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The effect of thermal fluctuations in Josephson junctions is usually analysed using the
Ambegaokar-Halperin (AH) theory in the context of thermal activation. “Enhanced” fluctuations,
demonstrated by broadening of current-voltage characteristics, have previously been found for prox-
imity Josephson junctions. Here we report measurements of micron-scale normal metal loops con-
tacted with thin superconducting electrodes, where the unconventional loop geometry enables tuning
of the junction barrier with applied flux. We observe stronger “enhanced” fluctuations when the
flux threading the normal metal loop is near an odd half-integer flux quantum, and for devices
with thinner superconducting electrodes. These findings suggest that the activation barrier, which
is the Josephson coupling energy of the proximity junction, is different from that for conventional
macroscopic Josephson junctions. Simple one dimensional quasiclassical theory is used to predict
the interference effect due to the loop structure, but the exact magnitude of the coupling energy
cannot be computed without taking into account the details of the sample dimensions. In this sense,
the physics of nanoscale proximity junctions can be related to the thermally activated phase slips
(TAPS) model for thin superconducting wires, and indeed our data can be better fitted with TAPS
model than AH theory. Besides shedding light on thermal fluctuations in proximity junctions, the
findings here also demonstrate a new type of superconducting interference device with two normal
branches sharing the same SN interface on both sides of the device, which has technical advantages
for making symmetrical interference devices.

PACS numbers: 74.45.+c, 74.50.+r, 74.40.-n, 74.78.Na

Understanding the effect of thermal fluctuations in
nanoscale superconducting devices is important for
applications.1 One particular type of nanoscale super-
conducting device is a proximity junction,2,3 consisting of
a normal metal wire contacted by two superconducting
wires as electrodes. The difference between such a de-
vice and a conventional Josephson junction made of bulk
superconducting electrodes separated by a thin insulator
is twofold: 1) Instead of tunnelling through the insu-
lating barrier, charge carriers diffuse through the normal
metal barrier in proximity junctions, leading to a stronger
coupling between the two superconducting electrodes for
proximity junctions; 2) the thin superconducting elec-
trodes of these nanoscale junctions are different from bulk
superconductors since their dimensions are now compa-
rable to the superconducting coherence length ξs.

These differences may explain the previously observed
strong fluctuations in nanoscale proximity junctions,4–6

which manifest themselves as “enhanced” broadening of
the current-voltage characteristics (CVC) compared to
the “intrinsic” broadening of CVC due to thermal activa-
tion of a resistively shunted junction (RSJ), as described
by Ambegaokar and Halperin (AH).7,8 This enhancement
can be characterized by an effective noise temperature
TN , which is higher than the bath temperature Tb.

9

In this paper, we report measurements of a special type
of proximity junction with a loop structure embedded
into the junction itself. By threading a magnetic flux
through the loop, we find TN is maximum when the flux
through the loop is an odd half-integer of the supercon-

ducting flux quantum Φ0 = h/2e, for fixed Tb. The ratio
between TN and Tb depends on the geometries of the
particular sample, but does not depend on the bath tem-
perature Tb. The flux dependence of TN is better under-
stood if we consider a phase slipping process similar to
that in thin superconducting wires, which again suggests
that for a nanoscale proximity junction, the activation
energy is different from the standard Josephson coupling
energy. Such devices exhibit many of the properties of
dc SQUIDs, but with the advantage that the devices can
be designed to be almost perfectly symmetric, as the two
normal branches share the same SN interface on both
sides of the device, hence allow unprecedented tunability
of the system by means of an external magnetic flux.

The remainder of this paper is organized as follows: In
Section I, a general introduction for thermal activation
in superconducting wires and Josephson junctions is pre-
sented, followed by a discussion of how quasiclassical the-
ory can be used to extend the thermal activation model
to proximity junctions. Then the experimental results of
magnetoresistance (Section II), the current voltage char-
acteristics (CVC) (Section III), and temperature depen-
dence of resistance (Section IV) are discussed. Finally
we summarize the findings and propose further theoreti-
cal study beyond one dimensional quasiclassical theory.
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I. THEORETICAL BACKGROUND

The dynamics of a particle trapped in a shallow po-
tential well is a fundamental problem that has wide ap-
plicability to a number of areas in statistical physics. At
finite temperatures, due to coupling to a thermal bath,
the particle may escape from the potential well through
the process of thermal activation over the barrier repre-
sented by the edge of the potential.

