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Magnetic impurities affect the spectrum of excitations of a superconductor and thus influence its
impedance. We concentrate on the dissipative part of the surface impedance. We investigate its
dependence on frequency, magnetic impurities density and strength, and on quasiparticles density
and their temperature. Even a small concentration of weak magnetic impurities significantly modifies
the excitation spectrum in the vicinity of the BCS gap. Therefore, we give special attention to
the absorption threshold behavior at zero temperature and to the low-frequency absorption by
quasiparticles. The discrete energy states introduced at low density of magnetic impurities may
serve as traps for non-equilibrium quasiparticles, reducing the absorption in some range of low
radiation frequencies.

PACS numbers: 74.25.nn, 74.25.N-, 75.20.Hr, 73.20.Hb

I. INTRODUCTION

Electron scattering off magnetic impurities, unlike the
potential scattering, substantially modifies the properties
of s-wave superconductors. It was realized in the seminal
work by Abrikosov and Gor’kov1 (AG) that the presence
of magnetic impurities reduces the superconducting gap
below its BCS value and eventually may lead to the phe-
nomenon of gapless superconductivity. The gap suppres-
sion was investigated by means of tunneling between nor-
mal and superconducting electrodes.2,3 Beyond the AG
theory, it was realized that a single magnetic impurity
creates a localized state within the BCS gap.4–7 A small
concentration of magnetic impurities results in formation
of an impurity band6,7 which merges with the continuum
as the concentration exceeds a certain value, see Ref. 8
for a review. (The original AG theory is valid above that
value.) The impurity band was investigated by tunnel-
ing experiments with alloys (such as PbMn)9 and normal
metal–superconductor bilayers,10 and also by means of
thermal transport in superconducting films.11 The obser-
vation of discrete levels associated with a separate mag-
netic impurity came later in the STM experiments.12,13

The effect of magnetic impurities came under scrutiny
recently in connection with limits on performance
of superconducting elements in qubits14 and pho-
ton detectors.15 In these applications, superconductors
should perform in the AC regime. There is also
some experimental effort directly aimed at observa-
tion of the effect of magnetic impurities on the surface
impedance of superconducting multilayers16 and uncon-
ventional superconductors.17–19 Theoretically, the results
on impedance16–19 were analyzed in the framework of
simple two-fluid model. The two-fluid model assumes a
simplified frequency-independent Drude-type dissipative
conductivity σ, while the influence of magnetic impuri-
ties on electron spectrum should lead to a nontrivial σ(ω)
dependence on the frequency ω.
Theoretical approach to studying the surface

impedance in superconductors was developed in
the celebrated work of Mattis and Bardeen,20 which
treated the anomalous skin effect (the skin depth is
smaller than the mean free path) taking nonmagnetic
disorder into account. Independently, the clean case was
considered by Abrikosov, Gor’kov, and Khalatnikov21,22

in the Green-function language. Later Nam23 employed
the same technique and demonstrated that the extreme
anomalous limit is equivalent (up to the expressions for
the normal-metallic conductivities) to the local limit,
realized in the dirty regime. The complex conductivity
of a superconductor containing both potential and
magnetic impurities was addressed by Skalski et al.24

Their paper does contain general results applicable in
the case of weak magnetic scattering, however, similarly
to the AG theory, scattering off magnetic impurities
was considered in the Born approximation, which did
not allow to treat the effect of localized states on the
impedance. In Ref. 25, Larkin and Ovchinnikov con-
sidered superconductors with inhomogeneous pairing,
which under certain assumptions is formally equivalent
to the presence of magnetic impurities in the AG regime.
Some of their results can therefore be applied to this
problem. However, a convenient formulation of the
theory, suitable for the experimentally relevant dirty
limit and allowing to treat both the AG regime and
the impurity band, as well as detailed quantitative
investigation of the effect of magnetic impurities on the
surface impedance in different regimes over temperature,
frequency, and electron scattering rate off magnetic
impurities is still lacking, to the best of our knowledge.

In this paper, we study the influence of magnetic impu-
rities on the complex conductivity and surface impedance
of a superconductor. We are especially interested in the
limit of low frequency of the impinging radiation and low
temperature, and in the effect of the impurity band on
the dissipation. Quantitative results are presented for
the experimentally relevant dirty limit (with respect to
the nonmagnetic disorder).
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The paper is organized as follows. First, in Sec. II, we
consider the limit of weak scattering off magnetic impuri-
ties and disregard nonmagnetic disorder (“clean” limit).
In that limit, we find the localized states bound to mag-
netic impurities, discuss the formation of the impurity
band at finite but small concentration of magnetic im-
purities, and the formation of the AG density of states
at higher concentrations. We also present there a quali-
tative consideration of the dissipative conductivity. The
main features of the developed simple picture carry over
to the realistic case of a “dirty” superconductor doped
with magnetic impurities. In Sec. III, we consider the
dirty limit for the nonmagnetic disorder in the framework
of the quasiclassical formalism of the Usadel equation.
We first obtain the spectrum of quasiparticle excitations
in the presence of magnetic impurities (treated beyond
the Born approximation). Then we address the effect of
magnetic impurities on the low-temperature dissipative
conductivity. In addition to the low-frequency limit, we
also consider in detail the frequency dependence of the
dissipation near the thresholds determined by the gaps
in the excitation spectrum. Our results are summarized
in Sec. IV. Some technical details are presented in Ap-
pendices.

II. CLEAN LIMIT

To highlight the main features of the problem related
to the impurity states, we consider here a simplified case
of a superconductor with magnetic impurities only. In
addition, considering the hybridization of single-impurity
states into an impurity band we first assume magnetic
impurities to be polarized (magnetic moments pointing
up the z axis), while the impurity positions are random.
Furthermore, we assume the exchange constant J of in-
teraction of localized classical spins S with the spins of
itinerant electrons to be small. Introducing the dimen-
sionless parameter

ζ = πν0JS, (1)

describing the “strength” of a single magnetic impurity,
we can write the latter requirement as

ζ ≪ 1. (2)

Here ν0 = k2F /2π
2vF is the electron density of states

(DoS) per spin projection at the Fermi level in the nor-
mal state, with kF and vF being the Fermi wave vec-
tor and the Fermi velocity, respectively. Weak exchange
interaction will modify substantially the excitation spec-
trum only close to the gap. Concentrating on that energy
region, we simplify the Hamiltonian of the system in the
following way. First, we express the operator of exchange
interaction of electrons with an impurity (placed at ori-
gin, R = 0) in terms of the Bogoliubov quasiparticles
(ψ and α are the operators of electrons and Bogoliubov

quasiparticles, respectively):

JS
∑

k1,k2,σ

σψ†
k1σ

ψk2σ

= JS
∑

k1,k2

[

(uk1
uk2

+ vk1
vk2

)(α†
k1↑αk2↑ − α†

k1↓αk2↓)

−(uk1
vk2

− uk2
vk1

)(α†
k1↑α

†
−k2↓ − α−k1↓αk2↑)

]

, (3)

where k1(2) are momenta and σ is the spin index (+
for ↑, − for ↓). At the same time, the standard BCS
part of the Hamiltonian becomes diagonal after the Bo-
goliubov transformation, with the excitation energies
Ek =

√

ξ2k +∆2 in the superconducting state. Here ∆
is the BCS gap and ξk are the excitation energies in the
normal state. Close to the gap (|Ek −∆| ≪ ∆), we can
approximate Ek ≈ ∆+ ξ2k/2∆, while the Bogoliubov co-

herence factors are simply uk ≈ vk ≈ 1/
√
2, so finally

the total Hamiltonian takes the form

Ĥ =
∑

k,σ

εkα
†
kσαkσ + JS

∑

k1,k2,σ

σα†
k1σ

αk2σ, (4)

where εk = ξ2k/2∆ and we measure the quasiparticle en-
ergies from the edge of the continuous spectrum ∆:

ε = E −∆. (5)

A. Single-impurity bound state

It is easy to see that Hamiltonian (4) has a bound
state for quasiparticles with spin σ satisfying the condi-
tion JSσ < 0. For definiteness, hereafter we set J > 0;
then the bound state exists for spin down. We denote the
wave function of the bound state in the momentum rep-
resentation as ϕk; the Schrödinger equation for it, which
follows from the form of Hamiltonian (4), reads

(ε0 − εk)ϕk = −JS
∑

k1

ϕk1
. (6)

Clearly, the wave function must have the form ϕk ∝ (ε0−
εk)

−1. Substituting it into Eq. (6), we find the equation
for the energy of the bound state (ε0 < 0),

1 = JS

∫

dk

(2π)3
1

εk − ε0
, (7)

yielding

ε0 = −2ζ2∆ (8)

at ζ ≪ 1. The power-law dependence, ε0 ∝ ζ2, is a
direct consequence of the excitations spectrum εk. The
convergence of the integral in Eq. (7) at ξk ∼ ζ∆ ≪
∆ validates the use of the simplified form of Ek. We
emphasize that in order to obtain the bound state, it
was essential to go beyond the Born approximation.6,7



3

The wave function of the bound state in the coordinate
representation has the form

ϕ(r) =
sin kF r

r
√

πξ0/2ζ
exp

(

− r

ξ0/2ζ

)

, (9)

where ξ0 = vF /∆ is the coherence length of a clean su-
perconductor.
The wave function of the localized state decays expo-

nentially on the spatial scale which exceeds the coherence
length by the factor 1/ζ. Clearly, the effect of multiple
magnetic impurities on the quasiparticle spectrum de-
pends crucially on the characteristic distance between
them compared to ξ0/ζ. At lowest concentrations ns,
separate magnetic impurities create a δ-peak in the quasi-
particles DoS. With the increase of the concentration the
peak broadens. As long as the average inter-impurity dis-
tance is large, the broadening is due to rare occurrences of
closely-located impurity pairs producing split levels due
to their hybridization.26 However, at higher concentra-
tions, ns(ξ0/ζ)

3 ≫ 1, the bound state on a given impu-
rity overlaps with a large number of other localized states
and forms a well-defined impurity band. This large pa-
rameter allows one to treat the density of states in that
band self-consistently.

B. Impurity band

We start with an estimate of the impurity band width
W . A quasiparticle initially localized on a given impu-
rity may hop on ∼ ns(ξ0/ζ)

3 ≫ 1 “nearest neighbors”.
Because of their large number, the return of the quasi-
particle is improbable. Therefore, we may introduce the
escape rate Γi for a given impurity. It will determine the
level width, and we will associate it with the width of the
band, Γi ∼ W . On the other hand, the escape rate from
a given site is proportional to the density of states on
the “receiving” ones. The latter is inversely proportional
to W . This way, the formula for the escape rate turns
into a self-consistent equation for W (this is the essence
of the self-consistent Born approximation for degenerate
states, analyzed in detail in the context of the broadening
of high Landau levels27,28). To implement the scheme, we
denote the hopping matrix element between two impu-
rity states i and j, at positions Ri and Rj, as tij . The
said self-consistency equation reads

W ∼
∑

j

|tij |2 ·
1

W (10)

(upon summing over positions j, the dependence on i dis-
appears). The estimate of tij should be obtained from a
consideration of the two-impurity problem. Tunneling
between two impurity sites splits the degenerate level
in two. The resulting energy splitting depends on the
inter-impurity distance Rij . Similarly to the conven-
tional tight-binding problem, it is this energy splitting

that should be identified with 2|tij |. This way, we find
|tij | ∝ |ϕ(Rij)|. To estimate the proportionality coef-
ficient here, we note that the energy splitting reaches
a value of the order of |ε0| if kFRij ∼ 1. Therefore,
|tij | ∼ |ε0| · |ϕ(Rij)| / |ϕ(1/kF )|. This estimate is con-
firmed by a solution of the energy splitting problem,
which is easily obtained by the generalization of Eqs. (4)-
(7) to the case of two impurities.29

Summation over the random positions of the impurities
j results in

∑

j |tij |2 ∼ ε20ns/|ϕ(1/kF )|2 ∼ ε20nsξ0/ζk
2
F .

Remarkably, we used here only the value of the wave
function ϕ(r) close to the impurity and the fact that
ϕ(r) is normalized. This is why one may expect that
the obtained estimate of

∑

j |tij |2 remains valid in the
presence of nonmagnetic disorder, as long as the corre-
sponding mean free path is large compared to the elec-
tron Fermi wave length. (This expectation is indeed con-
firmed by the rigorous consideration of Sec. III.) Sub-
stituting the estimate of

∑

j |tij |2 into Eq. (10) and re-

placing k2F /vF ∼ ν0, we find expression for W up to a
numerical factor. Together with this factor (which will
be found later), the bandwidth in terms of measurable
quantities ns and ε0, reads

W = 4
21/4

π1/2

(

ns

ν0∆

)1/2(
∆

|ε0|

)1/4

|ε0|. (11)

This expression is valid when the band is narrow, W ≪
|ε0|.
The next question is the DoS νB(ε) for the Bogoliubov

quasiparticles (hence the B subscript) inside the impurity
band which can be found from the momentum-integrated
Green function g(ε) as

νB(ε) = − 1

π
Im g(ε+ i0), g(ε) =

∫

dk

(2π)3
GB(k, ε).

(12)
The Green function GB(k, ε) of the Bogoliubov quasipar-
ticles is determined by the Hamiltonian, which now, in
contrast to Hamiltonian (4), contains magnetic impuri-
ties of finite concentration:

Ĥ =
∑

k,σ

εkα
†
kσαkσ + JS

∑

k1,k2,σ,j

σα†
k1σ

αk2σe
i(k2−k1)Rj .

(13)
The Green function can be written in terms of the
self-energy Σ(k, ε) and we treat the self-energy within
the self-consistent T -matrix approximation,31 which dia-
grammatically amounts to the geometric series of Fig. 1:

GB(k, ε) =
1

ε− εk − Σ(k, ε)
, (14)

Σ(k, ε) = − nsJS

1 + JS
∫

dq
(2π)3GB(q, ε)

(15)

(the sign in front of J in the self-energy corresponds to
quasiparticle spin down, which is of interest for us). In-
tegrating Eq. (14) over momentum, we obtain the self-
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FIG. 1. Self-energy Σ(k, ε) corresponding to the self-
consistent T -matrix approximation. The scattering on a sin-
gle impurity (dashed lines) is treated in all orders of the per-
turbation series. The self-consistency is achieved by inserting
the bold lines for the Green functions, which means that they
are calculated with the help of the presented self-energy.

consistency condition for g↓(ε):

JSg↓ = −
√

|ε0|
−ε− nsJS

1+JSg↓

. (16)

The impurity band corresponds to nonzero DoS, i.e., to
nonzero imaginary part of g↓, in some domain of negative
ε. Analyzing Eq. (16) in the limit ns ≪ ζν0∆ (the limit
of narrow band), we find a semi-circle DoS inside the
impurity band:

νB↓(ε) =
4ns

πW Re

√

1−
(

ε+ |ε0|
W/2

)2

, (17)

which is centered at ε0, found earlier in Eq. (8), and has
the width given by Eq. (11) [note that it is the calculation
leading to Eq. (17) that establishes the numerical factor
in Eq. (11)]. The total DoS inside the impurity band
is equal to ns, demonstrating that each impurity brings
one state into the system.32 The same Eq. (16) can be
employed to demonstrate that the lower edge of the con-
tinuous spectrum shifts from zero to εc = n2

s/8π
2ν20∆ at

finite impurity concentrations, and the behavior of the
DoS near the edge is

νB↓(ε) = ν0

√

2∆(ε− εc)

