis of injective tensors have been
carried out.48–50 However, the fact that the ground state
wavefunction of CZX model has a loop structure and can-
not be represented by an injective tensor tells us that we

need to consider more general forms of tensors in order
to study interesting SPT orders in more than one dimen-
sion. Identifying the proper set of tensors for the char-
acterization of gapped short range entangled phases in
higher dimensions is an important open question. Or an
alternative approach is to reduce the problem from 2D to
1D by considering the tensor representation of effective
symmetry transformation on the boundary, as was done
in this paper. How the reduction can be done in more
than two dimension is unknown.

The 1D boundary of the CZX model presents new chal-
lenges to our understanding of 1D systems. While it is
a locally interacting system with Z2 symmetry, it does
not have a gapped symmetric phase like in transverse
Ising model. Moreover, the gapless excitations cannot be
gapped by breaking translational symmetry like in spin
1/2 chains. The peculiarity of this system originates from
the fact that this 1D system can only exist as the bound-
ary of a 2D system and not on its own. Finding a proper
field theory description of this system would expand our
current understanding of 1D physics.

The relation between SPT order and cocycle is not
accidental. Actually the pattern has shown up in lower
dimensions.29 In zero dimension, symmetric states are
classified by 1D representation of the group, that is, class
of 1-cocycles in H1(G,U(1)) and in one dimension SPT
phases are classified by projective representations of the
group, that is, class of 2-cocycles in H2(G,U(1)). Here
we make a connection between 2D SPT order and class of
3-cocycles in H3(G,U(1)). In fact, this relation is more
general. In another paper, we are going to show that
actually d dimensional SPT orders are related to (d +
1)-cocycles in Hd+1(G,U(1)), which could lead to a full
classification of SPT orders in any dimension.

We would like to thank Zhenghan Wang for helpful
discussions. This research is supported by NSF Grant
No. DMR-1005541 and NSFC 11074140.

Appendix A: Projective Representation

Matrices u(g) form a projective representation of sym-
metry group G if

u(g1)u(g2) = ω(g1, g2)u(g1g2), g1, g2 ∈ G. (A1)

Here ω(g1, g2) ∈ U(1) and ω(g1, g2) 6= 0, which is called
the factor system of the projective representation. The
factor system satisfies

ω(g2, g3)ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3), (A2)

for all g1, g2, g3 ∈ G. If ω(g1, g2) = 1, this reduces to the
usual linear representation of G.

A different choice of pre-factor for the representation
matrices u′(g) = β(g)u(g) will lead to a different factor
system ω′(g1, g2):

ω′(g1, g2) =
β(g1g2)

β(g1)β(g2)
ω(g1, g2). (A3)
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We regard u′(g) and u(g) that differ only by a pre-factor
as equivalent projective representations and the corre-
sponding factor systems ω′(g1, g2) and ω(g1, g2) as be-
longing to the same class ω.

Suppose that we have one projective representation
u1(g) with factor system ω1(g1, g2) of class ω1 and an-
other u2(g) with factor system ω2(g1, g2) of class ω2, ob-
viously u1(g)⊗u2(g) is a projective presentation with fac-
tor group ω1(g1, g2)ω2(g1, g2). The corresponding class ω
can be written as a sum ω1 + ω2. Under such an addi-
tion rule, the equivalence classes of factor systems form
an Abelian group, which is called the second cohomology
group of G and denoted as H2[G,U(1)]. The identity
element 1 ∈ H2[G,U(1)] is the class that corresponds to
the linear representation of the group.

Appendix B: Group cohomology

The above discussion on the factor system of a projec-
tive representation can be generalized which give rise to
a cohomology theory of group. In this section, we will
briefly describe the group cohomology theory.

For a group G, let M be a G-module, which is an
abelian group (with multiplication operation) on which G
acts compatibly with the multiplication operation (ie the
abelian group structure) on M:

g · (ab) = (g · a)(g · b), g ∈ G, a, b ∈M. (B1)

For the cases studied in this paper, M is simply the U(1)
group and a an U(1) phase. The multiplication operation
ab is the usual multiplication of the U(1) phases. The
group action is trivial: g · a = a, g ∈ G, a =∈ U(1).

