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Quantum phases with different orders exist with or without breaking the symmetry of the sys-
tem. Recently, a classification of gapped quantum phases which do not break time reversal, parity
or on-site unitary symmetry has been given for 1D spin systems in [X. Chen, Z.-C. Gu, and X.-
G. Wen, Phys. Rev. B 83, 035107 (2011); arXiv:1008.3745]. It was found that, such symmetry
protected topological (SPT) phases are labeled by the projective representations of the symmetry
group which can be viewed as a symmetry fractionalization. In this paper, we extend the classifica-
tion of 1D gapped phases by considering SPT phases with combined time reversal, parity, and/or
on-site unitary symmetries and also the possibility of symmetry breaking. We clarify how symme-
try fractionalizes with combined symmetries and also how symmetry fractionalization coexists with
symmetry breaking. In this way, we obtain a complete classification of gapped quantum phases
in 1D spin systems. We find that in general, symmetry fractionalization, symmetry breaking and
long range entanglement(present in 2 or higher dimensions) represent three main mechanisms to
generate a very rich set of gapped quantum phases. As an application of our classification, we
study the possible SPT phases in 1D fermionic systems, which can be mapped to spin systems by
Jordan-Wigner transformation.

I. INTRODUCTION

Quantum phases of matter with exotic types of order
have continued to emerge over the past decades. Exam-
ples include fractional quantum Hall states1,2, 1D Hal-
dane phase3, chiral spin liquids,4,5 Z2 spin liquids,6–8

non-Abelian fractional quantum Hall states,9–12 quan-
tum orders characterized by projective symmetry group
(PSG),13 topological insulators14–19, etc. Why are there
different orders? What is a general framework to under-
stand all these seemingly very different phases? How to
classify all possible phases and identify new ones? Much
effort has been devoted to these questions, yet the picture
is not complete.

First, we want to emphasize that quantum phase is a
property of a class of Hamiltonians, not of a single Hamil-
tonian. We call such a class of Hamiltonian an H-class.
For an H-class, of a certain dimension and with possible
symmetry constraints, we ask whether the Hamiltonians
in it are separated into different groups by phase tran-
sition and hence form different phases. Two Hamiltoni-
ans in an H-class are in the same/different phase if they
can/cannot be connected within the H-class without go-
ing through phase transition. We see that without identi-
fying the class of Hamiltonians under consideration, it is
not meaningful to ask which phase a Hamiltonian belongs
to. Two Hamiltonians can belong to the same/different
phases if we embed them in different H-classes.

For an H-class with certain symmetry constraints,
one mechanism leading to distinct phases is symme-
try breaking.20,21 Starting from Hamiltonians with the
same symmetry, the ground states of them can have dif-
ferent symmetries, hence resulting in different phases.
This symmetry breaking mechanism for phases and phase
transitions is well understood.20,22

However, it has been realized that systems can be in

different phases even without breaking any symmetry.
Such phases are often said to be ‘topological’ or ‘ex-
otic’. However, the term ‘topological’ in literature ac-
tually refers to two different types of quantum order.

The first type has ‘intrinsic’ topological order. This
type of order is defined for the class of systems without
any symmetry constraint, which corresponds to the origi-
nal definition of ‘topological order’.23,24 That is, it refers
to quantum phases in an H-class which includes all lo-
cal Hamiltonians (of a certain dimension). If we believed
that Landau symmetry breaking theory describes all pos-
sibles phases, this whole H-class would belong to the same
phase as there is no symmetry to break. However, in two
and three dimensions, there are actually distinct phases
even in the H-class that has no symmetries. These phases
have universal properties stable against any small local
perturbation to the Hamiltonian. To change these uni-
versal properties, the system has to go through a phase
transition. Phases in this class include quantum Hall
systems25, chiral spin liquids,4,5 Z2 spin liquids,6–8 quan-
tum double model26 and string-net model27. Ground
states of these systems have ‘long-range entanglement’
as discussed in ??.

The ‘topological’ quantum order of the second type is
‘symmetry protected’. The class of systems under con-
sideration have certain symmetry and the ground states
have only short-range entanglement28, like in the symme-
try breaking case. However unlike in symmetry breaking
phases, the ground states have the same symmetry as
the Hamiltonian and, even so, the ground states can be
in different phases. This quantum order is protected by
symmetry; as according to the discussion in ??, if the
symmetry constraint on the class of systems is removed,
all short-range entangled states belong to the same phase.
Only when symmetry is enforced, can short range en-
tangled states with the same symmetry belong to differ-



2

ent phases. Examples of this type include the Haldane
phase3 and topological insulators.14–19

Phases in these two classes share some similarities. For
example, they both are beyond Landau symmetry break-
ing theory. Also quantum Hall systems and topological
insulators both have stable gapless edge states.29–31 How-
ever, the latter requires symmetry protection while the
former does not.

Despite the similarities, these two classes of topologi-
cal phases are fundamentally different, as we can see from
quantities that are sensitive to long-rang entanglement.
For example, ‘intrinsic’ topological order has a robust
ground state degeneracy that depends on the topology
of the space.23,24 The ground states with ‘intrinsic’ topo-
logical order also have non-zero topological entanglement
entropy32,33 while ground states in ‘symmetry protected’
topological phases are short range entangled and there-
fore have zeros topological entanglement entropy. Also,
the low energy excitations in ‘symmetry protected’ topo-
logical phases do not have non-trivial anyon statistics,
unlike in ‘intrinsic’ topological phases.5,34,35

In the following discussion, we will use ‘topological
phase’ to refer only to the first type of phases (ie ‘intrin-
sic’ topological phases). For the second type, we will call
them ‘Symmetry Protected Topological’ (SPT) phases,
as in Ref. 36. Similar to the quantum orders charac-
terized by PSG,13 different SPT phases are also charac-
terized by the projective representations of the symme-
try group of the Hamiltonian.37 The PSG and projective
representations of a symmetry group can be viewed as a
‘fractionalization’ of the symmetry. Thus, we may say
that different SPT phases are caused by ‘symmetry frac-
tionalization’.

Long-rang entanglement, symmetry fractionalization,
and symmetry breaking represent three different mecha-
nisms to separate phases and can be combined to gener-
ate a very rich quantum phase diagram. Fig. 1 shows a
phase diagram with possible phases generated by these
three mechanisms. In order to identify the kind of quan-
tum order in a system, we first need to know whether
topological orders exist. That is, whether the ground
state has long range entanglement. Next, we need to
identify the symmetry of the system (of the Hamiltonian
and allowed perturbation). Then we can find out whether
all or part of the symmetry is spontaneously broken in
the ground state. If only part is broken, what is the
SPT order due to the fractionalization of the unbroken
symmetry. Combining these data together gives a gen-
eral description of a quantum phase. Most of the phases
studied before involve only one of the three mechanisms.
Examples where two of them coexist can be found in
Ref. 5 and 38 which combine long range entanglement
(the intrinsic topological order) and symmetry breaking
and in Ref. 13, 39–41 which combine long range entangle-
ment and symmetry fractionalization. In fact, the PSG
provides a quite comprehensive framework for symmetry
fractionalization in topologically ordered states.13,39,40

Based on this general understanding of quantum

FIG. 1. (Color online) (a) The possible phases for class of
Hamiltonians without any symmetry. (b) The possible phases
for class of Hamiltonians with some symmetries. Each phase
is labeled by the phase separating mechanisms involved. The
shaded regions in (a) and (b) represent the phases with long
range entanglement. SRE stands for short range entangle-
ment, LRE for long range entanglement, SB for symmetry
breaking, SF for symmetry fractionalization.

phases, we address the following question in this paper:
what quantum phases exist in one-dimensional gapped
spin systems. The systems we consider can have any fi-
nite strength finite range interactions among the spins.

In Ref. 37, we gave a partial answer to this ques-
tion. We first showed that one-dimensional gapped spin
systems do not have non-trivial topological order. So
to understand possible 1D gapped phases, we just need
to understand symmetry fractionalization and symmetry
breaking in short-range entangled states. In other words,
quantum phases are only different because of symmetry
breaking and symmetry fractionalization.

