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We investigate the quantum heat exchange between a nanojunction and a many-body or electro-
magnetic environment far from equilibrium. It is shown that the two-temperature energy emission-
absorption mechanism gives rise to a giant heat flow between the junction and the environment. We
obtain analytical results for the heat flow in an idealized high impedance environment and perform
numerical calculations for the general case of interacting electrons and discuss giant freezing and
heating effects in the junction under typical experimental conditions.
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I. INTRODUCTION

Electron transport in the presence of an electric field
is always accompanied by heating of the charge carriers.
This effect is especially pronounced in electronic devices
where overheating leads to instabilities in the current-
voltage characteristics.1,2 This defines an urgent task to
study far-from-equilibrium heating of charge carriers.

In this paper we study the heat flow between tunneling
electrons and an environment in nanojunctions using a
non-perturbative technique based on a quantum kinetic
equation. We show that a regime exists in which the in-
teraction with the environment leads to an effective (“gi-
ant”) environment cooling of the junction.

At high electron temperatures phonons play the role
of the cooling agent. At low temperatures the direct
energy transfer to the phonon bath becomes inefficient
and the relaxation is dominated by energy exchange be-
tween tunneling electrons and an electromagnetic envi-
ronment and/or environment of many-body excitations
in the electrodes.3 In both cases cooling follows the
two-temperature emission-absorption mechanism:1,3 the
emission of environment modes with temperature equal
to that of the tunneling charge carriers, Te, and the ab-
sorption of environment excitations having the tempera-
ture of the environment, Tenv. Moreover, not only tem-
peratures, but also the distributions of emitted and ab-
sorbed environment modes may be different in the far
from equilibrium regime.

The coupling between the tunneling electrons and the
environment has a dispersion characterized by the “cut-
off” frequency ωmax. For example, ωmax = Ec for a
high impedance environment, with Ec being the charg-
ing energy of the tunnel junction; ωmax = 1/

√
LC

for an environment represented by an L − C circuit;
and ωmax = 1/RTC for an Ohmic environment with
RT and C being the ohmic resistance4,5 and capaci-
tance of the tunnel junction, respectively.6 We are in-
terested in the regime where Te, Tenv > ωmax. In this
case the large number of environment modes, N ∼
ln[ωmaxτe(Te)]max{Te, Tenv}/ωmax ≫ 1 (τe is the en-

ergy relaxation rate), participate in the heat exchange
between the environment and tunneling electrons in the
nanojunction. At low electron temperatures when the
environment has electromagnetic or many body origin
this regime is easy to reach.6,7 We show that in gen-
eral the heat flux acquires the large factor N ≫ 1 in
all orders in electron-environment interaction increasing
the efficiency of the heat exchange. Using the Landauer
scattering theory8 we express the density matrix as the
direct product of the density matrices for emitted and
absorbed environment excitations; this is a typical case
for the two-temperature emission-absorption mechanism
far from equilibrium. The validity of the Landauer ap-
proach implies that the effective energy relaxation length
of the environment modes is larger than the size of the
nanostructure. In our consideration a bath (phonons) is
absent. Therefore our approach is valid when the inter-
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FIG. 1: (color online) Illustration of the non-equilibrium heat-
ing effects in a nanojunction. The electrons traversing the
junction absorb external photons (incident wavy lines) and
emit them leading to heating of the contact. The plots show
the giant heating effect, Q̇, as a function of the difference of
electron and environment temperatures (V = 0) compared to
“quasiequilibrium” approximation where the radiation den-
sity matrix is equilibrium, Q̇0. The full non-equilibrium anal-
ysis gives an at least one order of magnitude more pronounced
heating effect than for the latter case: max(Q̇/Q̇0) ∼ N > 10.
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action time between electrons and environment is much
smaller than the one between environment and bath,
which is the case at not very high temperatures where
the number of phonons is small.