εc
. (18)

(The positive value of εc is a manifestation of the level
repulsion between the states of the continuum and the
impurity states.)
As we mentioned before, a well-defined impurity band

exists [and can be described by the self-consistent T -
matrix method leading to DoS (17)] if ns(ξ0/ζ)

3 ≫ 1
which translates into W ≫ |ε0|

√
ζ(∆/EF ), where EF is

the Fermi energy. With the increase of the impurity con-
centration, the impurity band broadens, W ∝ √

ns. At
ns ∼ ζν0∆, the width of the band becomes of the same
order as the distance from the center of the band to the
continuum edge, resulting in the merger of the impurity
band with the continuum of quasiparticle states. [Quan-
titatively, the analysis of Eq. (16) shows that the energy
gap between the impurity band and continuum exists if
ns/(ζν0∆) < 16π/27 ≈ 1.86.] The two conditions for the
existence of the impurity band, ns(ξ0/ζ)

3 ≫ 1 and ns .
ζν0∆, are consistent since ν0∆ξ

3
0/ζ

2 ∼ (EF /∆ζ)
2 ≫ 1.

gapless
state ns

( )3

separate
levels

impurity
band

single-gap
state

FIG. 2. Different regimes for structure of the DoS due to
polarized magnetic impurities of concentration ns.

In the above discussion, we did not treat the self-
consistency equation explicitly, assuming ∆ that we used
to be the self-consistent order parameter corresponding
to the given impurity parameters. Actually, ∆ is sup-
pressed by magnetic impurities. A gapless state is re-
alized at a critical concentration ns ∼ ν0∆/ζ. At that
concentration the average Zeeman energy associated with
the magnetic impurities,

Ez = nsJS, (19)

is comparable to ∆.33,34 Figure 2 illustrates the results
of the above discussion.
The above consideration of spin-polarized magnetic

impurities can be easily generalized to the case of ran-
domly oriented spins, see Appendix A. It yields Eq. (A3)
for the DoS — now summed over the quasiparticle spin
directions — inside an impurity band of width W , see
Eq. (A4). Comparing Eqs. (A3) and (A4) with Eqs. (17)

and (11), we notice the relationW = W/
√
2 between the

widths of the band. Indeed, randomness of impurity spin
orientations leads to an additional cos(ϑ/2) factor in the
hopping matrix element tij between two impurity states
[see Eq. (10)], and hence to the 1/2 factor in the average
〈

|tij |2
〉

, finally changing the width of the band by the

1/
√
2 factor. (Here ϑ is the angle between the spins of

the two impurities.)
Another difference of the random-spin case from the

spin-polarized case is the absence of the average Zeeman
energy. Upon increasing ns, the gapless state is then
reached due to the electron spin-flip scattering off mag-
netic impurities.1 The latter is characterized by a scat-
tering rate 1/τs which, in the Born approximation, is

1

τs
= 2πν0J

2S2ns =
2ζ2ns

πν0
. (20)

The transition occurs when 1/τs = ∆, that is, at a con-
centration of magnetic impurities ns ∼ ν0∆/ζ

2.

C. Effect of the impurity band on the

electromagnetic field absorption

At finite but low temperatures T , quasiparticles first
populate the impurity band. This results in a finite dis-
sipative part σ1(ω) of conductivity at arbitrary low fre-
quencies. We estimate σ1(ω) at ω ≪W using a suitable
version35 of the Mattis-Bardeen theory.20 We disregard
possible spin selection rules36,37 by assuming that the
spins of magnetic impurities are randomly oriented.
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We may relate σ1 to the absorption power per unit
volume, w = (1/2)σ1E2, where E is the amplitude of the
applied AC electric field. The absorption power can be
evaluated as the product of the photon energy quantum
ω and the rate of creation of quasiparticles. The latter is
∝ E2 and is evaluated with the help of the Fermi Golden
Rule. The perturbation leading to the excitation of the
system is B = (e/2)(Av̂ + v̂A), where v̂ is the operator
of velocity of an electron and A is the vector potential of
the AC field; its amplitude is A = E/ω. The absorption
power associated with the photon-induced transitions of
quasiparticles within the impurity band equals35

w = 2πωB2

∫

dE1dE2[n(E2)− n(E1)]

× νB(E1)νB(E2)(u1u2 + v1v2)
2δ(E1 − E2 − ω). (21)

Writing Eq. (21), we accounted for the fact that the
states in the impurity band do not correspond to a de-
fined momentum, and consequently the latter is not con-
served in the transitions. To estimate the average over
the states B2, we employ the arguments of the work
of Mattis and Bardeen,20 which allow one to express
it in terms of an analogue of the normal conductivity
for the impurity band. That leads us to the estimate
B2 ∼ E2(evF /ω)

2(τ/ν), where τ is the relaxation time
and ν is a characteristic value of the DoS in the impurity
band. Substituting τ ∼ 1/W and ν ∼ ns/W [see Eq.
(A3)], we find

B2 ∼ 1

ns

(evF
ω

)2

E2. (22)

In the case of “shallow” levels (ζ ≪ 1) we may also re-
place the combination of the coherence factors, (u1u2 +
v1v2)

2 ∼ 1. At lowest frequencies, ω ≪ T,W , we may ex-
pand the difference of the quasiparticle distribution func-
tions in Eq. (21) as n(E2) − n(E1) ≈ −(dn/dE)ω. As a
result, we find frequency-independent asymptotic forms
for the dissipative conductivity at T ≪ W and T ≫ W ,

which we express in terms of the density n
(b)
qp of quasipar-

ticles in the impurity band [hence the (b) superscript]:

σ
(b)
1 ∼

{

n
(b)
qp (evF )

2/(TW 3)1/2, at ω ≪ T ≪W,

n
(b)
qp (evF )

2/(TW ), at ω ≪W ≪ T.
(23)

In equilibrium, the density of quasiparticles is

n(b)
qp = 2

∫

dEνB(E)n(E) (24)

∼
{

ns (T/W )
3/2

e−(∆−|ε0|−W/2)/T , at T ≪W,
nse

−(∆−|ε0|)/T , at T ≫W.

In the opposite limit of photon energies high compared
to temperature, we may neglect n(E1) in Eq. (21), finally
finding

σ
(b)
1 (ω) ∼ n(b)

qp (evF )
2/(ωW 3)1/2, T ≪ ω ≪W. (25)

In an ideal superconductor at zero temperature, pho-
ton absorption is possible only for photons with energy ω
exceeding the threshold 2∆ (each photon creates a pair
of quasiparticles). The presence of states within the gap
∆ reduces the threshold frequency and modifies the de-
pendence of the dissipative part of conductivity σ1 on
frequency for ω exceeding the threshold. Similarly to the
above consideration, one may relate σ1(ω) to the absorp-
tion power (cf. Ref. 35),

w = 2πωB2

∫

dE1dE2

× νB(E1)νB(E2)(u1v2 − v1u2)
2δ(E1 + E2 − ω). (26)

As follows from Eq. (A3), absorption is possible only if
the frequency exceeds the threshold,

ω > ωth , ωth = 2

(

∆− |ε0| −
W

2

)

. (27)

To evaluate the absorption, however, the accepted ap-
proximation of shallow levels is insufficient, because it
yields (u1v2 − v1u2)

2 = 0. As it follows from the de-
tailed calculation presented in Sec. III B 1 this factor
(u1v2 − v1u2)

2 ∼ ζ2; the dissipative conductivity scales

as σ
(b)
1 (ω) ∝ (ω − ωth)

2 near the threshold.