In Ref. 37, we then considered symmetry fractional-
ization, and gave a classification of possible SPT phases
with time reversal, parity and on-site unitary symmetry
respectively. In this paper, we complete the classification
by considering SPT phases of combined time reversal,
parity and/or on-site unitary symmetry and finally in-
corporate the possibility of symmetry breaking. We find
that in 1D gapped spin system with on-site symmetry of
group G, the quantum phase are basically labeled by:
(1) the unbroken symmetry subgroup G′

(2) projective representation of the unbroken part of on-
site unitary and anti-unitary symmetry respectively
(3) ‘projective’ commutation relation between represen-
tations of unbroken symmetries.
Here the projective representation and the ‘projective’
commutation relation represent the symmetry fraction-
alization. Parity is not an on-site symmetry and its SPT
phases are not characterized by projective representa-
tions. The classification involving parity does not fall
into the general framework above, but proceeds in a very
similar way, as we will show in section III. Actually, (2)
and (3) combined gives the projective representation of
G′ and if parity is present, it should be treated as an
anti-unitary Z2 element. Our result is consistent with
those obtained by Schuch et al42.
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Our discussion is based on the matrix product state
representation43,44 of gapped 1D ground states. The ma-
trix product formalism allows us to directly deal with in-
teracting systems and its entangled ground state. In par-
ticular, SPT order of a system can be identified directly
from the way matrices in the representation transform
under symmetries.45

Moreover, symmetry breaking in entangled systems
can be represented in a nice way using matrix product
states.43,44,46 The traditional understanding of symmetry
breaking in quantum systems actually comes from intu-
ition about classical systems. For example, in the ferro-
magnetic phase of classical Ising model, the spins have
to choose between two possible states: either all point-
ing up or all pointing down. Both states break the spin
flip symmetry of the system. However, for quantum sys-
tem, the definition of symmetry breaking becomes a little
tricky. In ferromagnetic phase of quantum Ising model,
the ground space is two fold degenerate with basis states
| ↑↑ ... ↑〉, | ↓↓ ... ↓〉. Each basis state breaks the spin
flip symmetry of the system. However, quantum systems
can exist in any superposition of the basis states and in
fact the superposition 1√

2
| ↑↑ ... ↑〉+ 1√

2
| ↓↓ ... ↓〉 is sym-

metric under spin flip. What is meant when a quantum
system is said to be in a symmetry breaking phase? Can
we understand symmetry breaking in a quantum system
without relying on its classical picture?

In matrix product representation, the symmetry break-
ing pattern can be seen directly from the matrices rep-
resenting the ground state. If we choose the symmetric
ground state in the ground space and write it in matrix
product form, the matrices can be reduced to a block
diagonal ‘canonical form’. The ‘canonical form’ contains
more than one block if the system is in a symmetry break-
ing phase. If symmetry is not broken, it contains only one
block.43,44,46 Hence, the ‘canonical form’ of the matrices
give a nice illustration of the symmetry breaking pattern
of the system. This relation will be discussed in more
detail in section IV.

Our classification is focused on 1D interacting spin sys-
tems, however it also applies to 1D interacting fermion
systems as they are related by Jordan-Wigner transfor-
mation. As an application of our classification result, we
study quantum phases(especially SPT phases) in gapped
1D fermion systems. Our result is consistent with previ-
ous studies.47,48

The paper is organized as follows: in section II, we
review the previous classification results of SPT phases
with time reversal, parity and on-site unitary symme-
try respectively. We also introduce notations for matrix
product representation; in section III, we present classifi-
cation result of SPT phases with combined time reversal,
parity and/or on-site unitary symmetry; in section IV,
we incorporate the possibility of symmetry breaking; in
section V, we apply classification results of spins to the
study of phases in 1D fermion systems; and finally we
conclude in section VI.

II. REVIEW: MATRIX PRODUCT STATES
AND SPT CLASSIFICATION

In Ref. 37, we considered the classification of SPT
phases with time reversal, parity, and on-site unitary
symmetry respectively. Instead of starting from Hamil-
tonians, we classified 1D gapped ground states which do
not break the symmetry of the system. The set of states
under consideration can be represented as short-range
correlated matrix product states and we used the local
unitary equivalence between gapped ground states, which
was established in Ref. 28, to classify phases. Here we
introduce the matrix product representation and give a
brief review of previous classification result and how it
was achieved.

Matrix product states give an efficient representation
of 1D gapped spin states49,50 and hence provide a useful
tool to deal with strongly interacting systems with many-
body entangled ground states. A matrix product states
(MPS) is expressed as

|φ〉 =
∑

i1,i2,...,iN

Tr(Ai1Ai2 ...AiN )|i1i2...iN 〉 (1)

where ik = 1...d with d being the physical dimension of a
spin at each site, Aik ’s are D×D matrices on site k with
D being the inner dimension of the MPS. In our previ-
ous studies37 and also in this paper, we consider states
which can be represented with a finite inner dimension
D and assume that they represent all possible phases in
1D gapped systems. In our following discussion, we will
focus on states represented with site-independent matri-
ces Ai and discuss classification of phases with/without
translational symmetry. Non-translational invariant sys-
tems have in general ground states represented by site
dependent matrices. However, site dependence of matri-
ces does not lead to extra features in the phase classifica-
tion and their discussion involves complicated notation.
Therefore, we will not present the analysis based on site
dependent MPS. A detailed discussion of site dependent
MPS can be found in Ref. 37 and all results in this paper
can be obtained using similar method.

A mathematical construction that will be useful is the
double tensor

Eαγ,βχ =
∑
i

Ai,αβ × (Ai,γχ)∗ (2)

of the MPS. E is useful because it uniquely determines
the a matrix product state up to a local change of basis
on each site44,51. Therefore, all correlation and entangle-
ment information of the state is contained in E and can
be extracted.

First we identify the set of matrix product states that
need to be considered for the classification of SPT phases.
The ground state of SPT phases does not break any sym-
metry of the system and hence is non-degenerate. The
unique ground state must be short-range correlated due
to the existence of gap, which requires that E has a non-
degenerate largest eigenvalue(set to be 1)43,44. This is
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equivalent to an ‘injectivity’ condition on the matrices
Ai. That is, for large enough n, the set of matrices
corresponding to physical states on n consecutive sites
AI = Ai1 ...Ain(I ≡ i1...in) span the space of D × D
matrices44. On the other hand, all MPS satisfying this
injectivity condition are the unique gapped ground states
of a local Hamiltonian which has the same symmetry43,44.
Therefore, we only need to consider states in this set.

The symmetry of the system and hence of the ground
state sets a non-trivial transformation condition on the
matrices Ai. With on-site unitary symmetry of group G,
for example, the Ai’s transform as45,52∑

j

u(g)ijAj = α(g)R−1(g)AiR(g) (3)

where u(g) is a linear representation of G on the phys-
ical space, α(g) is a one-dimensional representation of
G. One important realization from this equation is that,
in order to satisfy this equation, R(g) only has to satisfy
the multiplication rule of group G up to a phase factor45.
That is, R(g1g2) = ω(g1, g2)R(g1)R(g2), |ω(g1, g2)| = 1.
ω(g1, g2) is called the factor system. R(g) is hence a pro-
jective representation of group G and belongs to different
equivalence classes labeled by the elements in the second
cohomology group of G, {ω|ω ∈ H2(G,C)}.

We showed in Ref. 37 that two matrix product states
symmetric under G are in the same SPT phase if and only
if they are related to R(g) in the same equivalence class
ω. For two states with equivalent R(g), we constructed
explicitly a smooth path connecting the Hamiltonian for
the first state to that for the second state without clos-
ing the gap or breaking the symmetry of the system. In
this way, we gave a ‘local unitary transformation’ as de-
fined in Ref. 28 connecting the two state and showed that
they are in the same SPT phase. On the other hand, for
two states associated with inequivalent R(g), we showed
that no ‘local unitary transformation’ could connect them
without breaking the symmetry. Therefore, they belong
to different SPT phases.

If translation symmetry is required in addition to sym-
metry G, α(g) is also a good quantum number and can-
not be changed without breaking translation symme-
try. Therefore, SPT phases with on-site unitary symme-
try and translation symmetry are labeled by {α(g), ω},
where α(g) is a one-dimensional representation of G and
ω is an element in H2(G,C).

The projective representation can be interpreted in
terms of boundary spins. A representative state in the
phase labeled by {α(g), ω} can be given as in Fig.2. Each
box represents one site, containing four spins. The sym-
metry transformations on the two black spins form pro-
jective representations of G, belonging to class ω, ω′ re-
spectively. The factor systems of the two classes are re-
lated by ω(g1, g2)×ω′(g1, g2) = 1, that is ω′ = ω∗. There-
fore, the inter-site black pair can form a singlet under
symmetry G. Suppose that the pair forms a 1D repre-
sentation α1(g) of G. The on-site white pair also forms
a 1D representation α2(g) of G. α1(g)α2(g) = α(g). It

FIG. 2. (Color online) Representative states for different
SPT phases. Each box represents one site, containing four
spins. Every two connected spins form an entangled pair.

can be checked that, if written in matrix product repre-
sentation, the matrices satisfy condition 3. Now look at
any finite segment of the chain. There are unpaired black
spins at each end of the chain, transforming under G as
projective representation ω and ω∗. Different ω cannot
be smoothly mapped to each other if the on-site linear
symmetry is maintained. Therefore, by looking at the
boundary of a finite chain, we can distinguish different
SPT phases with on-site unitary symmetry.