For superconductors, two specific phenomena have
been explored extensively in terms of the physics of ther-
mal activation. The first phenomenon is the generation
of phase-slips in a thin superconducting wire with cross-
section size comparable to the superconducting coherence
length ξS .10,11 In this case, thermally activated phase
slips (TAPS) lead to the appearance of a resistance tail of
the thin wire at temperatures below the nominal transi-
tion temperature Tc. The voltage V generated by TAPS
is related to the time evolution of the macroscopic su-
perconducting phase ϕ through the Josephson relation
2eV/~ = dϕ/dt, which on average is determined by the
number of TAPS per unit time, each TAPS correspond-
ing to a change of 2π. At the instant in space and time
where such a phase slip event occurs, the superconduct-
ing order parameter vanishes, which costs an energy ∆F ,
the barrier over which the system must be thermally ac-
tivated. In the earlier pioneering theory by Little,10 the
relevant energy barrier is the condensation energy in a
small coherent volume determined by the dimensions of
the superconducting wire, and the temperature depen-
dence of resistance R(T ) is described by an Arrhenius
type equation. Later developments gave a more accurate
description of ∆F and the attempt frequency for acti-
vation over the barrier, often referred to as the LAMH
theory.11,12

The second phenomenon is the onset of finite voltage
in a Josephson junction. A resistively shunted junction
(RSJ) can be modelled as a particle in a one-dimensional
washboard potential in a viscous medium, where the
distance coordinate corresponds to the phase difference
ϕ across the junction, as shown by Ambegaokar and
Halperin (AH).7,8 With no current through the junction,
the system sits in a local minimum of the potential. Ap-
plication of a current through the junction corresponds
to tilting the washboard, shifting the position of the local
minima. At some value of current less than the nominal
critical current Ic, the washboard potential is tilted suffi-
ciently for the system to be thermally activated over the
barrier between two adjacent potential minima. Once
this occurs, the system will continue to roll down the
washboard potential, corresponding to a continuous time
evolution of ϕ, and hence a finite voltage will appear
across the junction according to the Josephson relation.
Here the energy barrier (the height of the washboard po-
tential) being thermally activated over is the Josephson
coupling energy EJ = (~/2e)Ic, where Ic is the critical
current.

A proximity junction made by a normal metal wire be-

tween two superconductors exhibits properties different
from a conventional tunnelling junction. Proximity SNS
junctions have also been investigated for a long time.13

More recent theoretical investigations have used the
framework of the quasiclassical theory of superconduc-
tivity to discuss the characteristics of SNS junctions.14

Qualitatively, the physics of the SNS junction is well
understood. The proximity to the superconductor has
two major effects on the quasiparticles in the normal
metal.15 First, it induces superconducting-like correla-
tions between quasiparticles that increase the conduc-
tance of the normal metal, and second, it induces a gap
in the quasiparticle density of states N(E).16 While in
the superconductor the energy scale for the density of
states is given by ∆, the energy scale for N(E) in the
normal metal for the diffusive case is set by the Thou-
less energy ETh = ~D/L2, where D = vF `/3 is the
quasiparticle diffusion constant in the normal metal, `
being the elastic scattering length, and L is the length of
the normal metal. Similarly, the maximal supercurrent
that can flow through such a proximity junction is set
by ETh, not by ∆ as for a conventional Josephson tun-
nel junction, when ETh � ∆ (the long junction limit).17

However, it is difficult to obtain quantitative predictions
for the current-voltage characteristics except in limiting
cases. The problem arises from the fact that a finite volt-
age results in a time dependent phase difference between
the superconducting electrodes, which in turn leads to
time-dependent boundary conditions for the quasiclas-
sical equations. These equations have been solved un-
der certain simplifying assumptions, such as low inter-
face NS interface transparency,18 or in the limit of volt-
ages small compared to ETh/e.

19 Unfortunately, these
assumptions do not apply to our samples. Consequently,
in the discussion below, we have chosen to discuss our re-
sults phenomenologically in the framework of RSJ model
discussed above, but with the energy potential landscape
being calculated using the quasiclassical theory of super-
conductivity.

The Josephson junction model leads to an interesting
extension, where two junctions can be connected in par-
allel to form a dc superconducting quantum interference
device (SQUID). In this case, there are two independent
parameters (the phase differences across the two junc-
tions), giving rise to a two-dimensional potential for the
system. The system can transition from one local mini-
mum to another through saddle-points in the potential.20

Due to the fact that the position of the system on the two
dimensional potential is sensitive to the external mag-
netic flux Φ, dc SQUIDs have been investigated exten-
sively due to their device potential.21,22 With any real
dc SQUID, the two Josephson junctions cannot be fabri-
cated to be exactly the same, which restricts the ability
to tune the system.