Let ωn(g1, ..., gn) be a function of n group elements
whose value is in the G-module M . In other words,
ωn : Gn → M . Let Cn(G,M) = {ωn} be the space of
all such functions. Note that Cn(G,M) is an Abelian
group under the function multiplication ω′′n(g1, ..., gn) =
ωn(g1, ..., gn)ω′n(g1, ..., gn). We define a map dn from
Cn[G,U(1)] to Cn+1[G,U(1)]:

(dnωn)(g1, ..., gn+1) =

g1 · ωn(g2, ..., gn+1)ω(−1)n+1

n (g1, ..., gn)×
n∏
i=1

ω(−1)i
n (g1, ..., gi−1, gigi+1, gi+2, ...gn+1) (B2)

Let

Bn(G,M) = {ωn|ωn = dn−1ωn−1|ωn−1 ∈ Cn−1(G,M)}
(B3)

and

Zn(G,M) = {ωn|dnωn = 1, ωn ∈ Cn(G,M)} (B4)

Bn(G,M) and Zn(G,M) are also Abelian groups which
satisfy Bn(G,M) ⊂ Zn(G,M) where B1(G,M) ≡ {1}.
The n-cocycle of G is defined as

Hn(G,M) = Zn(G,M)/Bn(G,M) (B5)

Let us discuss some examples. We choose M = U(1)
and G acts trivially: g · a = a, g ∈ G, a ∈ U(1). In this
case ωn(g1, ..., gn) is just a phase factor. From

(d1ω1)(g1, g2) = ω1(g2)ω1(g1)/ω1(g1g2) (B6)

we see that

Z1(G,U(1)) = {ω1|ω1(g2)ω1(g1) = ω1(g1g2)}. (B7)

In other words, Z1(G,U(1)) is the set formed by all the
1D representations of G. Since B1(G,U(1)) ≡ {1} is
trival. H1(G,U(1)) = Z1(G,U(1)) is also the set of all
the 1D representations of G.

From

(d2ω2)(g1, g2, g3)

= ω2(g2, g3)ω2(g1, g2g3)/ω2(g1g2, g3)ω2(g1, g2) (B8)

we see that

Z2(G,U(1)) = {ω2| (B9)

ω2(g2, g3)ω2(g1, g2g3) = ω2(g1g2, g3)ω2(g1, g2)}.

and

B2(G,U(1)) = {ω2|ω2(g1, g2) = ω1(g2)ω1(g1)/ω1(g1g2)}.
(B10)

The 2-cocycle H2(G,U(1)) = Z2(G,U(1))/B2(G,U(1))
classify the projective representations discussed in sec-
tion A.

From

(d3ω3)(g1, g2, g3, g4)

=
ω3(g2, g3, g4)ω3(g1, g2g3, g4)ω3(g1, g2, g3)

ω3(g1g2, g3, g4)ω3(g1, g2, g3g4)
(B11)

we see that

Z3(G,U(1)) = {ω3| (B12)

ω3(g2, g3, g4)ω3(g1, g2g3, g4)ω3(g1, g2, g3)

ω3(g1g2, g3, g4)ω3(g1, g2, g3g4)
= 1}.

and

B3(G,U(1)) = {ω3|ω3(g1, g2, g3) =
ω2(g2, g3)ω2(g1, g2g3)

ω2(g1g2, g3)ω2(g1, g2)
},

(B13)

which give us the 3-cocycle H3(G,U(1)) =
Z3(G,U(1))/B3(G,U(1)).

Appendix C: Review: matrix product states and its
canonical form

In this section we review matrix product state and its
canonical form which was first derived in Ref. 46. Similar
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ideas are going to be used in the study of matrix product
unitary operators.