II. MODEL

The rate of the heat flow between the tunnel junction
and the environment is given by: (see Appendix A and
Ref. [7])

Q̇ =

∫ ∞

0

ε {nεP (ε)− [1 + nε]P (−ε)} p(ε)dε, (1)

where P (±ε) is the probability density for the tunneling
charge-carrier to lose [gain] the energy ε to [from] the en-
vironment. The distribution function nε in Eq. (1) can
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FIG. 2: (color online) a) Illustration of electron-hole pair gen-
eration in the tunnel junction, resulting in the distribution
function nε [Eq. (1)] of these pairs (environment). b) Com-
parison of the distribution functions for T = 0 in the leads
and T = V/2.

be interpreted as the distribution function of electron-
hole pairs that appear at the junction interface just after
the tunneling process: the hole in the source lead and
the electron in the drain, Fig. 2a). The effective tem-
perature of “tunneling electrons” Te should be identified
with limε→0 nε. If the distribution functions at the elec-
trodes are Fermi functions with equal temperatures T ,
then nε = {(ε−V )NB(ε−V, T )+(ε+V )NB(ε+V, T )}/2ε,
with NB(ε ± V, T ) being the equilibrium Bose distribu-
tion function. For this case, Te = V

2 coth V
2T . At low

applied voltages, V ≪ T , and Te ≈ T . In the opposite
case, V ≫ Te, we obtain Te ≈ V/2. The function p(ε)
in Eq. (1) is the weight function for a junction between
two normal metals, Fig. 1, and can be calculated for any
choice of the electron distribution function in the leads,
resulting in p(ε) = 4ε/RT .

III. HEAT FLOW

To calculate Q̇ one has to specify the probability
density, which can be written in the form P (ε) =
∫∞

−∞
dt exp[J(t) + iεt], where the function exp[J(t)] re-

flects the fact that tunneling electrons acquire random
phases due to interaction with the Bosonic environment.

The equilibrium situation where the distribution function
of the environment modes is the Bose distribution was
discussed in Ref. [6]. In the general far-from-equilibrium
situation, the function J(t) can be written as3

J(t)/2 = (2)
∞
∫

[τe(Te)]−1

dω

ω
ρ(ω)

[

N (in)
ω eiωt + (1 +N (out)

ω )e−iωt −Bω

]

,

where the terms proportional to N
(in)
ω and 1+N

(out)
ω cor-

respond to the absorbed and emitted environment excita-

tions, respectively, and Bω = 1+N
(out)
ω +N

(in)
ω . In equi-

librium Nω reduces to the Bose-function and the func-
tional P (ω) recovers the result of Ref. [6]. The energy
relaxation time τe in expression for J(t) determines the
low energy cut-off, since the electrons start to equilibrate
on larger time scales, i.e. the non-equilibrium description
does not hold any more. The spectral function ρ(ω) is the
probability of the electron–environment interaction and
characterizes the particular system under consideration.
According to scattering theory, modes coming from one

“reservoir” into the other have the temperature of the
“reservoir” of their origin.8 Then the second quantization

operators c
(in/out)
α of the emitted (absorbed) environment

mode α enter the following density matrix:

℘ = e−
∑

α
(c(in)

α
)†c(in)

α
/Tin × e−

∑
α
(c(out)

α
)†c(out)

α
/Tout , (3)

where Tin = Tenv and Tout = Te. Thus N
(in)
ω =

〈(c(in)ω )†c
(in)
ω 〉 = NB(ω, Tenv) and N

(out)
ω = NB(ω, Te).

The quasi-equilibrium approximation mentioned above
corresponds to Gibbs distribution of the environment
modes: ℘0 = exp{−∑

α c†αcα/Tenv}.
To estimate the magnitude of the heat flow Q̇ we first

expand the distribution function P (ε) in Eq. (1), in the
first order in ρ(ε):

Q̇(1) = (4)

8

RT

∞
∫

τ−1
e

dεερ(ε)
{

nε(1 +N (out)
ε )− (1 + nε)N

(in)
ε

}

.

This expression becomes zero if nε = N
(in)
ε = N

(out)
ε . If

the distribution functions are not equal to each other,
we can expand Q̇(1) with respect to their difference. We
consider the case where the voltage bias at the nano-
junction is zero but the temperatures of electrons at
the leads and those that comprise the environment are
slightly different, Te = T + δT/2 and Tenv = T − δT/2.