As with conventional junctions, two proximity junc-
tions may be combined in parallel to form a dc SQUID.
Schematics of two types of SNS junctions are shown in
Fig. 1. In the asymmetric device shown in Fig. 1(a), the
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FIG. 1: (Color online) Schematic diagrams of two SNS quan-
tum interference devices: asymmetric (a) and symmetric (b).
The normal metal arms are shown in gold and the supercon-
ducting wires are shown in gray. The arrow in both figures
corresponds to the the direction of applied magnetic flux. In-
sets: Scanning electron micrographs of the devices measured,
the scale bars are 1 µm. The calculated energy profile of the
asymmetric/symmetric device are shown in (c)/(d) as a func-
tion of the external magnetic flux Φ and the phase difference
across the two superconductors φ, which is determined by the
external current through the device. The energy profiles are
calculated based on the quasiclassical theory, as described in
the text.

normal metal arms (shown in gold) connect to the su-
perconducting wires (shown in gray) at different points,
likely resulting in different NS interface transparencies for
the two arms of the device, and consequently an asym-
metric dc SQUID.3,23 However, the long-range nature of
the Josephson coupling in SNS devices enables a new
type of device that is not possible with conventional tun-
nel junctions. As shown schematically in Fig. 1(b), the
device consists of a single normal metal loop between
the two superconducting contacts, so that the NS inter-
face transparencies for the two arms of the device are
the same. In this device, the modulation of quantum
interference by an external magnetic flux occurs within
the junction itself, i.e., the superconducting phase wind-
ing happens along the loop inside the junction, similar
to the case of a superconducting loop that shows clas-
sical Little-Parks oscillations.24–26 As the NS interfaces
are the same for both arms of the loop, this device po-
tentially can behave as a perfectly symmetric dc SQUID,
provided that the length of the two normal metal arms
are the same.

To understand the flux-tunable thermal activation bar-
rier in these SNS junctions, we use quasiclassical theory
and a simple one dimensional model to calculate the en-
ergy of the system as a function of the phase difference ϕ
between the two superconductors (see appendix for de-
tails). The energy of the system is given by (see, e.g.,

Ref. [27], page 198)

EJ(ϕ,Φ) =
~
2e

∫ ϕ

dϕ′Is(ϕ
′,Φ), (1)

where Is(ϕ
′,Φ) is the supercurrent through the system,

which is a periodic function of the phase difference ϕ′

and the externally applied flux Φ. To calculate Is, we
use the extended circuit theory28 and numerically solve
the Usadel equations for the sample geometries shown in
Figs. 1(a) and 1(b). In the simple model we assume that
the interfaces between the normal metal (N) and the su-
perconductors (S) are perfectly transparent, the gap ∆
regains its bulk value in the superconductor within a very
short distance of the NS interface, and that the distribu-
tion of quasiparticles in the superconducting reservoirs
is given by the equilibrium Fermi function f(E). Since
the characteristic unit for the supercurrent for an SNS
junction is ETh/eR, we use (~/2e2R)ETh as the charac-
teristic unit of energy for EJ ,17 with L being the length
of one side of the loop. For the parameters used in this
simulation, the amplitude of the supercurrent is about
0.2 ETh/eR, so the modulation of EJ at fixed Φ is about
0.4 (~/2e2R)ETh (note that since EJ has an arbitrary
constant from the integration in Eq. (1), in Fig. 1 we
assume EJ = 0 at ϕ = −2π).

The resulting energy profiles are shown in Figs. 1(c)
and 1(d) as a function of ϕ and Φ, the two parameters un-
der external experimental control. If Φ is fixed at integral
values of the superconducting flux quantum Φ0 = h/2e,
there is an energy barrier for evolution of the phase, as
shown by the trajectories of the blue particles at zero
flux, so that at low temperatures, the phase ϕ is station-
ary, and no voltage is developed across the device. For
half-integral values of the applied flux (Φ = (n+ 1/2)Φ0,
where n is an integer) there is a difference between the
asymmetric and symmetric cases. For the asymmetric
case, there is still a small energy barrier, as shown by
the trajectory of the red particle in Fig. 1(c). Conse-
quently, the resistance at odd half-integral flux quanta
will eventually vanish if the temperature is low enough,
in the absence of quantum tunnelling. In contrast, for
the symmetric case, there is no energy barrier at odd
half-integral flux quanta (as shown by the trajectory of
the red particle in Fig 1(d)), so that the device will have
a finite resistance even at the lowest temperatures.