A matrix product representation of 1D state is

|ψ〉 =
∑

i1i2...iN

Tr(Ai1Ai2 ...AiN )|i1i2...iN 〉 (C1)

Ai’s are D ×D matrices.
Define double tensor E for the MPS as

E =
∑
i

Ai ⊗A∗i (C2)

Equivalently, E can be expressed as a completely positive
quantum channel E as

E(X) =
∑
i

AiXA
†
i (C3)

and the corresponding dual channel E∗ as

E∗(X) =
∑
i

A†iXAi (C4)

The correspondence between E and E , E∗ is as follows.
Suppose that X and Y are D×D matrices which satisfy

Y = E(X) (C5)

Combine the two indices of the matrices into one and
write them as vectors

(VX)(α−1)D+β = Xα,β (VY )(α−1)D+β = Yα,β (C6)

VX and VY are then related by E as

EVX = VY (C7)

Similarly, if

Y = E∗(X) (C8)

then

V †XE = V †Y (C9)

We will use E and E , E∗ inter-changably, whichever is
more convenient.

From the structure of E and E∗ we can put Ai’s into
a canonical form. Suppose that the largest magnitude
of the eigenvalues of E is λ1 > 0. There could be mul-
tiple eigenvalues λ1e

iθk of this magnitude. As shown in
Ref. 51, eiθk form a group and they are the pth root of
unity. To get rid of this, we can just group p sites to-
gether and the eigenvalues of the largest magnitude will
all be real and positive. We still label them as λ1.

Because E is a completely positive channel, at least one
of corresponding fixed points Λ

E(Λ) = λ1Λ (C10)

is positive-semidefinite. Denote the support space of Λ
as P . It can be shown that AiP = PAiP .46 Decompose

each Ai into four parts Ai = PAiP +PAiP⊥+P⊥AiP +
P⊥AiP⊥. P⊥AiP = 0. PAiP⊥ may not be zero. How-
ever, it does not contribute to the MPS, therefore we can
remove it safely. After doing this, Ai is decomposed into
two blocks and Λ is a full rank positive fixed point of
EP (X) =

∑
i(PAiP )X(PAiP )† with eigenvalue λ1.

Because

EP (X) =
∑
i

(PAiP )X(PAiP )† =
∑
i

(AiP )X(AiP )†

(C11)
every fixed point of EP (within space P ) is also a fixed
point of E with the same eigenvalue. Therefore, λ1 is
also the largest eigenvalue of EP . Suppose that EP has
another fixed point Z of eigenvalue λ1 which is not pro-
portional to Λ. WLOG, we can choose Z to be Hermi-
tian. (This is because

∑
i(AiP )Z(AiP )† = λ1Z, there-

fore
∑
i(AiP )Z†(AiP )† = λ1Z

†. And because Z is not
proportional to Λ, at least one of the Hermitian matrices
Z+Z† or i(Z−Z†) is not proportional to Λ.) Diagonalize
the Hermitian matrix Λ−1/2ZΛ−1/2 and get eigenvalues
z1 > z2 >... It is easy to see that Λ− 1

z1
Z is another non

full rank positive fixed point of EP with eigenvalue λ1.
Therefore we can repeat the previous process and turn
PAiP into smaller blocks.

Repeat this process for every block until (1) the chan-
nel EPk

of every block k has a largest positive eigenvalue
λk. There is a positive full rank fixed point ΛPk

within
subspace Pk. (2) There is no other fixed point within Pk
of the same eigenvalue. (3) The block P⊥ = I −

∑
k Pk

which does not have a positive fixed point for largest
eigenvalue must only have zero eigenvalue. The block
could be non-zero in general, but it does not contribute
to MPS. Note that

∑
k Pk + P⊥ = I, AiPk = PkAiPk.

Written in the blocks Pk and P⊥, Ai is upper(or lower)
triangular.