Thus, nε = nε(T + δT/2), N
(in)
ε = nε(T − δT/2),

N
(out)
ε = nε(T + δT/2), where nε is the Bose distribu-

tion function. Expanding Q̇(1) in the first order in small
parameter δT/T ≪ 1 we find

Q̇
(1)
θ ≈ δT

8

RT

∞
∫

τ−1
e

dεερ(ε)n′ε(T )(1 + θnε(T )) (5)
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FIG. 3: (color online) Typical heat exchange Q̇ in Eq. (1)
of the Ohmic environment with the tunnel junction between
two normal leads. Q̇(Teff , T, V ) vs T/T0 and voltages eV/T0

(scaling factor T0 = 30ωmax.). We used ωmax/ωmin = 100,

Tenv/T0 = 1, ρ(0) = 10. Q̇ is measured in units of
103ω2

max/(e
2RT ).

where n′ε(T ) = dnε(T )/dT . The index θ is 0 for the
quasi-equilibrium situation when the temperatures of
emitted and absorbed environment excitations are equal
and 1 for the non-equilibrium case (the index 1 is skipped
throughout this paper). Since nε(T ) in Eq. (5) is always

positive, the following inequality is valid |Q̇(1)
0 | < |Q̇(1)|,

where Q̇
(1)
0 and Q̇(1) refer to the heat flux in quasi-

equilibrium and in non-equilibrium cases, respectively.
The interaction function ρ(ε) in Eq. (5) quickly decays
at energies larger than some characteristic frequency
ωmax. For temperatures T > ωmax we can approximate
nε(T ) ≈ T/ε ≫ 1 and find

|Q̇(1)|
|Q̇(1)

0 |
≈

∫∞

τ−1
e

Tρ(ε)dε
ε

∫∞

τ−1
e

ρ(ε)dε
≈ T

ωmax
ln(ωmaxτe) ≡ N ≫ 1.

(6)
Remarkably, in higher orders with respect to ρ(ε) the

non-equilibrium heat flow Q̇ differs from the equilibrium
flow Q̇0 by the same factor. This result holds even for a
finite electric current flowing through the junction. Thus,
the heat flow between the junction and the environment
appears much larger than what the quasi-equilibrium es-
timates predict.

IV. OHMIC APPROXIMATION

We now turn to the simplest case, an environment with
a very high impedance as compared to the quantum re-
sistance, RQ. In this limit tunnelling electrons easily ex-
cite the environment modes. The spectral density ρ(ω)
of these modes is sharply peaked at the zero frequency,
ω = 0. For the correlation function J(t) the concentra-
tion of the environment modes at low frequencies implies
that the expansion of J(t) over t up to the second order

yields J(t) ≈ −iat− (b/2)t2, where the coefficients a and

b are defined as a =
∫∞

τ−1
e

(1 +N
(out)
ω −N

(in)
ω )ρ(ω)dω and

b =
∫∞

τ−1
e

ωρ(ω)Bωdω. Using this expansion for J(t) we

obtain the following result for the density function P (ω)

P (ε) = (1/
√
2πb) exp

[

−(ε− a)2/2b
]

. (7)

Here the expansion parameter a can be estimated as

follows a = a0

(

1 + (Te−Tenv) ln(ωmaxτe)
πωmax

)

, where a0 =

2
∫

ρdω ≈ 2ρ(0)ωmax ≈ 2Ec with Ec being the charging
energy of the tunnel junction, Te is the electron temper-
ature in the junction, Tenv is the temperature of environ-
mental modes, ωmax ≈ 1/(RTC). Similar for coefficient
b in Eq. (7) we obtain b ≈ a0(Te + Tenv).
Substituting the density P (ω), Eq. (7), into the heat

flux Q̇, Eq. (1), we obtain our first main result for the
typical heat exchange of the Ohmic environment with
the tunnel junction between two normal leads. The full
temperature and voltage dependence is shown in Fig. 3.