II. ZERO BIAS MAGNETORESISTANCE

Figures 2(a) and 2(b) show the resistance of the asym-
metric and symmetric devices respectively as a function
of applied magnetic flux at a number of temperatures.
The details of fabrication and measurement are similar
to those reported elsewhere.3 The data are taken in the
limit of zero dc current, with only a very small ac cur-
rent for the resistance measurement (about 10-20 nA).
For the small devices studied here the geometrical in-
ductance is estimated to be about 1 pH, and the ratio
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FIG. 2: (Color online) Resistance as a function of applied
magnetic flux for the asymmetric sample (a) and the symmet-
ric sample (b) at 0.6 K (blue curves), 0.4 K (green curves),
and 0.03 K (red curves). While the oscillations for the asym-
metric device die out rapidly with decreasing temperature,
the oscillations for the symmetric device survive to the low-
est measurement temperature. (c) Magnetoresistance of the
symmetric device around Φ = Φ0/2 at four different temper-
atures. The solid lines are fits to the AH theory as described
in the text. Below 0.15 K, the magnetoresistance does not
change with temperature. (d) Critical current at zero applied
flux for the symmetric and asymmetric devices. The plus
symbols show the critical current expected from the fits of
(c), multiplied by a factor of 5, as described in the text.

2LIc/Φ0 ∼ 10−4 (see, e.g., Ref. [27], page 227), so it is
safe to neglect the geometrical inductance effect and no
hysteresis behaviour is observed.

At higher temperatures, the resistance is finite at all
values of Φ for both geometries, and is periodic in the
applied flux, with a fundamental period of Φ0. As the
temperature is lowered, the resistance for both devices
vanishes near Φ = nΦ0. As the temperature is lowered
still further, the resistance of the asymmetric device also
vanishes at odd half-integral values Φ = (n + 1/2)Φ0 of
the applied flux. In contrast, the resistance of the sym-
metric device at Φ = (n+ 1/2)Φ0 remains finite down to
the lowest temperatures, while the peak width narrows as
the temperature is lowered, saturating below about 0.15
K, as shown for the peak around Φ = Φ0/2 in Fig. 2(c).

According to the physical picture for the symmetric
device in Fig. 1(d), there is a small but finite barrier for
the system to overcome, except at exactly half-integral
values of flux. This barrier decreases monotonically as
the system approaches Φ = (n + 1/2)Φ0. In fact, for
conventional junctions the Josephson coupling energy is
Ej = (~/2e)Ic, Ic being the critical current. In our SNS
junction case, Ej is given by Eq. (1), and is a function
of the external flux Φ. Assuming symmetrical long junc-
tions, we obtain the usual sinusoidal dependence of the

current Is on ϕ, with the Josephson coupling energy

Ej =
~Ic(Φ)

2e
, (2)

where Ic(Φ) = Ic(0)| cos(πΦ/Φ0)|, the same as that for
a symmetric dc SQUID (see, e.g., Ref. [27], page 215).
Thus, as the temperature is lowered, the system needs
to be closer to Φ = (n+ 1/2)Φ0 until the energy barrier
is low enough for the particle to jump over and for the
junction to exhibit a finite resistance. At even lower tem-
peratures, the system may tunnel through the barrier,
resulting in a temperature independent resistance. How-
ever, it is necessary to verify whether the electron tem-
perature follows the bath temperature or not,29 which is
non-trivial and will not be discussed here. We note that
the measured critical current saturates at lower temper-
atures and is about 10 times smaller than the value pre-
dicted in the zero temperature limit,17,23 probably due to
an imperfect SN interface, fluctuations, and heating.29

To quantitatively model the magnetoresistance around
half-integral flux values for the symmetric device, we can
use AH theory for RSJ model, as extended here to a dc-
SQUID with a flux-tunable barrier. The AH theory pre-
dicts that the normalized resistance in the zero current
limit is given by

RAH = I−2
0 (γ/2) (3)

where I0 is the modified Bessel function, and γ =
2Ej/kBT is the ratio between the barrier and the ther-
mal fluctuation energy. From Eq. (2), we have γ =
~Ic(Φ)/ekBT , and we can then fit the magnetoresistance
of the symmetric device near Φ = Φ0/2 using the AH
theory with Eq. (3).

The solid lines in Fig. 2(c) show the resulting fits of
R(Φ) at four different bath temperatures, using only the
measured peak resistance Rp at Φ = Φ0/2 and zero field
critical current Ic(0) as fitting parameters. Figure 2(d)
shows a comparison of Ic(0) obtained from the fits (mul-
tiplied by a factor of 5) compared to the experimentally
measured values of Ic(0). The fitted values of Ic(0) are
a factor of 5 smaller than the experimentally measured
values of Ic(0) over the entire temperature range. Con-
versely, we can claim that the effective noise temperature
TN is 5 times larger than Tb since only the ratio between
Ej and kBT matters.