For projective representations in the same class, we can
always choose the phases ofR(g) such that ω(g1, g2) is the
same. In the following discussion we will always assume
that ω(g1, g2) is fixed for each class and the phase of R(g)
is chosen accordingly. But this does not fix the phase of
R(g) completely. For any 1D linear representation α̃(g),
α̃(g)R(g) always has the same factor system ω(g1, g2) as
R(g). This fact will be useful in our discussion of the
next section.

The classifications for SPT phases with time reversal
and parity symmetry proceed in a similar way.

For time reversal, the physical symmetry operation is
T = v ⊗ v...⊗ vK, where K is complex conjugation and
v is an on-site unitary operation satisfying vv∗ = I, that
is T 2 = I on each site. (We showed in Ref. 37 that if
T 2 = −I on each site, there are no gapped symmetric
phases with translation symmetry. Without translation
symmetry, it is equivalent to the T 2 = I case.) The
symmetry transformation of matrices Ai is∑

j

vijA
∗
j = M−1AiM (4)

where M satisfies MM∗ = β(T )I = ±I. It can be shown,
in a way similar to the on-site unitary case, that states
with the same β(T ) can be connected with local unitary
transformations that do not break time reversal symme-
try while states with different β(T ) cannot. Therefore,
β(T ) labels the two SPT phases for time reversal symme-
try. We can again understand this result using boundary
spins. Time reversal on the boundary spin can be de-
fined as T̂ = MK. It squares to ±I depending on β(T ).
Therefore, while time reversal acting on the physical spin
at each site always squares to I, it can act in two differ-
ent ways on the boundary spin, hence distinguishing two
phases. T̂ = MK forms a projective representation of
time reversal on the boundary spin, with T̂ 2 = ±I. The
result is unchanged if translational symmetry is required.

For parity symmetry, the physical symmetry operation
is P = w⊗w...⊗wP1, where P1 is exchange of sites and w
is on-site unitary satisfying w2 = 1. As parity symmetry
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cannot be established in disordered systems, we will al-
ways assume translation invariance when discussing par-
ity. The symmetry transformation of matrices Ai is∑

j

wijA
T
j = α(P )N−1AiN (5)

where α(P ) = ±1 labels parity even/odd and NT =
β(P )N = ±N . The four SPT phases are labeled by
{α(P ), β(P )}. A representative state can again be con-
structed as in Fig.2. The black spins form an entangled
pair (N⊗I)

∑
i |i〉⊗|i〉, i = 1...D, D being the dimension

of N . (|i〉 ⊗ |j〉 denotes a product state of two spins in
state |i〉 and |j〉 respectively. This is equivalent to no-
tation |i〉|j〉 and |ij〉 in different literatures.) The white
spins form an entangled pair |0〉⊗|1〉+α(P )β(P )|1〉⊗|0〉.
Parity is defined as reflection of the whole chain. It can
be checked that if written as matrix product states, the
matrices satisfy condition Eq.5 and parity of the black
pair is determined by β(P ). Therefore, β(P ) can be in-
terpreted as even/oddness of parity between sites and
α(P ) represents total even/oddness of parity of the whole
chain.

III. CLASSIFICATION WITH COMBINED
SYMMETRY

In this section we are going to consider the classifica-
tion of SPT phases with combined translation, on-site
unitary, time reversal, and/or parity symmetry in 1D
gapped spin systems. The ground state does not break
any of the combined symmetry and can be described as
a short-range correlated matrix product state. For each
combination of symmetries, we are going to list all possi-
ble SPT phases and give a label and representative state
for each of them. In the end of this section, we comment
on the general scheme to classify SPT phases with all
possible kinds of symmetries in 1D gapped spin systems.

A. Parity + On-site G

Consider a system symmetric under both parity P =
w ⊗ w... ⊗ wP1 and on-site unitary of group G u(g) ⊗
u(g)...⊗u(g). Eq.3 and 5 give transformation rules of ma-
trices Ai under the two symmetries separately in terms
of α(g), R(g), α(P ), N . α(g) labels the 1D representa-
tion the state forms under G, R(g) ∈ ω is the projective
representation of G on the boundary spin, α(P ) labels
parity even or odd and NT = β(P )N = ±N corresponds
to parity even/odd between sites.

Moreover, parity and on-site u(g) commute. First, it
is easy to see that P1 and u(g)⊗u(g)...⊗u(g) commute.
Therefore, P2 = w ⊗ w... ⊗ w must also commute with
u(g) ⊗ u(g)... ⊗ u(g). WLOG, we will consider the case
where w and u(g) commute, wu(g) = u(g)w. This leads
to certain commutation relation between N and R(g) as
shown below.

If we act parity first and on-site symmetry next, the
matrices are transformed as

Ai
P−→ A′i =

∑
j wijA

T
j = α(P )N−1AiN

A′i
G−→ A′′i =

∑
j uij(g)A′j

= α(P )N−1
(∑

j uijAj

)
N

= α(g)α(P )N−1R−1(g)AiR(g)N

(6)

Combining the two steps together we find that∑
j

∑
k

uij(g)wjkA
T
k = α(g)α(P )N−1R−1(g)AiR(g)N

(7)
If on-site symmetry is acted first and then parity follows,
the matrices are transformed as

Ai
G−→ A′i =

∑
j uij(g)Aj = α(g)R−1(g)AiR(g)

A′i
P−→ A′′i =

∑
j wij(A

′)Tj
= α(g)RT (g)(

∑
j wijA

T
j )(RT )−1(g)

= α(P )α(g)RT (g)N−1AiNR
∗(g)

(8)

The combined operation is then∑
j

∑
k

wijujk(g)ATk = α(P )α(g)RT (g)N−1AiNR
∗(g)

(9)
Because w and u(g) commute,

∑
j uij(g)wjk =∑

j wijujk(g). Therefore, the combined operation in Eq.
7 and 9 should be equivalent.

N−1R−1(g)AiR(g)N = RT (g)N−1AiNR
∗(g) (10)

This condition is derived for matrices on each site, i =
1...d. However, it is easy to verify that it also holds if n
consecutive sites are combined together with representing
matrices AI = Ai1Ai2 ...Ain .

N−1R−1(g)AIR(g)N = RT (g)N−1AINR∗(g) (11)

As AI is injective(spans the whole space of D × D ma-
trices), we find R(g)NRT (g)N−1 ∝ I. That is

N−1R(g)N = eiθ(g)(RT )−1(g) = eiθ(g)R∗(g) (12)

Different eiθ(g) corresponds to different ‘projective’ com-
mutation relations between parity and on-site unitary. It
must satisfy certain conditions. As

N−1R(g1g2)N = eiθ(g1g2)R∗(g1g2)
= eiθ(g1g2)ω−1(g1, g2)R∗(g1)R∗(g2)

N−1R(g1g2)N = ω(g1, g2)N−1R(g1)NN−1R(g2)N
= ω(g1, g2)eiθ(g1)R∗(g1)eiθ(g2)R∗(g2)

(13)
Therefore

eiθ(g1g2)e−iθ(g1)e−iθ(g2) = ω2(g1, g2) (14)

Hence, ω2 must be trivial. WLOG, assume that the fac-
tor systems we have chosen(as discussed in section II)
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satisfy ω2 = 1 and eiθ(g) forms a linear representation of
G, denoted by γ(g).

Let us interpret this result.
First we see that the combination of parity with on-

site G restricts the projective representation that can be
realized on the boundary spin to those ω that square to
identity. This can be clearly seen from the structure of
the representative state as in Fig.2. Because of on-site
symmetry G, the left and right black spin in a pair form
projective representation in class ω and ω∗ respectively.
If the chain has further reflection symmetry, ω∗ = ω and
therefore ω2 = 1. However, if ω2 6= 1, then ω∗ 6= ω. The
chain has a direction and cannot have reflection symme-
try.

Different γ(g) corresponds to different ‘projective’
commutation relation between parity and on-site G on
the boundary spin. For example, suppose G = Z2. Con-
sider the state as in Fig.2 where each black pair consists
of two qubits. Suppose that parity on the black pair is
defined as exchanged of the two qubits(P1) and unitary
operation P2 = Z⊗Z on the two qubits. Z2 symmetry on
the pair can be defined as Z ⊗ Z or X ⊗X. They both
commute with parity. However, if we only look at one
end of pair, Z2 either commute or anti-commute with
P2. Hence these two cases correspond to two different
γ(Z2). Because of this, the two phases cannot be con-
nected without breaking the symmetry group generated
by parity and Z2.