III. DIRTY LIMIT

We turn now to the practically important case of short
elastic mean free time τp caused by potential scattering of
electrons and consider the dirty limit, ∆ ≪ 1/τp. We will
see that potential disorder does not affect the electron
spectrum.38 However, its role is essential for transport
properties (complex conductivity and impedance).
In the dirty limit, magnetic impurities of small concen-

tration can be described in the framework of the Usadel
equation.39 The form of the Usadel equation, widely used
in literature,40,41 corresponds to the Born limit for mag-
netic scattering (with random positions and orientations
of magnetic impurities). At the same time, the general-
ization to arbitrary strength of magnetic scattering can
also be obtained, as shown by Marchetti and Simons.38

Employing the standard θ-parametrization of the normal
and anomalous quasiclassical Green functions,

G = cos θ, F = sin θ, (28)

we can write the generalized form as38,42

D

2
∇2θ+ iE sin θ+∆cos θ− 1

2τs

sin 2θ

1 + ζ4 + 2ζ2 cos 2θ
= 0,

(29)
where D = v2F τp/3 is the diffusion constant and E is
the electron energy measured from the Fermi level. We
are interested in the homogeneous solution. Following
Ref. 38, we define a “renormalized” energy and order
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parameter,

Ẽ = E +
i

2τs

cos θ

1 + ζ4 + 2ζ2 cos 2θ
, (30)

∆̃ = ∆− 1

2τs

sin θ

1 + ζ4 + 2ζ2 cos 2θ
. (31)

With these quantities, the homogeneous Usadel equation
becomes simple,

iẼ sin θ + ∆̃ cos θ = 0, (32)

and can be formally solved as

cos θ =
u√

u2 − 1
, sin θ =

i√
u2 − 1

, (33)

where u = Ẽ/∆̃. At the same time, this is not a solu-
tion yet, but an alternative parametrization of the Green
functions in terms of u. The Usadel equation actually
determines the Green functions’ dependence on energy
E, hence in Eq. (33) u itself depends on E. The lat-
ter dependence is determined by the equation, directly
following from Eqs. (30) and (31):

u

(

1 + γs

√
1− u2

u2 − ǫ20

)

=
E

∆
, (34)

where

γs =
1

(1 + ζ2)2
1

τs∆
, ǫ0 =

∣

∣

∣

∣

1− ζ2

1 + ζ2

∣

∣

∣

∣

. (35)

Here γs is the exact scattering rate due to magnetic im-
purities, normalized by ∆, and ǫ0 can be shown to deter-
mine the center of the impurity band, also in the units
of ∆. Since we focus on the case when each impurity is
weak, ζ ≪ 1, we simplify the above expressions as

γs =
1

τs∆
, ǫ0 = 1− 2ζ2. (36)

Once found, u can be immediately applied for analyz-
ing the spectrum. The DoS per spin is given by

ν(E)

ν0
= ReG(E) = Re

u√
u2 − 1

. (37)

It turns out that the potential scattering does not influ-
ence the energy spectrum, since Eqs. (34), (35), and (37)
coincide38 with those obtained by Shiba6 and Rusinov7

in the clean limit (see also Appendix A).

A. Green functions and the density of states

Finite DoS corresponds to complex solutions of Eq.
(34) for u. Analyzing the behavior of the function in the
left-hand side (l.h.s.) of Eq. (34) at 0 < u < 1, Shiba6

found the domain of energies [the right-hand side (r.h.s.)

of Eq. (34)] that cannot be matched by real values of
u. At positive energy, this domain is the impurity band
centered around E0 = |ε0|∆. Calculating u inside the
narrow band, we find

ν(E) =
ns

πW
Re

√

1−
(

E − E0

W/2

)2

, at E > 0, (38)

for the DoS and

W = 4
1

21/4π1/2

(

ns

ν0∆

)1/2(
∆

|ε0|

)1/4

|ε0|. (39)

for the width. The DoS at E < 0 is the mirror image of
Eq. (38). The total number of states in the two impurity
bands equals ns. The DoS (38) coincides with the result
derived in the clean limit, see Eq. (A3), up to a factor
of 4. This factor accounts for the difference in the def-
initions of DoS. [The DoS (A3), defined for Bogoliubov
quasiparticles existing only at E > 0, corresponds to Eq.
(38) (electron component) folded together with its mirror
image (hole component) and, additionally, summed over
the spin projections.]
As the concentration of magnetic impurities (and

hence γs) grows, the upper edge of the band merges with

the continuum at ns/(ζν0∆) = 16π(2/
√
3− 1)3/2 ≈ 3.06

[this result can be obtained from Eq. (34) and differs only
numerically from the condition obtained for the case of
polarized magnetic impurities in Sec. II B]. At higher con-
centrations the AG regime is realized, with the gap width
reduced due to the scattering off magnetic impurities. As
follows from Eq. (34), the quasiparticle continuum starts
at energy lower than the single-impurity bound state en-
ergy E0, and the gap Eg is reduced progressively with

the increase of γs. At γ
2/3
s ≫ ζ2, one may replace u2− ǫ20

by u2 − 1 in Eq. (34). Then it simplifies to the form

u

(

1− γs
1√

1− u2

)

=
E

∆
, (40)

exactly as considered by Abrikosov and Gor’kov.1 Note
that γs itself can still be small, and we shall mainly focus
on that case:

γs ≪ 1. (41)

The AG regime, corresponding to a single gap in the
spectrum, has two characteristic features, essential for
the low-frequency dissipation: first, the gap is suppressed

(the relative scale is determined by γ
2/3
s ), and second,

the square-root BCS singularity of the DoS at E = ∆ is
smeared. The gap Eg in units of ∆ is1

Eg

∆
=
(

1− γ2/3s

)3/2

≈ 1− 3

2
γ2/3s . (42)

Solving the Usadel equation at energies close to the ac-

tual gap, (E − Eg) ≪ γ
2/3
s ∆, we obtain43

G(E) = − i

γ
1/3
s

+
1

γ
2/3
s

√

2(E − Eg)

3∆
. (43)
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The square-root behavior of the DoS [see Eq. (37)] in the
vicinity of the gap was found in Refs. 24 and 45.

At low concentration, magnetic impurities substan-
tially modify the spectrum in a relatively narrow domain

of energies, |E − ∆| . γ
2/3
s ∆. We take E = ∆ as a

reference point within the domain, and find G and its
derivative with respect to energy:

G(∆) =
1

(2i)1/3γ
1/3
s

, (44)

G′(∆) =
i

3γs
+

√
3− i

3 · 24/3γ1/3s

. (45)

The maximum of the DoS is achieved slightly above
E = ∆. At the same time, considering the derivative
G′(∆) and the BCS solution that allows to approach the
maximum from the side of higher energies, we conclude
that the maximal DoS is of the same order as the value
determined by Eq. (44). This result was found in Ref. 25.

The results for the DoS are summarized in Fig. 3. Note
that the square-root behavior of the DoS near the gap
edge [following from Eq. (43)], being applied at E = ∆
(which is already beyond its applicability range), yields

ν(∆) = γ
−1/3
s , which only slightly differs from the accu-

rate result ν(∆) = (
√
3/24/3)γ

−1/3
s ≈ 0.7γ

−1/3
s following

from Eq. (44).

In the evaluation of dissipation with the help of Eq.
(47), a good approximation for the DoS is given by

ReG(E) ≃



















1

γ
2/3
s

√

2(E−Eg)
3∆ , Eg . E . ∆,

√
3

24/3γ
1/3
s

, ∆ . E . ∆(1 + γ
2/3
s ),

E√
E2−∆2

, ∆(1 + γ
2/3
s ) . E.

(46)
At the matching points, the above expressions match by
the order of magnitude, being different only by numerical
factors close to 1. Therefore, this is a rather accurate
approximation for calculating the dissipation up to order-
of-one numerical factors (at the same time, in the limiting
cases that we consider below, the numerical factors will
be asymptotically exact).