Now we look at each block k separately but from the
dual channel perspective. We can similarly block di-
agonalize Aki if non full rank positive fixed point ex-
ists for the largest eigenvalue of E∗Pk

. For each sub-

block projection Pk,l, Pk,lA
k
i = Pk,lA

k
i Pk,l. Aki can be

turned into sub-blocks Ak,li = Pk,lA
k
i Pk,l. Note that, if

ΛPk,l
= Pk,lΛPk

Pk,l,∑
iA

k,l
i ΛPk,l

(Ak,li )† = Ak,li ΛPk
(Ak,li )†

= Pk,lA
k
i ΛPk

(Aki )†Pk,l
= λkΛPk,l

(C12)

Therefore, within each sub-block, ΛPk,l
is still a positive

full rank fixed point of EPk,l
with eigenvalue λk. As there

cannot be positive fixed points of other eigenvalue, λk
must be the largest. Similarly, if Xk is a fixed point of
EPk

, Pk,lXkPk,l is a fixed point of EPk,l
with the same

eigenvalue.
Proceed similarly as for E , we can block diagonalize

Aki into Ak,li such that E∗Pk,l
has only one fixed point for

its largest eigenvalue which is full rank positive.
Finally, we arrive at a canonical form, which is com-

posed of blocks Pk and sub-blocks Pk,l. Within each
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sub-block, the matrices satisfy (1) the channel EPk,l
has

a largest positive eigenvalue. The corresponding fixed
point is full rank positive. (2) There is no other fixed
point within the sub-block of the same eigenvalue. (3)
the dual channel E∗Pk,l

also has a largest positive eigen-

value. The corresponding fixed point is full rank positive.
(4) There is no other fixed point within the sub-block of
the same eigenvalue.

A generic matrix product state has only one block in its
canonical form.46 We will call these MPS single-blocked
MPS. Single-blocked MPS represents gapped, short range
correlated 1D states. The single-block property is a
generalization of the injectivity condition for MPS.46 A
single-blocked MPS is injective if the dimension of the
matrices equals that in the canonical form. On the other
hand, a single-blocked MPS might not be written in a
canonical form. It is in general more redundant. To do
the reduction, necessary steps involves projection onto
the single block and re-labeling the basis. Any invertible
operation within the projected space might be added.
However, if the resulting canonical form is fixed, the re-
duction operation is unique within the projected space
up to an arbitrary phase factor.

Appendix D: Matrix Product Unitary Operators

Similarly to MPS, a matrix product representation of
operators acting on a 1D system is given by,44

O =
∑

{ik},{i′k}

Tr(T i1,i
′
1T i2,i

′
2 ...T iN ,i

′
N )|i′1i′2...i′N 〉〈i1i2...iN |

(D1)
Here we restrict to unitary operators U as we want to

discuss symmetry operations. Using matrix product rep-
resentation, U does not have to be an on-site symmetry.

U is represented by a rank-four tensor T i,i
′

α,β on each site,

where i and i′ are input and output physical indices and
α, β are inner indices.

Just like every matrix product state can be reduced to
a canonical form.46 every matrix product operator can
be reduced to a canonical form also. To do so, we just
need to treat the two physical indices as one and apply
the procedure described in appendix C. Similar to MPS,
we can also define double tensor/ quantum channel for
each matrix product operator. The double tensor of T is

E =
∑
i,i′

T i,i
′
⊗ (T i,i

′
)∗ (D2)

The fact that T represents a unitary operator puts
strong constraint on the form of T . U†U = I ⊗ ...⊗ I is
represented on each site by tensor

Ti,i
′′

αα′,ββ′ =
∑
i′

T i,i
′

α,β(T i
′′,i′

α′,β′)
∗ (D3)

T must be equivalent to δi,i′′ on each site. We can re-
duce T to the canonical form. The canonical form of T

could contain multiple blocks, but each block must rep-
resent the same operator I ⊗ ... ⊗ I and takes the form
λkδi,i′′ |k〉〈k|. |k〉〈k| is the projection onto the kth block,
λk is a number. Later we will impose further constraints
on U to get rid of multi-block.

First we want to show that we can write every MPUO
in an single-blocked canonical form. That is, the canoni-
cal form contains only one block. Suppose that we start
with a canonical representation of the symmetry opera-
tion. In general, the canonical representation could have
multiple blocks. We are going to show that this is not
necessary as different blocks represent the same unitary
operation.