V. DYNAMIC COULOMB INTERACTION

Next we discuss the more realistic situation where
the tunneling junction is connected to two disordered
conductors (leads). Following Ref. 9, one can find the
spectral probability function ρ(ω) corresponding to the
electron–environment interaction

ρij(ω) =
ω

2π
Im

∑

q

(

2π
L

)2
(2δij − 1)Ũij(q, ω)

(Di q2 − iω)(Dj q2 − iω)
, (8)

a) b)

-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 0.5  0.75  1  1.25  1.5

-1 -0.5  0  0.5  1

Q
 [
a

b
tr

. 
u

n
it
s
]

T/T0

eV/T0

Q , V=0

Q0, V=0

Q , T=Tenv

Q0, T=Tenv

FIG. 4: (color online) a): Schematic presentation of the sys-
tem: single contact junction, with contacts consisting of two
thin plates, which are distance d apart. Their thickness a is
much less than the extension in x and y directions, such that
they can be treated as 2D contacts. The temperature of the
contacts T is kept constant, while the environment tempera-
ture Tenv can be different, which results in heat production or
removal in the junction. b): Heating of a tunnel junction tak-
ing into account dynamic Coulomb interactions for the zero
bias case (V = 0) [red lines, lower x-axis] and the voltage
dependence for T = Te [green lines, upper x-axis]. The solid
cures represent the quasi-equilibrium curves and the dashed
assuming an equilibrium distribution for Nω. (temperature
in units of T0 = 0.1Eth)
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where i, j = 1, 2 are the lead indices, D1(2) are diffusion

coefficients within respective electrodes, and Ũij(q, ω) are
the dynamically screened Coulomb interactions within
(across) the electrodes. The form of spectral probability
ρ(ω) [ρ(ω) = 2ρ12 + ρ11 + ρ22] depends on the structure
of the environmental excitations spectrum and, thus, on
the external bias.
The system under consideration is shown in Fig. 4a):

two contacts are separated by distance d and their thick-
ness is a. The external bias is V and the contacts are
kept at temperature T and the environment at tempera-
ture Tenv.
The screened Coulomb interaction in Eq. (8) in

Fourier space has the form Ũ(q, ω) = {[U (0)(q, ω)]−1 +

P(q, ω)}−1, where U (0)(q, ω) = u(q)I+v(q)σx is the bare
Coulomb interaction and P(q, ω) the polarization matrix
respectively with Pij = νi Di q

2(Di q
2− ıω)−1δij. νi is the

electron density of states at the Fermi surface in lead i.
Below we concentrate on quasi 2D infinite leads. For

this geometry with a ≪ L, where L is the characteristic
lead size in the x and y directions, the bare Coulomb
interaction has the form

U
(0)
ij (ri−rj) = e2

∫

dzi dzj
δ(zi − z

(0)
i )δ(zj − z

(0)
j )

|ri − rj |
, (9)

with z
(0)
i = (1/2 − δi1)d, leading to u(q) = 2πe2/q and

v(q) = 2πe2e−qd/q.
In the following, we consider the case of identical leads

with same diffusion coefficients D1 = D2 ≡ D and den-
sities of states, ν1 = ν2 ≡ ν. The dimensionless matrix
elements Ũij of the dynamically screened Coulomb inter-
action (in units of e2d) are then given by

Ũii =
4π

q̃

χ(q̃)

χ2(q̃)− coth−2(q̃)
, Ũi 6=j =

Ũii

χ(q̃) coth(q̃)
(10)

where q̃ = dq and ω̃ ≡ ω(d2/D) with the dimension-

less function χ(q̃) ≡ 1 + coth(q̃) + 4πe2dνx
q̃2−iω̃ . Using these

expressions, we can write Eq. (8) as

ρ(ω̃) =
2e2d

D ω̃ Im

∞
∫

0

q̃dq̃
Ũ11

[

1− (χ(q̃) coth(q̃))
−1

]

(q̃2 − iω̃)2
.

Using this exspression we can calculate the heat flux Q̇
in Eq. (1) between environment and nanojunction with
dynamic Coulomb interaction. The typical energy scale
is given by the Thouless energy for the junction of dis-
tance d, Eth = D/d2 which we use to rewrite all expres-
sions in dimensionless units. For a typical temperature
Eth ≈ 100K, the temperature and voltage dependence is
numerically calculated and shown in Fig. 4b). Again, the

non-equilibrium heat flow Q̇ is up to an order of magni-
tude larger and the quasi-equilibrium approximation Q̇0.
We remark, that in this case the function ρ(ω) intro-
duces a natural cut-off for J(t) which behaves as ∼ −|t|
for large t.