However, γ(g) can be changed by changing the phase
of R(g). Remember that the phase of R(g) is only deter-
mined(by fixing ω) up to a 1D representation, α̃(g). From
Eq.12, we can see that if the phase of R(g) is changed
by α̃(g), γ(g) is changed to γ(g)/α̃2(g). Therefore, γ(g)
and γ′(g) which differ by the square of another 1D repre-
sentation α̃(g) are equivalent. On the other hand, for a
fixed ω(ω2 = 1) any γ(g) can be realized as the ‘projec-
tive’ commutation relation, as we will show in Appendix
B.

Therefore, with commuting parity and on-site unitary
symmetry, SPT phases in 1D spin chain can be classified
by the following data:

1. α(P ), parity even/odd;

2. β(P ), parity even/odd between sites;

3. α(g), 1D representation of G;

4. ω, projective representation of G on boundary spin,
ω2 = 1;

5. γ(g) ∈ G/G2, 1D representation of G related to
commutation relation between parity and on-site
G, where G is the group of 1D representation of G,
G2 is the group of 1D representation squared of G.

Following the method used in Appendix G of Ref. 37,
we can show that states symmetric under parity and on-
site G are in the same SPT phase if and only if they are
labeled by the same set of data as given above. We will
not repeat the proof here.

FIG. 3. (Color online) Representative states for different
SPT phases. Each box represents one site, containing six
spins. Every two connected spins form an entangled pair.

A representative state for each phase labeled by α(P ),
β(P ), α(g), ω and γ(g) can be constructed as in Fig.3.
We will describe the state of each pair and how it trans-
forms under symmetry operations. The parameters de-
scribing the state will then be related to the phase labels.

Each entangled pair is invariant under P and on-site
G. First, the on-site white pair forms 1D representations
η(P ) and η(g) of parity and G. For projective representa-
tion class ω that satisfies ω2 = 1 and any 1D representa-
tion λ(g), we show in appendix A and B that there always
exist projective representation R(g) ∈ ω and symmetric
matrix N(NT = N) such that N−1R(g)N = λ(g)R∗(g).
Suppose that R(g) and N are D-dimensional matrices,
choose the inter-site black pair to be composed of two
D-dimensional spins. Define parity on this pair to be ex-
change of two spins and define on-site symmetry to be
R(g)⊗R(g). If the state of the black pair is chosen to be
(N ⊗ I)

∑
i |i〉 ⊗ |i〉, i = 1, ..., D, it is easy to check that

it is parity even, forms 1D representation λ(g) for on-
site G and contains projective representation ω at each
end. Finally, define the state of the inter-site grey pair
to be |0〉 ⊗ |1〉 + ρ(P )|1〉 ⊗ |0〉, ρ(P ) = ±1. Parity acts
on it as exchange of spins. On-site G acts trivially on it.
The 1D spin state constructed in this way is symmetric
under parity and on-site unitary G and belongs to the
SPT phase labeled by α(P ) = η(P )ρ(P ), β(P ) = ρ(P ),
α(g) = η(g)λ(g), ω, and γ(g) = λ(g).

Finally, we consider some specific case.

1. For translation+parity+SO(3), there are 2 × 2 ×
1× 2× 1 = 8 types of phases

2. For translation+parity+D2, there are 2 × 2 × 4 ×
2× 4 = 128 types of phases

B. Time reversal + On-site G

Now consider a 1D spin system symmetric under both
time reversal T = v ⊗ v... ⊗ vK and on-site unitary
u(g) ⊗ u(g)... ⊗ u(g). On each site, T 2 = vv∗ = I and
u(g) forms a linear representation of G. Eq. 3 and 4 are
satisfied due to the two symmetries separately with some
choice of α(g), R(g), and M . α(g) labels the 1D represen-
tation the state forms under G, R(g) ∈ ω is the projective

representation of G on the boundary spin, and T̂ = MK
is the time reversal operator on the boundary spin which
squares to β(T )I = ±I. Note that while T̂ 2 = ±I on the
boundary spin, T always square to I on the physical spin
at each site.
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Moreover, the two symmetries commute, i.e. u(g)v =
vu∗(g). This leads to non-trivial relations between R(g)
in Eq.3 and M in Eq.4. In particular, suppose we act G
first followed by T , the matrices Ai transform as,

Ai
G−→ A′i =

∑
j uij(g)Aj = α(g)R−1(g)AiR(g)

A′i
T−→ A′′i =

∑
j vij(A

′)∗j
= α∗(g)(R∗)−1(g)(

∑
j vijA

∗
j )R

∗(g)

= α∗(g)(R∗)−1(g)M−1AiMR∗(g)

(15)

Acting T first followed by G gives

Ai
T−→ A′i =

∑
j vijA

∗
j = M−1AiM

A′i
G−→ A′′i =

∑
j uij(g)A′j

= M−1(
∑
j uij(g)Aj)M

= α(g)M−1R−1(g)AiR(g)M

(16)

Because u(g)v = vu∗(g), the previous two transforma-
tions should be equivalent. That is

α∗(g)(R∗)−1(g)M−1AiMR∗(g) =
α(g)M−1R−1(g)AiR(g)M

(17)

Denote Q = MR∗M−1R−1. It follows that Ai =
α2(g)QAiQ

−1. Suppose that the MPS is injective with
blocks larger than n sites, hence AI = Ai1Ai2 ...Ain satis-
fies AI = α2n(g)QAIQ−1. But AI spans the whole space
of D ×D matrices, therefore Q ∝ I. That is

M−1R(g)M = eiθ(g)R∗(g) (18)

Moreover, it follows from Eq.17 that α2(g) = 1. That is,
the 1D representation of G must have order 2.

Similar to the parity + on-site G case, we find, ω2 = 1,
and eiθ(g) form a 1D representation, denoted by γ(g).
Two γ(g)’s that differ by the square of a third 1D repre-
sentation are equivalent.

Therefore, different phases with translation, time re-
versal, and on-site G symmetries are labeled by

1. β(T ), T̂ 2 = ±I on the boundary spin

2. α(g), 1D representation of G, α2(g) = 1.

3. ω, projective representation of G on boundary spin,
ω2 = 1.

4. γ(g) ∈ G/G2,1D representation of G related to com-
mutation relation between time reversal and on-site
G, where G is the group of 1D representation of G,
G2 is the group of 1D representation squared of G.

Representative states are again given by Fig.3. On-
site white pair forms 1D representation η(g) for G and
is invariant under T . Similar to the parity+on-site sym-
metry case, we can show that for any ω(ω2 = 1) and
1D representation λ(g) there exist D-dimensional pro-
jective representation R(g) ∈ ω and matrix M such that
MM∗ = I and M−1R(g)M = λ(g)R∗(g). Choose the
inter-site black pair to be composed of twoD-dimensional

spins. Define time reversal on this pair to be (M ⊗M)K
and define on-site symmetry to be R(g) ⊗ R(g). If the
state of the black pair is chosen to be (M⊗I)

∑
i |i〉⊗|i〉,

i = 1, ..., D, it is easy to check that it is invariant un-
der time reversal and forms 1D representation λ(g) for
G and contains projective representation ω at each end.
Finally, define the state of the inter-site grey pair to be
|0〉⊗|1〉+ρ(T )|1〉⊗|0〉, ρ(T ) = ±1. Time reversal acts on
it as (|0〉〈1|+ρ(T )|1〉〈0|)⊗(|0〉〈1|+ρ(T )|1〉〈0|)K. On-site
G acts trivially on it. The 1D spin state constructed as
this is symmetric under time reversal and on-site unitary
G and belongs to the SPT phase labeled by β(T ) = ρ(T ),
α(g) = η(g)λ(g), ω, and γ(g) = λ(g).

Applying the general classification result to specific
cases we find

1. For Translation+T+SO(3), there are 2×1×2×1 =
4 types of phases

2. For Translation+T+D2, there are 2×4×2×4 = 64
types of phases

If translation symmetry is not required, different
phases with time reversal and on-site G symmetries are
labeled by

1. β(T ), time reversal even/odd on the boundary spin

2. ω, projective representation of G on boundary spin,
ω2 = 1.

3. γ(g) ∈ G/G2,1D representation of G related to com-
mutation relation between time reversal and on-site
G, where G is the group of 1D representation of G,
G2 is the group of 1D representation squared of G.

α(g) can no longer be used to distinguish different phases.
We find

1. For T + SO(3), there are 2 × 2 × 1 = 4 types of
phases

2. For T +D2, there are 2×2×4 = 16 types of phases

C. Parity + Time reversal

When parity is combined with time reversal, what SPT
phases exist in 1D gapped spin systems? First we realize
that due to parity and time reversal separately, different
SPT phases exist labeled by different α(P ), β(P ), β(T )
as defined in Eq.4 and 5. α(P ) labels parity even or odd,

β(P ) labels parity even/odd between sites, and T̂ 2 =
β(T )I on the boundary spin.