At small ζ and γs, magnetic impurities significantly
affect the electron spectrum only at energies close to ∆.
In that energy range [corresponding to Eq. (38) and to
the first two lines in Eq. (46)], we have u ≈ 1 and hence
F ≈ iG [as follows from Eq. (33)], so that finally ImF ≈
ReG. Outside that domain, the functions F and G in
the leading order have the conventional BCS form [with

ImF (E) ≈ ∆/
√
E2 −∆2 instead of the last line in Eq.

(46)].

Note that we have discussed ReG(E) and ImF (E) at
E > 0. At the same time, ReG is even while ImF is odd
with respect to E.

FIG. 3. Schematic (not numerically exact) DoS for a su-
perconductor in the AG regime with small concentration of
magnetic impurities. The bold sectors of the curve are known
analytically.

B. Dissipative conductivity

Having found the Green functions, we are ready to cal-
culate the dissipation. The expression for the response
kernel of the current to the external electromagnetic field
is derived in Appendix B. From the result for the kernel,
we extract the expression for the dissipative part of con-
ductivity:

σ1(ω)

σ0
=

1

ω

∞
∫

0

dE

(

tanh
E+

2T
− tanh

E−
2T

)

× [ReG(E+)ReG(E−) + ImF (E+) ImF (E−)] , (47)

where E± = E ± ω/2 and σ0 = 2e2ν0D is the Drude
conductivity. This formula is the dirty-limit counterpart
of Eqs. (21) and (26) for the absorption power in the clean
limit. The combination of the Green functions G and F
here replaces the product of the quasiparticle densities of
states and the combinations of the coherence factors in
Eqs. (21) and (26).
The analysis of the present section will be based on

Eq. (47). At the same time, the results can be easily
converted into the language of the surface impedance, as
discussed in Sec. III D. Small but finite dissipative con-
ductivity implies small but finite real part of the surface
impedance.

1. T = 0: transitions across the gap

At zero temperature the dissipation is absent below a
certain threshold frequency. In the absence of magnetic
impurities, ω must exceed 2∆ so that a Cooper pair can
be broken and two quasiparticles are created above the
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gap. At frequencies slightly above the threshold, (ω −
2∆) ≪ ∆, the dissipative part of conductivity is20,21,23,46

σ1(ω)

σ0
=
π

2

( ω

2∆
− 1
)

. (48)

In the presence of magnetic impurities, the BCS sin-
gularity of the Green functions is smeared out and hence
the threshold behavior of the dissipation changes. The
threshold frequency in the AG regime is 2Eg, and the
nonzero contribution to the integral in Eq. (47) comes
only from the region of energies 0 < E < (ω/2 − Eg),
where the arguments of the Green functions are close to
±Eg so that, at first sight, we can employ the square-root
form for ReG and ImF [the first line in Eq. (46)] and
take into account that ReG(E) is even while ImF (E)
is odd. However, approximating ReG(E) = ImF (E) at
E > 0 we find that the integrand in Eq. (47) vanishes in
the main order, so we should take into account a small
difference between ReG and ImF . This is easily done
on the basis of the normalization condition G2+F 2 = 1.
Note that it is the large absolute value of G near Eg [see
Eq. (43)] that leads to F ≈ iG and hence to ImF ≈ ReG.
At the same time, the normalization condition immedi-
ately gives also a correction to this result:

ImF ≈ ReG− Re
1

2G
. (49)

Then we find nonzero dissipation which is quadratic in

deviation from the threshold at (ω − 2Eg) ≪ γ
2/3
s ∆:

σ1(ω)

σ0
=

π

6γ
2/3
s

(

ω

2Eg
− 1

)2

. (50)

This result was obtain in Ref. 25. The quadratic thresh-
old behavior of σ1 is a consequence of the square-root
threshold behavior of the DoS, and experimental results
of Ref. 47 seem to confirm this σ1(ω) dependence.
At lowest concentrations of magnetic impurities, the

impurity band exists inside the gap, so that the thresh-
old frequency for absorption is determined by transitions
in which a Cooper pair is broken and two quasiparticles
are created inside the impurity band. The threshold fre-
quency for this process is ωth = 2(Eg −W/2), which is
Eq. (27) written in different notations. Just above the
threshold, at (ω − ωth) ≪ W , only the edge behavior
(near an edge of the impurity band) of ReG and ImF
enters Eq. (47). According to Eq. (38), both functions
near an edge grow as a square root. We again find a can-
celation in the main order and have to employ Eq. (49).
The functional form is thus the same as in the AG regime,
and the result differs from Eq. (50) only by coefficients:

σ
(b)
1 (ω)

σ0
=

2ζ2n2
s

πν20W
3ωth

(ω − ωth)
2
. (51)

Next we consider the case of finite (but low) tempera-
tures, when the threshold for absorption is absent since
equilibrium thermally excited quasiparticles can absorb
photons of arbitrarily small energy.

2. Low T : transitions within the AG states

We start with the consideration of the AG regime in
the limit of small γs, so that quasiparticle states exist
only above the gap Eg, which is weakly suppressed com-
pared to ∆, as described by Eqs. (41) and (42). Most
of the result of this subsection were obtained in previ-
ous publications, although sometimes in the framework
of physically different problems and with the help of dif-
ferent techniques. Our consideration allows to incorpo-
rate them in a unified manner.
In the limit that we consider, ReG(E) and ImF (E)

entering Eq. (47) are nonzero only above Eg which is
close to ∆, so that at low frequencies and temperatures,

ω, T ≪ ∆, (52)

two simplifications are possible: (a) we can substitute
the tanh’s by their asymptotic exponential forms, and
(b) since the exponentials limit the integration to the
region of |E −∆| . T , where ImF (E) is approximately
equal to ReG(E), the contribution of the (ImF ImF )
term is the same as the contribution from the (ReGReG)
term. Therefore, we can simplify Eq. (47) as

σ1(ω)

σ0
=

4

ω

∞
∫

Eg

dE
(

e−E/T − e−(E+ω)/T
)

× ReG(E)ReG(E + ω). (53)

At the same time, at ω ≪ ∆ the external electromagnetic
field cannot excite quasiparticles across the gap, therefore
the dissipation will be due to quasiparticles that are al-
ready excited due to low but finite temperature. It is
thus natural to express the results for the dissipation in
terms of the equilibrium quasiparticle density

nqp = 4ν0

∞
∫

0

dE ReG(E)
1

eE/T + 1
, (54)

for which under the same assumptions (T ≪ ∆, γs ≪ 1)
we obtain two limiting cases:

nqp

ν0
=

2

γ
2/3
s

√

2π

3∆
T 3/2e−Eg/T , at T ≪ γ2/3s ∆, (55)

nqp

ν0
= 2

√
2πT∆e−∆/T , at T ≫ γ2/3s ∆. (56)

Below we consider various relations between the three
energy scales ω, T , and γ

2/3
s ∆ (while all of them are

much smaller than ∆). Starting with the case of rel-

atively strong magnetic scattering, ω, T ≪ γ
2/3
s ∆, we

note that due to the exponentials, the main contribution
to the integral in Eq. (53) comes from the narrow region
above Eg, where the square-root asymptote for the DoS
is valid [see the first line in Eq. (46)]. As a result,

σ1(ω)

σ0
=

8T

3γ
4/3
s ∆

e−Eg/T sinh
( ω

2T

)

K1

( ω

2T

)

, (57)
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whereK1 is the Macdonald function (the modified Bessel
function of the second kind). Asymptotic forms of the
Macdonald function at large and small values of the ar-
gument describe the two limiting cases for the ω/T ratio,

so that finally at ω ≪ T ≪ γ
2/3
s ∆ we reproduce the

result of Maki,45,48

σ1(ω)

σ0
=

√

8

3π

1

γ
2/3
s

(

∆

T

)1/2
nqp

ν0∆
, (58)

while at T ≪ ω ≪ γ
2/3
s ∆ we find

σ1(ω)