VI. DISCUSSION

Above we assumed that the density of hot electrons
is high enough so that the electron-electron scattering
time is smaller than the time of energy relaxation (this
time is large because of quasi-elastic nature of interaction
between the electrons and environment). In this case the
electron distribution function is close to an equilibrium
one with an electron temperature Te, which is in high
voltage limit is higher than the environment temperature
Tenv.

In summary, we discussed the influence of far from
equilibrium heating effects on properties of nanojunc-
tions. Based on a quantum-kinetic approach we calcu-
lated the non-linear heat flux between environment and
junction. We showed that the resulting freezing or heat-
ing effect far from equilibrium are by orders of magni-
tude larger than estimates based on quasi-equilibrium
environment theory. We obtained analytical results for
the heat flow in an idealized high-impedance environ-
ment and demonstrated, numerically, that these results
hold for the more general case of an environment with
Coulomb interaction. We showed that the environment
can be a very effective freezing agent if the effective tem-
perature well exceeds the high frequency cut-off ~ωmax.
From the experimental point of view the temperature
regime in which the effect is present is readily accessible.
However, one needs to measure the time dependence of
the junction temperature in order to extract Q̇ which
could be technically challenging for a nanojunction and
the presence of a substrate might need consideration.

One can expect that our results, in particular the gi-
ant freezing effect, will be important for the electronic
transport in junction arrays,10 which will be subject of a
forthcoming work.
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Appendix A: Heat Flow rate

In this Appendix we present a derivation of Eq. (1)
for the rate of the heat flow. A general formula for the
heat current going from the left electrode (1) towards the
right electrode reads:

I1→q = −
(

Γ1,in
q − Γ1,out

q

)

, (A1)
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where Γ1→
q (Γ1←

q ) is the heat transfer tunneling rate cal-
culated in the left electrode:

Γ1,out
q =

1

RT

∫

ǫǫ′
(ǫ − φ1)f

(1)
ǫ (1− f

(2)
ǫ′ )P (ǫ − ǫ′) ,

Γ1,in
q =

1

RT

∫

ǫǫ′
(ǫ′ − φ1)(1− f

(1)
ǫ′ )f (2)

ǫ P (ǫ− ǫ′).

Under the gauge transformation φ → φ− ∂tk, the distri-
bution functions transform like f (i)(ǫ) → f (i)(ǫ + ∂tk).
Therefore the rates and the heat current defined above
are gauge invariant.
Similarly we can find,

I2→q = −
(

Γ2,out
q − Γ2,in

q

)

, (A2)

where Γ2→
q (Γ2←

q ) is the heat transfer tunneling rate cal-
culated in the right electrode:

Γ2,out
q =

1

RT

∫

ǫǫ′
(ǫ − φ2)f

(2)
ǫ (1 − f

(1)
ǫ′ )P (ǫ − ǫ′) ,

Γ2,in
q =

1

RT

∫

ǫǫ′
(ǫ′ − φ2)(1− f

(2)
ǫ′ )f (1)

ǫ P (ǫ− ǫ′).

The gradient of the heat current, ∇IQ at the contact is

∇IQ = I2→q − I1→q = {Γ1,out
q − Γ2,in

q }+ {Γ2,out
q − Γ1,in

q }.

Finally we find

∇IQ = (φ2 − φ1)I+

1

RT

∫

ǫǫ′
(ǫ−ǫ′)P (ǫ−ǫ′)

{

f (1)
ǫ (1− f

(2)
ǫ′ ) + f (2)

ǫ (1− f
(1)
ǫ′ )

}

.

On the other hand the conservation law demands:

Q̇+∇IQ = EI , (A3)

where the right-hand side is the Joule heat which is re-
lated to the work of the electric field. The Joule heat is
dissipated in the bulk of the electrodes at the distance

lE from the junction, where lE is the energy relaxation
length. The heat Q̇ is the heat dissipated into the envi-
ronment:

Q̇ =
1

RT

∫

ǫǫ′
(ǫ − ǫ′)

∑

i,j

f (i)
ǫ σx

ij(1− f
(j)
ǫ′ )P (ǫ − ǫ′), (A4)

where σx is the Pauli matrix. Equation (A4) can be
rewritten in terms of ”Bose” distribution functions as
follows