The strong correlation between the measured and the
fitted values indicates that the AH theory is somewhat
applicable for the flux-tunable proximity junction near
Φ = Φ0/2, but the effective potential barrier for thermal
activation appears to be smaller by about a factor of 5
compared to Eq. (2). As this factor is temperature in-
dependent, this “enhanced” fluctuation could not be due
to quantum fluctuations,26 nor due to heating. In fact, if
there is heating during measurements of Ic then the mea-
sured Ic should be smaller than that inferred from the
thermal activation model at zero current limit, but the
opposite is observed. This discrepancy could be related
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FIG. 3: (Color online) Differential resistance at 0.4 K for s1,
(a), and for s2, (c). Different colors correspond to different
applied magnetic flux: 0 (magenta), 0.25 (blue), 0.375 (red),
and 0.5 (green) in units of Φ0. Solid lines are fits using AH
model. (b) and (d) show the flux dependence of the noise
temperature TN (red) and critical current Ic (blue) extracted
from the AH fits of the differential resistance in (a) and (c).
The insets are SEM images of the devices with false color
enhancement. The area colored in gold is Au and the area
colored in purple is Al. The white scale bars are 1 µm.

to the assumption of a standard external shunt resistor as
the thermal noise source in the RSJ model, while the SNS
junction is self-shunted, or it could be due to the neglect
of inverse proximity effect in superconducting electrodes
and formation of minigap in the normal metal,16 which
may change the relation between Ic and Ej in Eq. (2).
To better understand this “enhanced” fluctuation, below
we characterize devices beyond the zero bias limit.

III. FINITE BIAS

Finite bias measurements were conducted on two rep-
resentative proximity junction devices with supercon-
ducting Al electrodes of different widths: about 110 nm
and 220 nm respectively for devices s1 and s2, see Ta-
ble I for other parameters, and insets of Fig. 3 for SEM
images. The Al wires extend for several micrometers on
each side of the loop before overlapping with Au leads
for four-probe measurements.

As in early investigations for conventional Josephson
junctions,30–32 we measured the differential resistance of
the two proximity junction devices at 0.4 K, as shown in
Fig. 3, and fit the data by numerical differentiation of the
voltage in the AH theory.7 In the limit of small currents
(x = I/IC < 1) and low temperatures (γ = IC~/ekBT �
1), the normalized voltage v = V/ICR is

v = 2
√

1− x2 exp[−γ[
√

1− x2 + x sin−1 x]] sinh[πγx/2].
(4)

As for RAH in Eq. (3), the essential fitting parameter is γ,
the ratio between the energy barrier EJ and the thermal

TABLE I: Sample parameters of two representative proximity
junction devices: wAl and tAl are the width and thickness of
the Al electrodes, wAu and tAu are the width and thickness
of the Au loops, Tc and Hc are the critical temperature and
critical magnetic field of the Al electrodes, which is sensitive
to wAl for quasi-1D wires.

wAl tAl wAu tAu Tc Hc

nm nm nm nm K Gauss

s1 110 88 90 50 1.2 600

s2 220 81 90 45 1.1 220

energy kBTb. Assuming Ej is just the Josephson coupling
energy in Eq. (2), then we need to replace Tb (0.4 K)
with an effective noise temperature TN to characterize
the enhancement of fluctuations.

In Fig. 3 we show the result of fitting at several dif-
ferent flux values (in unit of Φo), with both TN and Ic
used as fitting parameters. When EJ is suppressed at
around half flux quanta, TN reaches its maximum, and
the quality of the fit is good to large values of I. When EJ

is maximum at around integer flux quanta, there is clear
deviation of the fit from the experimental data as the bias
current approaches Ic, and we can only fit the low current
bias regime. Compared to previous investigations,30–32

here we can tune the Josephson coupling (EJ) without
varying the physical temperature, which gives us a knob
to tune γ at a constant temperature.

In Fig. 3 (b) and (d), the values of Ic and TN result-
ing from the fits are plotted as a function of cos(πΦ/Φ0),
i.e., the normalized Ej . Ic has a linear dependence on
cos(πΦ/Φ0), as expected. TN also increases monotoni-
cally from Φ = Φ0 to Φ = 0, but the dependence of TN
with flux is difficult to interpret within the AH theory.
For conventional SQUIDs, it is known that near half flux
quanta there are multiple metastable states which may
lead to enhanced fluctuations. However, such enhanced
fluctuations have not been reported in previous escape
rate experiments.33–37 A somewhat similar scenario is
the mesoscopic fluctuations in SNS junctions consider-
ing the situation that several stationary states may exist
at a given current,4,38,39 but the supercurrent fluctuation
cannot explain the flux dependence.