Does the commutation relation between parity and
time reversal give more phases? The combined opera-
tion of parity first and time reversal next gives

Ai
P−→ A′i =

∑
j wijA

T
j = α(P )N−1AiN

A′i
T−→ A′′i =

∑
j vij(A

′)∗j
= α(P )(N−1)∗(

∑
j vijA

∗
j )N

∗

= α(P )(N−1)∗M−1AiMN∗

(19)
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and the operation with time reversal first and parity next
gives

Ai
T−→ A′i =

∑
j vijA

∗
j = M−1AiM

A′i
P−→ A′′i =

∑
j wij(A

′)Tj
= MT (

∑
j wijA

T
j )(MT )−1

= α(P )MTN−1AiN(MT )−1

(20)

As parity and time reversal commute, wv = vw∗. The
above two operations should be equivalent.

(N−1)∗M−1AiMN∗ = MTN−1AiN(MT )−1 (21)

As Ai is injective, MN∗MTN−1 ∝ I. That is

MN†MN† = eiθI (22)

But eiθ can be set to be 1 by changing the phase of M
or N , therefore, the commutation relation does not lead
to more distinct phases.

There are hence eight SPT phases with both parity
and time reversal symmetry, labeled by

1. α(P ), parity even/odd;

2. β(P ), parity even/odd between sites;

3. β(T ), T̂ 2 = ±I on boundary spins.

The representative states of each phase can be given as
in Fig.3. Each pair of spins forms a 1D representation
of parity and time reversal. The on-site white pair is
in the state |0〉 ⊗ |1〉 + η(P )|1〉 ⊗ |0〉 with η(P ) = ±1.
Parity on this pair is defined as exchange of spins and
time reversal as K. Therefore, this pair has parity η(P )
and is invariant under T . The inter-site black pair is
in the state |0〉 ⊗ |1〉 + λ|1〉 ⊗ |0〉 with λ = ±1. Par-
ity acts on it as exchange of spins and time reversal as
(|0〉〈1| + λ|1〉〈0|) ⊗ (|0〉〈1| + λ|1〉〈0|)K. This pair there-
fore has parity λ(P ) = λ and is invariant under time
reversal. Time reversal on one of the spins square to
λ(T )I = λI. Finally, the inter-site grey pair is in state
|0〉 ⊗ |1〉 + ρ(P )|1〉 ⊗ |0〉 with ρ(P ) = ±1. Parity on
this pair is defined as exchange of spins and time re-
versal as K. Therefore this pair has parity ρ(P ) and is
invariant under T . Time reversal on one of the spins
square to I. This state is in the SPT phase labeled by
α(P ) = η(P )λ(P )ρ(P ), β(P ) = λ(P )ρ(P ), β(T ) = λ(T ).

D. Parity + Time reversal + On-site G

Finally we put parity, time reversal and on-site unitary
symmetry together and ask how many SPT phases exist
if the ground state does not break any of the symmetries.
From Eq. 3, 4, 5, we know that due to the three symme-
tries separately, states with different α(g), ω, α(P ), β(P ),
β(T ) belong to different SPT phases. α(g) labels the 1D
representation the state forms under G, ω is the pro-
jective representation of G on the boundary spin, α(P )

labels parity even or odd, β(P ) labels parity even/odd

between sites, and T̂ 2 = β(T )I on the boundary spin.
Moreover, the commutation relation between parity,

time reversal and on-site G yields further conditions. The
commutation relation between parity and on-site G con-
strains ω2 = 1 and gives,

N−1R(g)N = γ(g)R∗(g) (23)

γ(g) is a 1D representation of G. γ1(g) and γ2(g) corre-
spond to different SPT phases if and only if they are not
related by the square of a third 1D representation. The
commutation relation between time reversal and on-site
G constrains α2(g) = 1 and gives,

M−1R(g)M = γ′(g)R∗(g) (24)

γ′(g) is a 1D representation of G. γ′1(g) and γ′2(g) corre-
spond to different SPT phases if and only if they are not
related by the square of a third 1D representation. The
commutation relation between time reversal and parity
gives,

MN†MN† ∝ I (25)

which is equivalent to, because NT = ±N and MT =
±M ,

MN∗ ∝ NM∗ (26)

Therefore, MN∗ and NM∗ conjugating R(g) should give
the same result

(MN∗)R(g)(MN∗)−1 = γ(g)MR∗(g)M−1

= γ(g)/γ′(g)R(g)
(27)

On the other hand,

(NM∗)R(g)(NM∗)−1 = γ′(g)NR∗(g)N−1

= γ′(g)/γ(g)R(g)
(28)

As R(g) is nonzero, γ′(g) = ±γ(g).
γ(g) and γ′(g) are hence related by a 1D representation

χ(g) which squares to 1. As shown in Appendix C, for
fixed ω, if N and R(g) exist that satisfy N−1R(g)N =
γ(g)R∗(g), then any choice of γ′(g) = χ(g)γ(g)(χ2(g) =
1) can be realized. The freedom in χ(g) is G/G2. Con-
sidering the degree of freedom in choosing γ(g), the total
freedom in {γ(g), γ′(g)} is (G/G2)× (G/G2).

The SPT phases with parity, time reversal and on-site
unitary symmetries are labeled by

1. α(g), 1D representation of G, α2(g) = 1;

2. ω, projective representation of G on boundary spin,
ω2 = 1;

3. α(P ), parity even/odd;

4. β(P ), parity even/odd between sites;

5. β(T ), T̂ 2 = ±I on the boundary spin;
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6. {γ(g), γ′g} ∈ (G/G2) × (G/G2), 1D representations
of G, related to commutation relation between time
reversal, parity and on-site G.

Representative states can be constructed as in Fig.3.
Each pair is invariant(up to phase) under G, T and P .
White pair: forms a 1D representation η(g) of G, η(P )

of P and is invariant under time reversal.
Black pair: G acts non-trivially on it as R(g) ⊗ R(g).

R(g) is a D-dimensional projective representation and
belongs to class ω. According to appendices A, B and
C, for any 1D representation λ(g) and order 2 1D rep-
resentation χ(g), we can find matrices N and M such
that NT = N , N−1R(g)N = λ(g)R∗(g), MM∗ = I,
M−1R(g)M = λ′(g)R∗(g) = χ(g)λ(g)R∗(g), MN∗ =
NM∗. Now set the state of this pair to be N

∑
i |i〉⊗ |i〉,

where i = 1...D. Define parity as exchange of sites and
time reversal as (M ⊗M)K. It can be checked that the
state forms a 1D representation λ(g) for G, has even par-
ity and is invariant under time reversal. Time reversal
squares to I at each end.

Grey pair: G acts trivially on it. The pair is in state
|0〉 ⊗ |1〉+ ρ(P )|1〉 ⊗ |0〉 with ρ(P ) = ±1. Parity on this
pair is defined as exchange of spins and time reversal as
(Y ⊗Y )(ρ(T )+1)/2K with ρ(T ) = ±1. Therefore this pair
has parity ρ(P ) and is invariant under T . Time reversal
on one of the spins square to ρ(T )I.

This state is representative of the SPT phase labeled
by α(g) = η(g)λ(g), ω, α(P ) = η(P )ρ(P ), β(P ) = ρ(P ),
β(T ) = ρ(T ), γ(g) = λ(g), γ′(g) = λ′(g).

When G = SO(3) or G = D2, the classification result
gives:

1. For translation+T + P + SO(3), there are 1× 2×
2× 2× 2× (1× 1) = 16 types of phases

2. For translation+T + P +D2, there are 4× 2× 2×
2× 2× (4× 4) = 1024 types of phases

In table I, we summarize the results obtained above
and in Ref. 37.

E. General classification for SPT phases

Besides the cases discussed above, it is possible to have
other types of symmetries in 1D spin systems. For ex-
ample, there could be systems where time reversal and
parity are not preserved individually but the combined
action of them together defines a symmetry of the sys-
tem. The general rule for classifying SPT phases un-
der any symmetry is to classify all the projective rep-
resentations of the total symmetry group, where on-site
unitary symmetries should be represented with unitary
matrices, on-site anti-unitary symmetries should be rep-
resented with anti-unitary matrices, and parity should
be represented with anti-unitary matrices. Moreover, if
translational symmetry is present, another independent
label for SPT phases exists which corresponds to different

Symmetry of Hamiltonian Number of Different Phases

None 1
SO(3) 2
D2 2
T 2

SO(3) + T 4
D2 + T 16

Trans. +U(1) ∞
Trans. +SO(3) 2

Trans. +D2 4× 2 = 8

Trans. + P 4
Trans. + T 2

Trans. + P + T 8

Trans. +SO(3) + P 8
Trans. +D2 + P 128

Trans. +SO(3) + T 4
Trans. +D2 + T 64

Trans. +SO(3) + P + T 16
Trans. +D2 + P + T 1024

TABLE I. Numbers of different 1D gapped quantum phases
that do not break any symmetry. T stands for time rever-
sal, P stands for parity, and Trans. stands for translational
symmetry.