Suppose that a canonical MPUO contains two blocks

T ii
′

= T ii
′

[1] ⊕ T
ii′

[2] (D4)

T[1] represents MPO O1 and T[2] represents MPO O2 (not
necessarily unitary). U = O1 +O2.

The corresponding T contains four blocks

Ti,i′′ =
∑
i′ T

ii′ ⊗ (T i
′′i′)∗

= Ti,i
′

[11] ⊕ Ti,i
′

[12] ⊕ Ti,i
′

[21] ⊕ Ti,i
′

[22]

(D5)

T[kk′] represent MPO OkO
†
k′ . Because T represents I ⊗

I...⊗ I, each of its block must also do. Therefore,

O1O
†
1 = O1O

†
2 = O2O

†
1 = O2O

†
2 = I ⊗ I...⊗ I (D6)

That is, O1 and O2 represent the same unitary operator
and there is no need for multiple blocks. In the following
we will always assume that T is written in a canonical
form with only one block. We will call this the single-
block condition for MPUO.

With the MPUO representation defined for each sym-
metry operation, we now want to know how the repre-
sentation changes when two or more operations are com-
bined.

First let’s consider what happens when U is combined
with U†. As we discussed before, this is represented by T
which could contain multiple blocks λkδi,i′′ |k〉〈k| in the
canonical form. Correspondingly, the double tensor of T

E =
∑
i,i′

T i,i
′
⊗ (T i,i

′
)∗ =

∑
i

Ti,i (D7)

has multiple eigenvectors |k〉 with corresponding eigen-
values λk.

Define the correlator between two sets of operator pairs
{om1 , õm1 } and {on2 , õn2} to be

(o1, o2)U =
∑
mn Tr(om1 o

n
2Uõ

m
1 õ

n
2U
†)

−(
∑
m Tr(om1 Uõ

m
1 U
†))(

∑
n Tr(on2Uõ

n
2U
†))

(D8)
On the one hand, written in terms of tensors, the corre-
lator is expressed as

(o1, o2)U = Tr(E..E[o1]..E[o2]..E)
− Tr(E..E[o1]..E)Tr(E..E[o2]..E)

(D9)
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where

E[o1] =
∑
m,i(o

m
1 )i2,i3(õm1 )i4,i1T i1,i2 ⊗ (T i4,i3)∗

E[o2] =
∑
n,i(o

n
2 )i2,i3(õn2 )i4,i1T i1,i2 ⊗ (T i4,i3)∗

(D10)

This is the same form as the correlation function of oper-
ators o1 =

∑
m o

m
1 ⊗ õm1 and o2 =

∑
n o

n
2 ⊗ õn2 in a matrix

product state with double tensor E. From our knowledge
of MPS, we know that the correlator decays as (λ2/λ1)l.

On the other hand, we consider for simplicity only
unitaries U which preserve locality of operators exactly.
That is, if o is supported on a finite number of sites, UoU†

is also supported on a finite number of sites, though the
number may be larger. We do not consider the local op-
erators with exponentially decaying tails.52 Under this
restriction, it follows that when {om1 , õm1 } and {on2 , õn2}
are far apart∑

mn Tr(om1 o
n
2Uõ

m
1 õ

n
2U
†)

=
∑
mn Tr(om1 o

n
2Uõ

m
1 UU

†õn2U
†)

=
∑
mn Tr((om1 Uõ

m
1 U
†))⊗ (on2Uõ

n
2U
†))

=
∑
mn Tr(om1 Uõ

m
1 U
†)Tr(on2Uõ

n
2U
†)

(D11)

the correlator (o1, o2)U must be zero if the separation
is large enough. Therefore, λ2 = 0. E has only one
eigenvector and T has only one block in its canonical
form.

Now we want to use this property to show that the
single-block condition is stable under combination of
MPUO’s. That is, if we start with two MPUO repre-
sented by T a and T b with only one block in the canonical
form, their combination

T c,ii
′′

αα′,ββ′ =
∑
i′

T a,ii
′

α,β T
b,i′i′′

α′,β′ (D12)

also has only one block in its canonical form. Of course,
written as above, T c is not necessarily in the canonical
form. Note that the discussion in the previous para-
graphs is actually on the special case where T b,ii

′
=

(T a,i
′i)∗.