Q̇ =

∫ ∞

0

dε εp(ε)
{

nεP
<(ε)− [1 + nε]P (−ε)

}

, (A5)

with p(ε) = 4ε/RT and nε = {(ε − V )NB(ε − V, T ) +
(ε+ V )NB(ε+ V, T )}/2ε. Equation (A5) coincides with
Eq. (1) in the body of the paper. In the zero-voltage
limit Eq. (A5) agrees with the corresponding expression
in Ref. [5].
Appendix B: Heat flow in the second order in ρ(ε)

Below Eq. (3) we derived the heat flow Q̇ in the leading
(first) order in spectral function ρ(ε). In this appendix we

show that the heat flow Q̇ in the second order in electron-
environment interaction and in the first (leading) order
in temperature difference δT = Te − Tenv leads to the
same enhancement as the first order term.
The heat flow can be written as a sum of two terms,

Q̇ = (W1 +W2)τ , where

W1 =
1

2

∫ ∞

−∞

dε εp(ε)[∂T̃nε]P (ε), (B1)

W2 =

∫ ∞

0

dε εp(ε)nε∂τ {P (ε)− P (−ε)} . (B2)

Here T̃ = (Te + Tenv)/2. Typically W1 . W2, therefore
we concentrate on contribution W2 below.
In the second order in electron-environment interaction

(function ρ(ε)) we obtain for the heat flow the following
result

Q̇(2) ∝
∫ ∞

0

dεdε1dε2εp(ε)
ρ(ε1)

ε1

ρ(ε2)

ε2
×

{

n(12)
ε (1 +N (out)

ε1 )(1 +N (out)
ε2 )δε−ε1−ε2 + n(12)

ε N (in)
ε1 (1 +N (out)

ε2 )δε+ε1−ε2 + n(12)
ε (1 +N (out)

ε1 )N (in)
ε2 δε−ε1+ε2−

(1 + n(12)
ε )N (in)

ε1 N (in)
ε2 δε−ε1−ε2 − (1 + n(12)

ε )(1 +N (out)
ε1 )N (in)

ε2 δε+ε1−ε2 − (1 + n(12)
ε )N (in)

ε1 (1 +N (out)
ε2 )δε−ε1+ε2

}

.

(B3)

At low frequencies (T ≫ ε) we find the W2 contribution to Q̇(2) as follows

n(12)
ε (1 +N (out)

ε1 )(1 +N (out)
ε2 )− (1 + n(12)

ε )N (in)
ε1 N (in)

ε2 ≈

n(12)
ε

(Te)
2

ε1ε2
− (1 + n(12)

ε )
(Tenv)

2

ε1ε2
≈ . . .+ (Te − Tenv)(1 + 2n(12)

ε )
Te + Tenv

2ε1ε2
+ . . . . (B4)
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Here dots represent the terms that finally cancel in Eq. (B3). We mention the presence of a large enhancement factor

(1 + 2n
(12)
ε ) ≈ (Te + Tenv)/ε ≫ 1 in Eq. (B4).

In quasi-equilibrium case we do not have this large factor. Indeed, in this case we have

n(12)
ε (1 +N (out)

ε1 )(1 +N (out)
ε2 )− (1 + n(12)

ε )N (in)
ε1 N (in)

ε2 ≈

n(12)
ε

(Te)
2

ε1ε2
− (1 + n(12)

ε )
(Te)

2

ε1ε2
≈ . . .+ (Te − Tenv)

Te + Tenv

2ε1ε2
+ . . . . (B5)

To conclude, in the second order in function ρ(ε), the heat flow Q̇ is enhanced by the same factor (Te + Tenv)/ε ≫ 1
as in the first order. Similar result can be proofed in higher orders in ρ(ε).
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8 Ya.M. Blanter, M. Büttiker, Physics Reports 336, 1
(2000).

9 J. Rollbühler and H. Grabert, Phys. Rev. Lett. 87, 126804
(2001).

10 A. Glatz and I. S. Beloborodov, Phys. Rev. B 81, 033408
(2010); A. Glatz, I. S. Beloborodov, N. M. Chtchelkatchev,
and V. M. Vinokur, Phys. Rev. B 82, 075314 (2010).