1D representations of the total symmetry group. In cal-
culating this label, the representation of the total symme-
try group is slightly different from the one for calculating
projective representations. In particular, parity should
be represented unitarily, i.e. as a complex number, while
on-site unitary/anti-unitary symmetries should still be
represented unitarily/anti-unitarily.

IV. CLASSIFICATION WITH SYMMETRY
BREAKING

In Ref. 37 and previous sections we have only con-
sidered 1D gapped phases whose ground state does not
break any symmetry and hence is non-degenerate. These
SPT phases correspond to one section(labeled ‘SF’ in
Fig.1) in the phase diagram for short range entangled
states. Of course apart from SPT phases, there are
symmetry breaking phases. It is also possible to have
phases where the symmetry is only partly broken and
the non-broken symmetry protects non-trivial quantum
order. In this section, we combine symmetry breaking
with symmetry protection and complete the classification
for gapped phases in 1D spin systems. We find that 1D
gapped phases are labeled by (1) the unbroken symmetry
subgroup (2) SPT order under the unbroken subgroup.
This result is the same as that in Ref. 42.
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A. Matrix product representation of symmetry
breaking

Before we try to classify, we need to identify the class of
systems and their gapped ground states that are under
consideration. As we briefly discussed in the introduc-
tion, while the meaning of symmetry breaking is straight
forward in classical system, this concept is more subtle in
the quantum setting. A classical system is in a symme-
try breaking phase if each possible ground state has lower
symmetry than the total system. For example, the clas-
sical Ising model has a spin flip symmetry between spin
up | ↑〉 and spin down | ↓〉 which neither of its ground
states | ↑↑ ... ↑〉 and | ↓↓ ... ↓〉 have. However, in quan-
tum Ising model H =

∑
<i,j>−σizσjz, the ground space

contains not only these two states, but also any superpo-
sition of them, including the state | ↑↑ ... ↑〉 + | ↓↓ ... ↓〉
which is symmetric under spin flip. This state is called
the ‘cat’ state or the GHZ state in quantum information
literature. In fact, if we move away from the exactly
solvable point by adding symmetry preserving perturba-
tions(such as transverse field Bx

∑
i σ

i
x) and solve for the

ground state at finite system size, we will always get a
state symmetric under spin flip. Only in the thermody-
namic limit does the ground space become two dimen-
sional. How do we tell then whether the ground states of
the system spontaneously break the symmetry?

With matrix product representation, the symme-
try breaking pattern can be easily seen from the
matrices.43,44,46 Suppose that we solved a system with
certain symmetry at finite size and found a unique mini-
mum energy state which has the same symmetry. To see
whether the system is in symmetry breaking phase, we
can write this minimum energy state in matrix product
representation. The matrices in the representation can
be put into a ‘canonical’ form44 which is block diagonal

Ai =

A
(0)
i

A
(1)
i

. . .

 (29)

where the double tensor for each block E(k) =
∑
iA

(k)
i ⊗

(A
(k)
i )∗ has a non-degenerate largest eigenvalue λi. If

in the thermodynamic limit, the canonical form contains
only one block, this minimum energy state is short range
correlated and the system is in a symmetric phase as
discussed in Ref. 37 and the previous section. However,
if the canonical form splits into more than one block with
equal largest eigenvalue(set to be 1) when system size
goes to infinity, then we say the symmetry of the system
is spontaneously broken in the ground states.

The symmetry breaking interpretation of block diag-
onalization of the canonical form can be understood as
follows. Each block of the canonical form A

(k)
i repre-

sents a short range correlated state |ψk〉. Note that
here by correlation we always mean connected correla-
tion < O1O2 > − < O1 >< O2 >. Therefore, the

symmetry breaking states | ↑↑ ... ↑〉 and | ↓↓ ... ↓〉
both have short range correlation. Two different short
range correlated states |ψk〉 and |ψk′〉 have zero over-
lap 〈ψk′ |ψk〉 = 0 and any local observable has zero ma-
trix element between them 〈ψk′ |O|ψk〉 = 0. The ground
state represented by Ai is an equal weight superposi-
tion of them |ψ〉 =

∑
k |ψk〉. Actually the totally mixed

state ρ =
∑
k |ψk〉〈ψk| has the same energy as |ψ〉 as

〈ψk′ |H|ψk〉 = 0 for k′ 6= k. Therefore, the ground space
is spanned by all |ψk〉’s. Consider the operation which
permutes |ψk〉’s. This operation keeps ground space in-
variant and can be a symmetry of the system. However,
each short range correlated ground state is changed un-
der this operation. Therefore, we say that the ground
states spontaneously break the symmetry of the system.

This interpretation allows us to study symmetry break-
ing in 1D gapped systems by studying the block diagonal-
ized canonical form of matrix product states. Actually, it
has been shown that for any such state a gapped Hamil-
tonian can be constructed having the space spanned by
all |ψk〉’s as ground space46. Therefore, we will focus on
finite dimensional matrix product states in block diago-
nal canonical form for our classification of gapped phases
involving symmetry breaking.

B. Classification with combination of symmetry
breaking and symmetry fractionalization

We will consider class of systems with certain symme-
try and classify possible phases. For simplicity of nota-
tion, we will focus on on-site unitary symmetry. With
slight modification, our results also apply to parity and
time reversal symmetry and their combination. Suppose
that the system has on-site symmetry of group G which
acts as u(g)⊗ u(g)...⊗ u(g). It is possible that this sym-
metry is not broken, totally broken or partly broken in
the ground state. In general, suppose that there is a
short range correlated ground state |ψ0〉 that is invari-
ant under only a subgroup G′ of G. Of course, different
G′’s represent different symmetry breaking patterns and
hence lead to different phases. Moreover, |ψ0〉 could have
different symmetry protected order under G′ which also
leads to different phases. In the following we are going
to show that these two sets of data: (1) the invariant
subgroup G′ and (2) the SPT order under G′ describe all
possible 1D gapped phases. Specifically we are going to
show that if two systems symmetric under G have short
range correlated ground states |ψ0〉 and |ψ̃0〉 which are

invariant under the same subgroup G′ and |ψ0〉 and |ψ̃0〉
have the same symmetry protected order under G′, then
the two systems are in the same phase. We are going to
construct explicitly a path connecting the ground space
of the first system to that of the second system without
closing gap and breaking the symmetry of the system.

Assume that |ψ0〉 has a D-dimensional MPS represen-
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tation A
(0)
i which satisfies∑

ij

u(g′)ijA
(0)
j = α(g′)M−1(g′)A

(0)
i M(g′) (30)

where g′ ∈ G′, α(g′) is a 1D representation of G′ and
M(g′) form a projective representation of G′.

Suppose that {h0, h1, ..., hm} are representatives from
each of the cosets of G′ in G, h0 ∈ G′. Define |ψk〉 =
u(hk) ⊗ u(hk) ⊗ ... ⊗ u(hk)|ψ0〉, k = 1, ...,m. |ψk〉 are
hence each short-range correlated and orthogonal to each
other. The ground space of the system is spanned by

|ψk〉. The MPS representation of |ψk〉 is then A
(k)
i =∑

j u(hk)ijA
(0)
j , which satisfies similar symmetry condi-

tions∑
ij

u(hkg
′h−1k )ijA

(k)
j = α(g′)M−1(g′)A

(k)
i M(g′) (31)

To represent the whole ground space, put all A
(k)
i into

a block diagonal form and define

Ai =

A
(0)
i

. . .

A
(m)
i

 (32)

The state represented by Ai is then the superposition
of all |ψk〉, which is equivalent to the maximally mixed
ground state with respect to any local observable.

Under any symmetry operation g ∈ G, Ai changes as∑
j

u(g)ijAj = P (g)Θ(g)Q(g)AiQ
−1(g)P−1(g) (33)

where

Θ(g) =

α(g′g,0)
. . .

α(g′g,m)

⊗ In (34)

P (g) = p(g)⊗ In (35)

with p(g) m×m permutation matrices and form a linear
representation of G.

Q(g) =

M(g′g,0)
. . .

M(g′g,m)

 (36)

To classify phases, we first deform the state into a sim-
pler form by using the double tensor.

Define the double tensor for the whole state as

E =
∑
i

Ai ⊗A∗i (37)

As Ai = ⊕kA(k)
i

E = (⊕kE(k))⊕ (⊕k 6=k′E(kk′)) (38)

where E(k) =
∑
iA

(k)
i ⊗ (A

(k)
i )∗, E(kk′) =

∑
iA

(k)
i ⊗

(A
(k′)
i )∗. As A

(k)
i for different k only differ by a lo-

cal unitary on the physical index i, E(k) all have the
same form with a single non-degenerate largest eigen-
value. WLOG, we set it to be 1 and denote the cor-

responding eigensector as E(k)
0 . On the other hand,

〈ψ′k|ψk〉 = limn→∞ Tr
(
E(kk′)

)n
= 0, therefore, E(kk′)

all have eigenvalues strictly less than 1. Define

E0 = ⊕kE(k)
0 (39)

E0 is the eigenvalue 1 sector of E and E1 = E − E0 has
eigenvalues strictly less than 1.