σ0
=

√

2

3

1

γ
2/3
s

(

∆

ω

)1/2
nqp

ν0∆
. (59)

The result (57) was actually obtained by Larkin and
Ovchinnikov in a physically different but formally equiv-
alent problem.25 They considered a superconductor with
inhomogeneous effective interaction between electrons.
For small-scale inhomogeneities the problem turns out to
be mathematically equivalent to the case of homogeneous
effective interaction in the presence of magnetic impuri-
ties. The results of Ref. 25 thus apply to the problem
considered in the present paper.
In the limit of weak magnetic scattering, ω, T ≫

γ
2/3
s ∆, the main contribution to the integral in Eq. (53)

comes from the region of energies above the smeared BCS
singularity; in that region we can apply the unperturbed
result for the DoS [see the last line in Eq. (46)]. We thus
reproduce the results obtained in the absence of magnetic
impurities21,23,46 (we have to take into account the corre-
spondence noted by Nam23 between the extreme anoma-
lous limit in the clean case21 and the dirty case to which
our calculations refer):

σ1(ω)

σ0
=

4∆

ω
e−∆/T sinh

( ω

2T

)

K0

( ω

2T

)

. (60)

Asymptotic forms of the Macdonald function K0 at large
and small values of the argument describe the two limit-

ing cases for the ω/T ratio, so that finally at γ
2/3
s ∆ ≪

ω ≪ T we find

σ1(ω)

σ0
=

1√
2π

(

∆

T

)3/2
nqp

ν0∆
ln

4T

γω
(61)

(where γ ≈ 1.78 is Euler’s constant), while at γ
2/3
s ∆ ≪

T ≪ ω the result is

σ1(ω)

σ0
=

1√
2

(

∆

ω

)3/2
nqp

ν0∆
. (62)

The logarithmic divergence in Eq. (61) at ω → 0 is due
to the overlap of two square-root BCS singularities of the
DoS.
Similarly to the case of Eq. (62), at T ≪ γ

2/3
s ∆ ≪

ω the second exponential in Eq. (53) can be neglected
while the ω-shifted DoS is nearly constant, ReG(E +

ω) ≈
√

∆/2ω, in the essential region of integration. As
a result, the remaining integral in both cases is exactly
the same as the one determining the quasiparticle density
(54) at T ≪ Eg. Therefore, we obtain exactly the same
result (62) in terms of nqp, although the expressions for

nqp itself are different at γ
2/3
s ∆ ≪ T ≪ ω and T ≪

γ
2/3
s ∆ ≪ ω [Eqs. (56) and (55), respectively]. This result

actually follows from Ref. 25.

Finally, at ω ≪ γ
2/3
s ∆ ≪ T , relatively large temper-

ature allows rather wide region of energy integration in
Eq. (53), while the shift of the two DoS can be neglected.
Similarly to the case of Eq. (61), a logarithmic singular-
ity appears in the integral, however now it is cut off not
due to the finite shift ω [as it was the case in Eq. (61)]
but due to smearing of the square-root BCS singularity
of the DoS by magnetic impurities. As a result, with the
logarithmic accuracy we find

σ1(ω)

σ0
=

1√
2π

(

∆

T

)3/2
nqp

ν0∆
ln

T

γ
2/3
s ∆

. (63)

The results for σ1(ω) at ω ≪ ∆ are valid as long as the
quasiparticle population may be described by the Boltz-
mann distribution with an effective temperature. The
quasiparticle chemical potential should not necessarily be
0 and the temperature T may deviate from equilibrium
as long as T ≪ ∆.

3. Low T : transitions within the impurity band

At equilibrium, the results for the dissipation σ1 cal-
culated in Sec. III B 2 for the AG regime in the limit of
low temperatures always contain an exponentially small
factor exp(−Eg/T ), since the absorption of the electro-
magnetic field is due to the quasiparticles thermally ex-
cited above the gap. At the same time, as we discussed
above, at low concentrations of magnetic impurities a
band of quasiparticles states appears below the contin-
uum. This means that at temperatures much smaller
than the distance between the band and the continuum,
the dominant contribution to the dissipation will be due
to quasiparticles residing inside the impurity band. Be-
low we consider this case, which is the main focus of our
interest.
Our aim now is to calculate the dissipation (47) for

the case when it is due to transitions inside the impurity
band, hence ω < W . At the same time, we assume the
band to be narrow, so that its width, which can be writ-
ten as W = 4

√
ζγs∆, is much smaller than the distance

from the center of the band E0 to the bottom of the con-
tinuum ∆: since E0 = (1 − 2ζ2)∆, the condition can be
written as

γ1/2s ≪ ζ3/2. (64)

The contribution of the impurity band is dominant at
T ≪ ζ2∆, when the continuum contribution is exponen-
tially smaller due to the exp(−2ζ2∆/T ) factor.
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Since we consider energies of the order of E0, i.e., of
the order of ∆, and ReG(E) = ImF (E) inside the nar-
row band (as discussed in Sec. III A), we can make the
same simplifications that lead us to Eq. (53). The only
difference is that now the region of the energy integra-
tion is confined to within the impurity band. Taking into
account the explicit form of the DoS inside the band, Eq.
(38), and making the variable of integration dimension-
less, we obtain

σ
(b)
1 (ω)

σ0
=

4n2
s

π2ν20ωW
e−

E0

T sinh
ω

2T

×
1− ω

W
∫

−(1− ω
W )

dǫ e−
W
2T ǫ

√

1−
(

ǫ− ω

W

)2
√

1−
(

ǫ +
ω

W

)2

,

(65)

The integral contains the product of the two semicircle
DoS (38) shifted by the frequency ω. The overlap exists
and produces nonzero dissipation only at ω < W .
Similarly to Sec. III B 2, we shall express the final re-

sults in terms of the equilibrium quasiparticle density
(within the band). Calculating Eq. (54) for the impurity
band, we find

n(b)
qp =

4nsT

W
e−E0/T I1

(

W

2T

)

, (66)

where I1 is the modified Bessel function of the first kind.
In the two limiting cases for the W/T ratio, we obtain:

n(b)
qp =

4√
π
ns

(

T

W

)3/2

e−
E0−W/2

T , at T ≪ W, (67)

n(b)
qp = nse

−E0/T , at T ≫ W. (68)

Below we consider various relations between the three
energy scales, ω, T , and W (while all of them are much
smaller than ∆). Starting with the case of relatively large
band width, ω, T ≪ W , we note that due to the expo-
nentials, the main contribution to the integral in Eq. (65)
comes from the narrow region above the lower limit of in-
tegration where the simplified square-root result for the
DoS is valid: ν(E) ∝

√

E − (E0 −W/2). This situation
is very similar to the case of Eq. (57) (cf. the discus-
sion above that formula). As a result, we obtain the
same functional form [with a different prefactor and with
(E0 −W/2) instead of Eg in the exponent]:

σ
(b)
1 (ω)

σ0
=

16n2
sT

π2ν20W
3
e−

E0−W/2
T sinh

( ω

2T

)

K1

( ω

2T

)

.