In order to see this, we take the double tensor of T c

Ec =
∑
i,i′′ T

c,ii′′ ⊗ (T c,ii
′′
)∗

=
∑
i,i′′(

∑
i′1
T a,ii

′
1 ⊗ T b,i′1i′′)⊗ (

∑
i′2
T a,ii

′
2 ⊗ T b,i′2i′′)∗

=
∑
i′1,i

′
2
Ta,i′1i′2 ⊗ Tb,i′1i′2

(D13)
Ta and Tb both have one block in their canonical form.
Denote the projection onto the blocks as Pa and Pb.

Pa = |ψaαα̃〉〈ψaββ̃ |
Pb = |ψbα′α̃′〉〈ψb

β′β̃′ |
(D14)

Being the only eigenvector of Ea and Eb, |ψaαα̃〉 and
|ψbα′α̃′〉 are positive full rank if written as matrices Λaα,α̃,

Λbα′,α̃′ . The only term that contributes to the trace of Ec

is

(|ψa〉 ⊗ |ψb〉)(〈ψa| ⊗ 〈ψb|) (D15)

This is also true for any power of Ec.
This special property of Ec tells us that Ec has only a

single non-zero eigenvalue. Suppose Ec = λ0|0〉〈0| + M ,
|0〉 is short for |ψa〉 ⊗ |ψb〉. Tr(Ec) = λ0. Moreover,
Tr(Ec)k = λk0 . Because Tr(Ec)k =

∑
i(λi)

k, it can be
shown that λi = 0, ∀i > 0. The fact that Ec has a single
eigenvalue in turn tells us that T c contains only one block
in its canonical form, because otherwise, Ec would have
at least n2 non-zero eigenvalues with n being the block
number.

Therefore, we have shown that if we start with the
canonical single-blocked tensor representation of some
unitary operators, the tensor obtained from their con-
catenation still has only one block in its canonical form
and is hence single-blocked. For single-blocked T we can
always apply the procedure in Ref. 46 (also discussed in
detail in appendix C) to reduce it to a canonical form. If
we have multiple ways to do the reduction, they must be
equivalent. More specifically, projected onto the unique
block, the reduction operation is unique up to phase (if
the final canonical form is fixed, not up to gauge). This
phase factor is going to play an important role in our
study of SPT orders.

Similar reduction procedure applies when a matrix
product unitary operator acts on a matrix product state.
In particular, suppose T i,i

′
is a MPUO and Ai represents

a MPS which is symmetric under it. Suppose that T i,i
′

and Ai are both in the canonical form and have only one
block. Because T i,i

′
represents a symmetry of Ai

Ãi =
∑
i′

T i,i
′
⊗Ai

′
(D16)

represent the same matrix product state as Ai. Moreover,
because Ai is short range correlated and T i,i

′
does not

increase correlation length, Ãi is still short range corre-
lated and it also contains one block in its canonical form.
However, note that T i,i

′
is a matrix and the inner dimen-

sion of Ãi is in general larger than that of Ai. Therefore
Ãi may no longer be in the canonical form. Some reduc-
tion procedure needs to be done to bring Ãi back to the
canonical form.

Suppose that P is the projection onto the single block
in the canonical form of Ãi. Due to the uniqueness of
the canonical form of a MPS, P must be of the same
dimension as Ai and PÃiP must be equivalent to Ai up
an invertible transformation Q.46,47 That is

Ai = QP †ÃiPQ−1 (D17)

Denote Vr = PQ−1 and Vl = QP , we get Ai = VlÃ
iVr.

Moreover, VlVr = I, the identity on the inner dimensions
of Ai. As Q is unique up to phase, Vl and Vr are unique
on the single block of Ãi up to a conjugate phase factor.
With slight abuse of notation, we will denote Vr as V and
Vl as V † and we have

Ai = V †ÃiV (D18)
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