The symmetry condition on Ai can be translated to E
as

E = P̄ (g)Θ̄(g)Q̄(g)EQ̄−1(g)P̄−1(g) (40)

where P̄ (g) = P (g)⊗ P (g)(P (g) is real), Θ̄(g) = Θ(g)⊗
Θ∗(g), Q̄(g) = Q(g)⊗Q∗(g).

Matching the eigenvalue 1 sector on the two side of Eq.
40, it is clear to see that

E0 = P̄ (g)Θ̄(g)Q̄(g)E0Q̄
−1(g)P̄−1(g) (41)

It follows that,

E1 = P̄ (g)Θ̄(g)Q̄(g)E1Q̄
−1(g)P̄−1(g) (42)

That is, E0 and E1 satisfy the symmetry condition sepa-
rately.

Now define the deformation path of the double tensor
analogous to Ref. 37 as

E(t) = E0 +

(
1− t

T

)
E1 (43)

We will show that as t increases from 0 to T , this corre-
sponds to a deformation of the ground space to a fixed
point form while the system remains gapped and sym-
metric under G.

First, it can be checked that for 0 ≤ t ≤ T , E(t) re-
mains a valid double tensor and satisfies symmetry condi-
tion Eq.40. Decomposing E(t) back into matrices, Ai(t)
necessarily contains m blocks each with finite correlation
length. The fact that the total state remains gapped is
proven by Ref. 46. Because two equivalent double tensor
can only differ by a unitary transformation on the phys-
ical index, the symmetry condition Eq.40 for E(t) gives
that there exist unitary transformations u(g)(t) such that
Ai(t) transform in the same way as Ai in Eq.33. The
symmetry operation can be defined continuously for all
t.

At t = T , the state is brought to the fixed point form

E(T ) = E0 =
∑
k E

(k)
0 . Each block k represents a dimer

state as in Fig.2 with entangled pairs between neigh-
boring sites supported on dimension 1k, ..., Dk, |EPk〉 =
λik |ikik〉. For different blocks k and k′, |ik〉 ⊥ |ik′〉. The
total Hilbert space on one site is (D ×m)2 dimensional.
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The symmetry operation on one site can then be defined
as u(g) = P (g)Q∗(g)Θ(g) ⊗ P (g)Q(g). With continu-
ous deformation that does not close gap or violate sym-
metry, every gapped ground space is mapped to such a
fixed point form. If we can show that two fixed point
state with the same unbroken symmetry G′ and SPT or-
der under G′ are in the same phase, we can complete the
classification for combined symmetry breaking and SPT
order.

Suppose that |ψ0〉 and |ψ̃0〉 are short range correlated
fixed point ground states of two systems symmetric un-
der G. Symmetry operations are defined as u(g) and

ũ(g) respectively. |ψ0〉 and |ψ̃0〉 are symmetric under
the same subgroup G′ and has the same SPT order. As
shown in Ref. 37, |ψ0〉 and |ψ̃0〉 can be mapped to each
other with local unitary transformation W0 that pre-
serves G′ symmetry. The other short range correlated
ground states can be obtained as |ψk〉 = u(hk)|ψ0〉 and

|ψ̃k〉 = ũ(hk)|ψ̃0〉. At fixed point, |ψk〉(|ψ̃k〉) are sup-
ported on orthogonal dimensions for different k and u(hk)
and ũ(hk) maps between these support spaces. There-
fore, we can consistently define local unitary operations
mapping between |ψk〉 and |ψ̃k〉 as Wk = ũ(hk)W0u

†(hk)
and the total operation is W = ⊕kWk. W as defined is
a local unitary transformation symmetric under G that
maps between two fixed point gapped ground states with
the same unbroken symmetry G′ and SPT order under
G′. Combined with the mapping from a general state
to its fixed point form, this completes our proof that 1D
gapped phases are labeled by unbroken symmetry G′ and
SPT order under G′.

V. APPLICATION: 1D FERMION SPT PHASES

Although our previous discussions have been focused
on spin systems, it actually also applies to fermion sys-
tems. Because in 1D, fermion systems and spin systems
can be mapped to each other through Jordan Wigner
transformation, we can classify fermionic phases by clas-
sifying corresponding spin phases. Specifically, for a class
of fermion systems with certain symmetry we are going
to 1. identify the corresponding class of spin systems by
mapping the symmetry to spin 2. classify possible spin
phases with this symmetry, including symmetry breaking
and symmetry fractionalization 3. map the spin phases
back to fermions and identify the fermionic order. In
the following we are going to apply this strategy to 1D
fermion systems in the following four cases respectively:
no symmetry(other than fermion parity), time reversal
symmetry for spinless fermions, time reversal symmetry
for spin half integer fermions, and U(1) symmetry for
fermion number conservation. Our classification result is
consistent with previous studies in Ref. 47 and 48. One
special property of fermionic system is that it always has
a fermionic parity symmetry. That is, the Hamiltonian
is a sum of terms composed of even number of creation
and annihilation operators. Therefore, the correspond-

ing spin systems we classify always have an on-site Z2

symmetry. Note that this approach can only be applied
to systems defined on an open chain. For system with
translation symmetry and periodic boundary condition,
Jordan Wigner transformation could lead to non-local
interactions in the spin system.

A. Fermion Parity Symmetry Only

For a 1D fermion system with only fermion parity sym-
metry, how many gapped phases exist?

To answer this question, first we do a Jordan-Wigner
transformation and map the fermion system to a spin

chain. The fermion parity operator Pf =
∏

(1−2a†iai) is
mapped to an on-site Z2 operation. On the other hand,
any 1D spin system with an on-site Z2 symmetry can al-
ways be mapped back to a fermion system with fermion
parity symmetry(expansion of local Hilbert space maybe
necessary). As the spin Hamiltonian commute with the
Z2 symmetry, it can be mapped back to a proper physical
fermion Hamiltonian. Therefore, the problem of classi-
fying fermion chains with fermion parity is equivalent to
the problem of classifying spin chains with Z2 symmetry.

There are two possibilities in spin chains with Z2 sym-
metry: (1) the ground state is symmetric under Z2. As
Z2 does not have non-trivial projective representation,
there is one symmetric phase. (If translational symme-
try is required, systems with even number of fermions per
site are in a different phase from those with odd number
of fermions per site. This difference is somewhat trivial
and we will ignore it.) (2) the ground state breaks the Z2

symmetry. The ground state will be two-fold degenerate.
Each short-range correlated ground state has no partic-
ular symmetry(G′ = I) and they are mapped to each
other by the Z2 operation. There is one such symmetry
breaking phases. These are the two different phases in
spin chains with Z2 symmetry.

This tells us that there are two different phases in
fermion chains with only fermion parity symmetry. But
what are they? First of all, fermion states cannot break
the fermion parity symmetry. All fermion states must
have a well-defined parity. Does the spin symmetry
breaking phase correspond to a real fermion phase?

The answer is yes and actually the spin symmetry
breaking phase corresponds to a Z2 symmetric fermion
phase. Suppose that the spin system has two short-range
correlated ground states |ψ0〉 and |ψ1〉. All connected
correlations between spin operators decay exponentially

on these two states. Mapped to fermion systems, |ψf0 〉
and |ψf1 〉 are not legitimate states but |ψ̃f0 〉 = |ψf0 〉+ |ψ

f
1 〉

and |ψ̃f1 〉 = |ψf0 〉 − |ψ
f
1 〉 are. They have even/odd par-

ity respectively. In spin system, |ψ̃0〉 and |ψ̃1〉 are not
short range correlated states but mapped to fermion
system they are. To see this, note that any correla-

tor between bosonic operators on the |ψ̃f0 〉 and |ψ̃f1 〉are
the same as that on |ψ0〉 and |ψ1〉 and hence decay ex-
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ponentially. Any correlator between fermionic opera-

tors on the |ψ̃f0 〉 and |ψ̃f1 〉 gets mapped to a string op-

erator on the spin state, for example a†iaj is mapped
to (X − iY ))iZi+1...Zj−1(X − iY )j , which also decays
with separation between i and j. Therefore, the sym-
metry breaking phase in spin chain corresponds to a
fermionic phase with symmetric short range correlated
ground states. The degeneracy can be understood as iso-
lated Majorana modes at the two ends of the chain53,54.

On the other hand, the short-range correlated ground
state in spin symmetric phase still correspond to short-
range correlated fermion state after JW transformation.
Therefore, the symmetric and symmetry breaking phases
in spin system both correspond to symmetric phases in
fermion system. The two fermion phases cannot be con-
nected under any physical fermion perturbation.