It is clear that the fitted values of TN are larger for s1
than for s2. Since s1 has thinner superconducting leads,
a larger TN may suggest that the thermal activation en-
ergy barrier is related to the dimensions of the super-
conducting leads, reminiscent of the fact that in TAPS
theory ∆F is proportional to the cross-sectional area.
Further investigation is required to verify this claim.

In recent experimental investigations on proximity
junctions,4–6 current-voltage characteristics (CVC) were
often presented, and strong broadening was reported
when comparing experimental data to the intrinsic
broadening predicted by the AH theory and RSJ model.
Here the measured CVC (measured at the same time as
the differential resistance) are plotted in Fig. 4 for com-
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TABLE II: Fitting parameters. See Fig. 3 for fitting of dV/dI using AH theory, Fig. 4 for fitting of IVC using AH theory, Fig. 5
for fitting of IVC using LAMH theory, and Fig. 6 for fitting of R(T ) with three different models.

dV/dI AH fit IVC AH fit IVC LAMH fit R(T) Little fit R(T) LAMH fit R(T) SNS fit

(dV/dI)N RN I0 A B RN Tc c RN Tc D c RN Tc a b

Ω Ω µA µV Ω K Ω K Ω Ω K

s1 5.8 5.8 0.07 0.33 6.2 6 0.78 14 6 0.92 550 15 6 1.2 1 × 105 14.8

s2 6 5.8 0.04 0.11 5.8 6 0.64 14 6 0.77 550 15 5.5 1.1 7 × 104 15

FIG. 4: (Color online) Current voltage characteristics at 0.4
K for s1: (a) and (b), and s2: (c) and (d). The absolute value
of voltage is plotted as the y axis in (a) and (c), in log scale,
and in (b) and (d), in linear scale. Solid lines are fits using
AH theory with the same TN in Fig. 3.

parison. The strong broadening can be fit well in the
regime I < Ic by Eq. (4) with the same TN in Fig. 3. At
higher current bias the CVC collapse to a single curve,
and cannot be fit. For sample s2, although the supercon-
ducting electrodes are wider than that of s1, the critical
current is smaller probably due to a less transparent in-
terface. The deviation at higher bias is less obvious for s2
since the spreading of Ic is smaller. We also show in Fig.
4 the CVC on a logarithmic scale for later comparison
with fits using the TAPS model.

As discussed in the introduction, in terms of analy-
sis, superconducting proximity junctions lie somewhere
between weakly coupled conventional junctions and
(strongly coupled) superconducting wires. Consequently,
besides the AH theory for junctions, we also can try the
LAMH theory for superconducting wires to fit the CVC
of our devices. For thin superconducting wires, the aver-
age voltage generated by TAPS due to thermal fluctua-
tions is11,12

VLAMH =
~Ω

e
e−∆F0/kT sinh

δF

2kT
, (5)

where ∆F0 = (8
√

2/3)(H2
c /8π)Aξ is the energy barrier,

Ω = (L/ξ)(∆F0/kT )1/2τ−1
GL is the attempt frequency,

FIG. 5: (Color online) Current voltage characteristics at 0.4
K for s1, (a), and for s2, (c), fitted by V (I) = V0 sinh(I/I0).
In (b) and (d) the fitting parameter V0 is plotted as a function
of flux.

τGL = π~/8k(Tc − T ) is the Ginzburg-Landau (GL) re-
laxation time, δF = hI/2e is the difference in the en-
ergy barrier for phase slips in two directions (see, e.g.,
Ref. [27], page 291), A is the cross-sectional area, and ξ
is the GL coherence length. Note that the hyperbolic sine
term in Eq. (5) has the same form as in the AH theory
(see Eq. (4)). For our devices, ∆F0 should be consider-
ably lower than ∆F0 for a superconducting wire . Using
interrelations of quantities from GL theory, the energy
barrier can be reformulated as40

∆F0 =
√

6(~/2e)Ic, (6)

which is similar to the form of EJ in Eq. (2). Thus,
∆F0/kT in the LAMH theory is comparable to γ in the
AH theory.

At constant temperature, Eq. (5) can be simplified to
VLAMH(I) = V0 sinh(I/I0), as Ω and ∆F0 should have
a much weaker dependence on the bias current I than
the hyperbolic sine term.41 Here V0 is the flux dependent
prefactor, and I0 = 4ekBT/h is a constant27 at fixed
temperature. At 0.4 K I0 is 0.0052 µA. In Fig. 5 CVC at
different fields are fitted by this simplified equation (see
Table II for fitting parameters). The fitting parameter I0
for s1 (s2) is ∼ 0.07 (0.04) µA, about 10 times larger than
the expected value. Previously, about 40% increase of
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FIG. 6: (Color online) Resistance tail at zero field for s1, (a),
and for s2, (b). The green lines are fits using Little’s theory,
the blue lines are fits using LAMH theory, and the red lines
are fits combining Little’s equation and quasiclassical theory
for proximity junctions (RSNS(T )). The fitting parameters
are listed in Table II.