(69)
Asymptotic forms of the Macdonald function at large and
small values of the argument describe the two limiting
cases for the ω/T ratio, so that finally at ω ≪ T ≪ W
we find

σ
(b)
1 (ω)

σ0
=

4

π3/2

nsn
(b)
qp

ν20W
3/2T 1/2

, (70)

while at T ≪ ω ≪W the result is

σ
(b)
1 (ω)

σ0
=

2

π

nsn
(b)
qp

ν20W
3/2ω1/2

. (71)

At (W − ω) ≪ T (while W and ω are not necessarily
close to each other), the exponential in Eq. (65) can be
replaced by unity in the region of integration, and the
remaining integral can be written as

σ
(b)
1 (ω)

σ0
=

16n2
s(W + ω)

3π2ν20W
2ω

e−
E0

T sinh
ω

2T

×
[(

1 +
ω2

W 2

)

E(k)− 2ω

W
K(k)

]

. (72)

Here K and E are the complete elliptic integrals of the
first and second kind, respectively, and their argument is

k =
W − ω

W + ω
. (73)

In the limit of small frequency and high temperature,
ω ≪ W ≪ T , with the help of Eq. (68), expression (72)
can be simplified as

σ
(b)
1 (ω)

σ0
=

8

3π2

nsn
(b)
qp

ν20WT
. (74)

There is an upper threshold for impurity band absorp-
tion at ω = W . Close to that threshold, Eq. (72) gives

σ
(b)
1 (ω) ∝ (W − ω)2θ(W − ω), where θ is the Heaviside

step function.
Comparing Eqs. (70), (71), and (74) in the dirty case

with Eqs. (23) and (25) in the clean case, we notice that
the dependences of the dissipative part of conductivity
on ω, T , and W are the same. At the same time, the
overall coefficients in the two cases are different due to
different limits with respect to potential scattering.

C. Magnetic impurities as traps for

non-equilibrium quasiparticles

At low temperatures, the density of equilibrium quasi-
particles becomes negligible, and in reality nqp is dom-
inated by extraneously produced quasiparticles.49 In
quantum devices based on Josephson junctions, the ad-
verse effect of quasiparticles on the coherence may be
mitigated by inclusion of traps — sections of the super-
conducting leads with reduced value of the gap. We may
pose a similar question with respect to the impedance:
can magnetic impurities reduce the dissipation caused
by non-equilibrium quasiparticles? Such a possibility is
most intriguing in the range of frequencies ω . |ε0|, see
Eq. (8), and quasiparticle densities nqp ≪ ζν0∆, see
Fig. 2. In the following, we use the results of the two
previous subsections to elucidate the dependence of the
normalized dissipative conductivity σ1/σ0 on ns.
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For estimates, we assume the density of quasiparti-
cles nqp fixed, and their effective temperature low, T ≪
|ε0|/ ln(ζν0∆/nqp), so that thermal ionization to the con-
tinuum does not prevent magnetic impurities from trap-
ping the quasiparticles. In the absence of magnetic im-
purities, the dissipative response is defined by Eq. (62).
At small density, impurities reduce by ns the density of
quasiparticles at the bottom of the continuous spectrum,
yielding σ1/σ0 ≈ (1/

√
2)(∆/ω)3/2(nqp − ns)/(ν0∆). In

the interval of densities nqp < ns ≪ ζν0∆, the impu-
rity band may accommodate all the quasiparticles, while
being too narrow to allow absorption of the field of fre-
quency ω. This low-absorption regime stretches up to
the densities ns . (π/8)(ζν0∆)(ω/|ε0|)2. At higher ns,
the impurity band is broad enough to allow for intra-
band absorption; compared to the benchmark ns = 0
dissipation level, Eq. (71) yields σ1/σ0 smaller by a fac-
tor ∼ (ω/|ε0|)(ns/ζν0∆)1/4. Upon further increase of ns,
the impurity band merges with the continuum. Deep in
the AG regime, ns ≫ ζν0∆, one may use Eq. (59) for
the estimate of dissipation; compared to the ns = 0 dis-
sipation level, Eq. (59) yields σ1/σ0 smaller by a factor
∼ (ω/|ε0|)(ζν0∆/ns)

2/3.
To summarize the above estimates, in the selected re-

gion of frequencies, ω . |ε0|, and non-equilibrium quasi-
particle densities, nqp ≪ ζν0∆, magnetic impurities in-
deed reduce the dissipative part of conductivity due to
the reduction of the DoS available for the quasiparticle
transitions.

D. Surface impedance

Finally, we reformulate the above results for the
complex conductivity σ(ω) in terms of another impor-
tant experimentally measurable quantity, the surface
impedance:46,50

Z(ω) =

√

4πω

iσ(ω)c2
. (75)

The impedance can be written as Z = R− iX , where R
and X are the surface resistance and reactance, respec-
tively. The complex conductivity σ = σ1 + iσ2 is given
by Eqs. (B16) and (B14).
Since we always consider the case of weak dissipation,

σ1 ≪ σ2, we also obtain R ≪ X . The response of the
superconductor is then almost purely reactive with

X(ω) =

√

4πω

σ2(ω)c2
. (76)

Under assumptions of Sec. III B, we can calculate σ2(ω)
in the simplest zero-temperature BCS model without
magnetic scattering (since corrections due to low tem-

perature and weak magnetic scattering, T, γ
2/3
s ∆ ≪ ∆,

are negligible). At the same time, the new qualitative

feature arising due to finite σ1 (calculated in Sec. III B),
is the dissipation, i.e., small but nonzero R:

R(ω) =
X3(ω)c2

8πω
σ1(ω). (77)

In the near-threshold situation of Sec. III B 1, we are
interested in frequencies ω ≈ 2∆, then50 σ2(2∆) = σ0,
and we find

R(ω) =

√
2π∆

cσ
3/2
0

σ1(ω). (78)

In the small-frequency limit considered in Secs. III B 2
and III B 3, at ω ≪ ∆, we find50 σ2(ω) = (π∆/ω)σ0 and
finally obtain

R(ω) =
ω2

πc(σ0∆)3/2
σ1(ω). (79)

Thus, with the help of Eqs. (78) and (79), the results
for σ1(ω) (the dissipative part of conductivity) calculated
in Sec. III B are directly translated into the surface resis-
tance.

IV. CONCLUSIONS

We have employed the quasiclassical approach to study
dissipation in superconductors due to small concentra-
tion of magnetic impurities. The superconductor was
assumed to be in the dirty limit with respect to the po-
tential (nonmagnetic) scattering. The concentration of
magnetic impurities was assumed to be small enough so
that the gap suppression is weak. Employing the exten-
sion (proposed by Marchetti and Simons38) of the Usadel
equation beyond the Born approximation for magnetic
scattering, we have considered in a unified manner both
the AG regime (with a continuum of states above a gap)
and the limit of lowest magnetic impurities’ concentra-
tions where the impurity band due to overlap of localized
impurity states is formed below the edge of the contin-
uum. The deviation from the Born limit was assumed to
be finite but small, so that the subgap impurity states lie
close to the continuum edge.
Our main results refer to the limit where the tempera-

ture T , the frequency ω, and the gap suppression γ
2/3
s ∆

are all much smaller than the BCS gap ∆ in the absence
of magnetic impurities. At the same time, the relation

between T , ω, and γ
2/3
s ∆ was assumed to be arbitrary,

and we have obtained explicit analytical expressions in
various limiting cases.
Our results can be expressed in terms of quantities de-

scribing the response of superconductor to external elec-
tromagnetic field: the dissipative conductivity σ1 (the
real part of the complex conductivity σ) and the surface
resistance R (the real part of the surface impedance Z).
In the limit of small temperatures and small frequen-

cies that we considered, at equilibrium, the dissipation is
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always proportional to the density of thermally excited
quasiparticles and thus exponentially suppressed due to
gapped character of the spectrum. On the other hand,
fluctuations in positions of magnetic impurities can lead
to finite DoS below the mean-field gap.38,51 Investigating
the effect of the “tail” states on the dissipation is be-
yond the scope of our work. We only note that since the
number of “tail” states is small (compared to the num-
ber of the “mean-field” states considered in this paper),
there is a wide region of applicability for our results at
subgap temperatures T/∆ ≪ 1, excluding only ultra-low
temperatures.