B. Fermion Parity and T 2 = 1 Time Reversal

Now consider the more complicated situation where
aside from fermion parity, there is also a time reversal
symmetry T . T acts as an anti-unitary T = UK on
each site. In this section we consider the case where
T 2 = 1(spinless fermion).

So now the total symmetry for the fermion system is
the Z2 fermion parity symmetry Pf and T 2 = 1 time
reversal symmetry. T commutes with Pf . The on-site
symmetry group is a Z2 × Z2 group and has four ele-
ments G = {I, T, Pf , TPf}. Mapped to spin system, the
symmetry group structure is kept.

The possible gapped phases for a spin system with on-
site symmetry G = {I, T, Pf , TPf} include: (1) G′ =
G. Following discussion in section III we find that
it has four different projective representations. Exam-
ples of the four representations are a.{I,K,Z,KZ}, b.
{I, iY K,Z, iY KZ}, c. {I, iY KZ ⊗ I, I ⊗Z, iY KZ ⊗Z}
d. {I,K, Y,KY }. There are hence four different sym-
metric phases. (If translational symmetry is required, the
number is multiplied by 2 due to α(Z2)) (2) G′ = {I, Pf}
with no non-trivial projective representation, the time re-
versal symmetry is broken. There is one such phase. (If
translational symmetry is required, there are two phases)
(3) G′ = {I, T}, with two different projective represen-
tations(time reversal squares to ±I on boundary spin).
The Z2 fermion parity is broken. There are two phases
in this case. (4) G′ = {I, TPf}, with two different pro-
jective representations. The fermion parity symmetry is
again broken. Two different phases. (5) G′ = I, no pro-
jective representation, all symmetries are broken.

Mapped back to fermion systems, fermion parity sym-
metry is never broken. Instead, the Pf symmetry break-
ing spin phases are mapped to fermion phases with Ma-
jorana boundary mode on the edge as discussed in the
previous section. Therefore the above spin phases corre-
spond in the fermion system to: (1) Four different sym-
metric phases (2) One time reversal symmetry breaking
phase. (3) Two symmetric phases with Majorana bound-

ary mode (4) Another two symmetric phases with Ma-
jorana boundary mode. (5) One time reversal symme-
try breaking phase. (1)(3)(4) contains the eight sym-
metric phases for time reversal invariant fermion chain
with T 2 = 1. This is consistent with previous studies in
Ref. 47 and 55.

C. Fermion Parity and T 2 6= I Time Reversal

When T 2 6= I, the situation is different. This happens
when we take the fermion spin into consideration and
for a single particle, time reversal is defined as eiπσyK.

With half integer spin,
(
eiπσyK

)2
= −I. Note that for

every particle the square of time reversal is −I, however
when we write the system in second quantization as cre-
ation and annihilation operator on each site, the time
reversal operation defined on each site satisfies T 2 = Pf .
Therefore, the symmetry group on each site is a Z4 group
G = {I, T, Pf , TPf}. To classify possible phases, we first
map everything to spin.

The corresponding spin system has on-site symme-
try G = {I, T, Pf , TPf}. T 2 = Pf , P 2

f = I. The

possible phases are: (1) G′ = G, with two possible
projective representations, one with T 4 = I, the other
with T 4 = −I. Example for the latter includes T =
(1/
√

2)(X+Y )K. Therefore, there are two possible sym-
metric phases. (If translational symmetry is required,
there are four phases.) (2) G′ = {I, Pf}, the time re-
versal symmetry is broken. One phase. (If translational
symmetry is required, there are two phases.) (3) G′ = I,
all symmetries are broken. One phase.

Therefore, the fermion system has the following phases:
(1) Two symmetric phases (2) One time reversal sym-
metry breaking phase. (3) One time reversal symme-
try breaking phase with Majorana boundary mode. (1)
contains the time reversal symmetry protected topolog-
ical phase. Models in this phase can be constructed by
first writing out the spin model in the corresponding
spin phase and then mapping it to fermion system with
Jordan-Wigner transformation.

D. Fermion Number Conservation

Consider the case of a gapped fermion system with
fixed fermion number. This corresponds to an on-site
U(1) symmetry, eiθN . Mapped to spins, the spin chain
will have an on-site U(1) symmetry. This symmetry
cannot be broken and U(1) does not have a non-trivial
projective representation. One thing special about U(1)
symmetry though, is that it has an infinite family of 1D
representations. If translational symmetry is required,
fermion number per site is a good quantum number
and labels different phases. Therefore, mapped back to
fermions, there is an infinite number of phases with dif-
ferent average number of fermions per site.
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VI. CONCLUSION

In this paper, we complete the classification of gapped
phases in 1D spin systems with various symmetries.
Based on our classification of symmetry protected topo-
logical phases with on-site unitary, parity or time reversal
symmetry in Ref. 37, we give explicit results in this paper
for the classification of SPT phases with combined on-site
unitary, parity and/or time reversal symmetry. A general
rule is also given for the classification of SPT phases with
any symmetry group. Moreover, we considered the classi-
fication of phases with possible (partial) symmetry break-
ing. We find that 1D gapped spin phases with symme-
try of group G are basically labeled by (1) the unbroken
symmetry subgroup G′, (2) projective representations of
G′. Note that in calculating projective representations of
G′, on-site unitary symmetries are represented unitarily
while parity and on-site anti-unitary symmetries are rep-
resented anti-unitarily. We apply this classification result
to interacting 1D fermion systems, which can be mapped
to spin systems with Jordan-Wigner transformation, and
classify possible gapped phases with no symmetry, time
reversal symmetry and also fermion number conserva-
tion.

We would like to thank Andreas Ludwig, and Zheng-
Xin Liu for very helpful discussions. This research is
supported by NSF Grant No. DMR-1005541.

Appendix A: Existence of N such that
N−1R(g)N = R∗(g)

In this section we will show that for any class ω of
projective representation of group G which satisfies ω2 =
1, there is a projective representation R(g) ∈ ω and a
symmetric matrix N(NT = N) such that N−1R(g)N =
R∗(g).

Suppose that R0(g) is a d-dimensional projective rep-
resentation in class ω. Because ω2 = 1, R∗0(g) is also a
projective representation in this class. And so is

R(g) =

[
R0(g)

R∗0(g)

]
(A1)

Define

N =

[
I

I

]
(A2)

Where I is a d-dimensional identity matrix. It can be
checked that NT = N and N−1R(g)N = R∗(g). �

Appendix B: Freedom in commutation relation
between parity/time reversal and on-site G

We will show in this section that for a fixed fac-
tor system ω(ω2 = 1), if there exists projective repre-
sentation R(g) and symmetric or antisymmetric matrix

N(NT = ±N), such that N−1R(g)N = γ(g)R∗(g) for
one 1D representation γ(g), then there are other R′(g)
and N ′ which satisfy the relation for any other γ′(g).

Suppose that γ′(g) = α(g)γ(g).
Define

R′(g) =

[
R(g)

α(g)R(g)

]
, N ′ =

[
N

N

] [
I

I

]
(B1)

R′(g) is another projective representation with factor

system ω and N ′
T

= ±N ′.
Moreover it can be checked that

N ′
−1
R′(g)N = α(g)γ(g)R′ = γ′(g)R′ (B2)

�

Appendix C: Freedom in commutation relation
between on-site G, time reversal and parity

We will show in this section that for a fixed fac-
tor system ω(ω2 = 1), if there exists projective rep-
resentation R(g) and symmetric or antisymmetric ma-
trix N(NT = ±N), such that N−1R(g)N = γ(g)R∗(g)
for one 1D representation γ(g), Then there exist R′(g),

N ′(N ′
T

= ±N ′), M ′(M ′T = ±M ′), such that M ′N ′
∗

=

N ′M ′
∗
, N ′

−1
R′(g)N ′ = γ(g)R′

∗
(g), M ′

−1
R′(g)M ′ =

γ′(g)R′
∗
(g), for any γ′(g) = χ(g)γ(g), χ2(g) = 1.

Define

R′(g) =

[
R(g)

χ(g)R(g)

]
(C1)

N ′ =

[
N

N

]
(C2)

M ′ =

[
N

N

]
(C3)

It can be checked that, R′(g) is a projective rep-

resentation with factor system ω. N ′
T

= ±N ′, and

M ′
T

= ±M ′. Moreover,

M ′N ′
∗

=

[
NN∗

NN∗

]
= N ′M ′

∗
(C4)

N ′
−1
R′(g)N ′ = γ(g)R′

∗
(g) (C5)

M ′
−1
R′(g)M ′ = χ(g)γ(g)R′

∗
(g) = γ′(g)R′

∗
(g) (C6)

�
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