I0 was reported for MoGe superconducting nanowires,41

but here the increase of I0 is much larger. To characterize
the increase of I0, we can again assume an effective noise
temperature TN that is about 10 times higher than the
bath temperature Tb, similar to that in fitting with AH
theory. However, here TN is flux independent, better
than the AH fit where TN is flux dependent as shown
in Fig. 3. We note that I0 = 4ekBT/h is a constant
deduced from the energy barrier δF in Eq. (5), where 2π
phase jumps in two directions is assumed. For nanoscale
proximity junction, this 2π phase jump assumption may
need modification.

The constant V0 can be fit with a simple exponen-
tial equation y = Ae−Bx as shown in (b) and (d) of
Fig. 5, following Eq. (5). Using Eq. (6) and Ic(Φ) =
Ic(0)| cos(πΦ/Φ0)|, we can rewrite V0 as

V0(x) = Ae−Bx =
~Ω

e
exp[−

√
6~Ic(Φ = 0)

2ekT
x], (7)

where x = cos(Φ/Φ0). The factor in front of x can be

reformulated as B =
√

6Ic(Φ = 0)/πI0. In Fig. 5 (a), if
we define the critical current Ic as the current at which
the measured voltage approaches 1 µV, then at zero flux
Ic ∼ 0.56 µA. Since I0 = 0.07 µA for s1, the expected
B ∼ 6.24, very close to the fitted value of Bfit = 6.2
(see Table II). This means we do not need to introduce
parameters other than the flux independent TN to fit all
CVC data. For s2 the expected B is 6.83, slightly higher
than Bfit = 5.8, which could be due some uncertainty
in defining the Ic values. Our analysis indicates that in
general, it seems that the LAMH theory is better than
AH theory for fitting the CVC for nanoscale proximity
junctions.

IV. RESISTANCE TAIL

The thermal activation theory can fit the resistance
tail slightly below Tc for a thin superconducting wire. In
the simplest case, we have the Arrhenius law proposed

by Little10,42

R(T ) = RNe
−∆F/kBT

= RN exp[−c(1− t)3/2/t], (8)

where t = T/Tc, c = ∆F0(0)/kTc is the temperature
independent activation constant.

As we noted earlier, the energy barrier for a prox-
imity junction could be considerably lower than that
for a superconducting wire, and Eq. (6) is used for a
practical estimate of c from the measured Ic. Taking
B =

√
6Ic/πI0 ∼ 6.24 obtained at 0.4 K, and the fitting

parameter Tc = 0.78K (see Table II for the fitted Tc val-
ues with Little and LAMH models, which is somewhat
arbitrary42), from B = c(1 − t)3/2/t we find c = 9.41,
close to the cfit extracted from the R(T), as listed in
Table II.

In the full LAMH theory the attempt frequency term
is added to Eq. (8) (while the prefactor RN is dropped),
and the resistance below Tc derived from Eq. (5) in the
zero bias limit is42

RLAMH =
V0

I0
e−∆F0/kT

= Dt−3/2(1− t)9/4 exp[−c(1− t)3/2/t], (9)

where D is the attempt frequency constant. The total
resistance is given by R = (R−1

N + R−1
LAMH)−1 as quasi-

particles provide a parallel conduction channel to the su-
peconducting channel. The values of c for the LAMH
fits and and the fits to Eq. (8) are very close since R(T )
is very sensitive to the exponential term. The attempt
frequency constant D = (8/π)(L/ξ(0))RQ

√
c is formu-

lated for a superconducting wire with length L, where
RQ ≡ h/4e2 is the resistance quantum. From the fitted
values of D and c we get L/ξ(0) ∼ 0.01, a very small
value as expected for proximity junctions.

In the analysis above, the fit for R(T ) is valid only in a
narrow regime below the fitted Tc, which is due to the fact
that ∆F0 is estimated using Eq. (6), where for supercon-
ducting wires near Tc, Ic ∝ (1−t)3/2. For SNS junctions,
quasiclassical theory has shown that in the long junction
limit (∆� ETh), the simplified solution is43,44

eRNIc = (32/(3 + 2
√

2))ETh(L/LT )3e−L/LT , (10)

where LT =
√
~D/2πkBT is the thermal length in the

diffusive limit, and D is the diffusion constant of the nor-
mal metal. We can put this Ic(t) dependence into ∆F of
Eq. (8), which results in:

RSNS = RN exp[a
√
te−b

√
t],

a =
~

e2RN

16

3 + 2
√

2
πb, b =

L√
~D/2πkBTc

. (11)

The formula is valid to much higher temperatures as
shown by the red lines in Fig. 6, and there is no need to
assume an arbitrary Tc for the junction that is lower than
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Tc of Al. Close to the Tc of Al the fits deviate slightly
from the data, probably because the long junction limit
is no longer applicable, and also may due to the inverse
proximity effect. With sample parameters L ∼ 1 µm, and
D ∼ 100 cm2/sec, a and b are estimated to about 5×104

and 10, the same order as the fitted values. We note
that with the other thermal activation model, similarly
fits can be achieved by using the zero current limit of
junction resistance in AH theory RAH = RNI−2

0 (γ/2),
where I0 is the modified Bessel function. However, in
that case the fitted a values are much smaller than the
estimate.

V. SUMMARY

In conclusion, we have measured nanoscale proximity
junctions made of a mesoscopic normal-metal loop con-
tacted by thin superconducting electrodes. The effect of
thermal fluctuations in these devices can be characterized
by an effective noise temperature. We find that the mea-
surement results can be better described by the LAMH
theory for thin superconducting wires, rather than by the
AH theory for weak coupled Josephson junctions. With
the LAMH theory, only the effective enhanced noise tem-
perature (equivalent to the reduction of thermal activa-
tion barrier) is required to fit the data at different flux
values. We also find that quasiclassical theory can be
combined with thermal activation theory to fit R(T) of
proximity junction devices. These observations indicate
that for nanoscale proximity junctions we need to con-
sider the finite size effect of the superconducting elec-
trodes, and a quasiclassical model more completed than
the simple one-dimensional model presented here may be
needed to compute the reduction of the energy barrier.

This research was conducted with support from the
National Science Foundation under grant No. DMR-
1006445.

Appendix: Simulation

The simulations shown in Fig.1 were done by solv-
ing the linearized Usadel equations in the Riccati
parameterization.45,46 In the normal-metal wire, the sim-
plified Usadel equation reads

∂2
xγ + 2iεγ = 0. (A.1)

Here the coherent function γ is a complex function of
distance x and energy ε, normalized by the total length L
and Thouless energy ETh respectively. The equation can
be readily solved with appropriate boundary conditions.

For the SNS SQUID model shown in Fig. 7, we
match the solutions of 4 normal-metal wires by speci-
fying boundary conditions at the two nodes and at the
SN interface,28,47 e.g., at the node connecting wire 1, 2,

FIG. 7: Schematic of the SNS SQUID with applied magnetic
flux Φ and phase difference ϕ between two superconducting
reservoirs. Numbers 1-4 correspond to normal-metal wire seg-
ments.

and 3 we have

γr(1) = γl(2),

γr(1) = γl(3),

A(1)∂xγr(1) = A(2)∂xγl(2) +A(3)∂xγl(3), (A.2)

where A(n) is the normalized product of the cross-
sectional area and the normal conductance of the wire,
and the subscript l, r indicates the left or right end of
the wire. Similar boundary conditions are used for the
node connecting wire 2, 3, and 4 with phase factor due
to the flux taken into account. As mentioned in the main
text, here we assume the gap in the superconductor is not
affected by the normal-metal wire so that the coherent
function takes its value in bulk superconductor,

γ0 = − ∆

ε+ i
√

∆2 − ε2
. (A.3)

After solving the equations, we compute the spectral
supercurrent

jE = <
[

2(γ̃∂γ − γ∂γ̃)

(1 + γγ̃)2

]
, (A.4)

where γ̃ is the time reversed coherent function. Then we
integrate the spectral supercurrent to find total super-
current

Is =

∫
jE tanh(

ε

2T
)dε. (A.5)

Since the spectral current is a conserved quantity, this
calculation can be done at any point of the wire. For
wire segments 1 and 4, the total current is the super-
current through the SNS SQUID, a dimensionless quan-
tity normalized by Ec/eR,17,44,46 where R is the normal
resistance of wire of length L. The critical current at
particular Φ is calculated by finding the maximum to-
tal current while varying ϕ. With the leading order ap-
proximation, the critical current shows the conventional
|cos(π(Φ/Φ0))| modulation. The energy of the system as
a function of the flux Φ and phase difference ϕ is then
computed according to Eq. (1). The results shown in
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Fig. 1, normalized by (~/2e2R)Ec, were computed for
following parameters: ∆ = 30, T = 10, both normal-
ized by Ec, length is 1/3 for all 4 segments, normalized
by L, and A is [1,1,1,1] for the symmetric device and
[1,1,0.75,1] for the asymmetric device, normalized by R
and cross-section area.
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