Note added.—During preparation of this manuscript,
we became aware of a preprint by Kharitonov et al.52 ad-
dressing the same topic with a complementary approach.
In that work the surface impedance of superconductors
with magnetic impurities is evaluated numerically, with
emphasis on the superconducting gapless regime having
low energy states in the electron spectrum.
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Appendix A: Nonmagnetic disorder does not affect

the electron spectrum

In this Appendix we demonstrate that the electron
spectrum in the presence of magnetic impurities, regard-
less of their polarization, is insensitive to the nonmag-
netic disorder. To see this we consider separately two
different models. In Sec. A 1 we derive explicitly the
equation determining the DoS in clean superconductors
with randomly oriented spins and we establish the di-
rect relation with the result obtained in Sec. III (dirty
superconductors, randomly oriented spins). In Sec. A 2
we formulate the Usadel equation (dirty limit) for super-
conductors with polarized magnetic impurities and find
that the DoS corresponds to the one obtained in Sec. II
(clean limit, polarized magnetic impurities).

1. Magnetic impurities with randomly oriented

spins

In the clean limit, the Hamiltonian describing quasi-
particles near the edge of the spectrum and interacting
with randomly oriented weak magnetic impurities is

Ĥ =
∑

k,σ

εkα
†
kσαkσ

+ JS
∑

k,k′,σ,σ′,j

α†
kσ(ŝσσ′nj)αk′σ′ei(k

′−k)Rj , (A1)

where ŝ is the vector of the Pauli matrices acting in the
spin space and nj is the (random) orientation of the spin
of impurity j. [The Hamiltonian (13) for polarized mag-
netic impurities corresponds to all nj = ẑ.] The T -matrix
approximation for this model yields the self-consistency
equation

JSg = −
√

√

√

√

|ε0|
−ε+ ns(JS)2g

1−(JSg)2

(A2)

for the momentum-integrated Green function g(ε), which
is now diagonal in spin space. At low concentration of
weak magnetic impurities (ζ ≪ 1 and γs ≪ 1) and for
energies close to the edge of the continuous spectrum
(i.e., |u − 1| ≪ 1), Eq. (A2) agrees with Eq. (34) that
was derived in the dirty limit provided one identifies
g = −2iπν0 cos θ [see also Eq. (33)]. In particular, the
analysis of Eq. (A2) in the limit ns ≪ ζν0∆ yields a
narrow impurity band with

νB(E) =
4ns

πW
Re

√

1−
(

ε+ |ε0|
W/2

)2

(A3)

for the total DoS (summed over quasiparticle spins), and

W = 4
1

21/4π1/2

(

ns

ν0∆

)1/2 (
∆

|ε0|

)1/4

|ε0| (A4)

for the width [which coincides with Eq. (39)].

2. Spin-polarized magnetic impurities

Following the derivation of Eq. (29) by Marchetti and
Simons,38 we find that the Usadel equation for the case
of polarized magnetic impurities is

D

2
∇2θσ+ iE sin θσ+∆cos θσ−

iσEz sin θσ
1− ζ2 + 2iσζ cos θσ

= 0.

(A5)
Here θσ parametrizes the quasiclassical Green functions
that are different for electrons with spins up and spins
down. At low concentration of weak magnetic impuri-
ties (ζ ≪ 1 and γs ≪ 1) and for energies close to the



13

edge of the continuous spectrum, Eq. (A5) in a uniform
superconducting state can be rewritten as

JSgσ = −
√

|ε0|
−ε+ σ nsJS

1−σJSgσ

(A6)

in terms of the spin-resolved momentum-integrated
Green functions gσ = −2iπν0 cos θσ. The equation for
down spin is the same as Eq. (16) derived in the clean
limit, while the one for spin up does not produce an im-
purity band.

Appendix B: Derivation of the response kernel

The Usadel equation in a superconductor reads

D∂(ǧ∂ǧ)− τ̂3∂tǧ − ∂t′ ǧτ̂3 − [∆̂, ǧ]− i[Σ̌s, ǧ] = 0, (B1)

∆̂ =

(

0 ∆
∆∗ 0

)

, (B2)

where the quasiclassical Green’s function ǧ(r, t, t′) is a
matrix in the Nambu (Pauli matrices τ̂i) and Keldysh
spaces (Pauli matrices σ̂i),

ǧ =

(

ĝR ĝK

0 ĝA

)

Keldysh

, (B3)

and the self-energy Σ̌s describes magnetic scattering.53

The covariant derivative ∂ = ∇− i(e/c)[τ̂3A, .] depends
on the vector potentialA(r, t) (we choose the gauge with-
out the scalar potential). Time convolution is implicit in
the matrix product. The superconducting gap ∆(r, t) en-

ters the matrix (in the Nambu space) ∆̂ and solves the
self-consistency equation

∆(r, t) = −π|λ|ν0
8

tr (σ̂2τ̂−ǧ(r, t, t)) , (B4)

where λ is the BCS pairing constant.

We look for the solution to Eq. (B1) perturbatively in
A, expanding ǧ = ǧ(0)+ ǧ(1)+ . . . and ∆ = ∆(0)+∆(1)+
. . . In the zeroth order, ǧ(0) describes an equilibrium uni-
form superconductor.
In the next order,

∂ǧ = ∇ǧ(1) − ie

c
[τ̂3A, ǧ

(0)], (B5)

so that

∂(ǧ∂ǧ) = ǧ(0)
(

∇
2ǧ(1) − ie

c
[τ̂3∇A, ǧ(0)]

)

(B6)

in the same order. If we choose the London gauge with
∇A = 0 (accompanied by the requirement of nA = 0 at
the surface), then the Usadel equation in the first order
reads

Lǧ(1) = [∆̂(1), ǧ(0)]. (B7)
The l.h.s. of this equation is a linear operator L acting on
ǧ(1), while the source term in the r.h.s. is proportional to
∆(1). Taking the first order also in the self-consistency
equation (B4), we see that our choice of the gauge leads
to ∆(1) = 0 and ǧ(1) = 0. (It is actually well known that
∆(1) = 0 in the London gauge.22)
The current flowing in the superconductor reads

j(r, t) =
πσ0
4e

tr (σ̂1τ̂3ǧ∂ǧ)r,t,t (B8)

(where σ0 = 2e2ν0D is the Drude conductivity), which
in the lowest order in A reduces to

j(r, t) = − iπσ0
4c

tr
(

σ̂1τ̂3ǧ
(0)τ̂3Aǧ

(0)
)

r,t,t
. (B9)

Making the Fourier transform, we obtain

j(k, ω) = −1

c
Q(ω)A(k, ω) (B10)

with the response kernel [we omit the (0) superscript of
the Green function for brevity]

Q(ω) =
iσ0
8

∫

dE tr [σ̂1τ̂3ǧ(E)τ̂3ǧ(E − ω)] =
iσ0
8

∫

dE tr
[

τ̂3ĝ
R(E)τ̂3 ĝ

K(E − ω) + τ̂3ĝ
K(E)τ̂3 ĝ

A(E − ω)
]

. (B11)

Note that independence of Q on k implies locality of relation between j and A in the dirty limit.

The Keldysh component of the Green function can be expressed in terms of the retarded and advanced ones, while
the advanced component can be written in terms of the retarded one,

ĝK(E) =
(

ĝR(E)− ĝA(E)
)

tanh
E

2T
, ĝA = −τ̂3ĝR†τ̂3, (B12)

so that finally only the retarded component enters. In the case without the superconducting phase, it has the form

ĝR = Gτ̂3 + F τ̂1, (B13)
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[G and F are the functions introduced in Sec. III, see Eq. (28)] and we obtain

Q(ω)

σ0
=
i

2

∞
∫

−∞

dE

{

tanh
E−
2T

[

G(E+)ReG(E−)− iF (E+) ImF (E−)
]

−

− tanh
E+

2T

[

G∗(E−)ReG(E+) + iF ∗(E−) ImF (E+)
]

}

, (B14)

where E± = E ± ω/2 [note that the integrand in Eq.
(B14) is even with respect to E]. The difference of this
expression for the kernel from the results of Refs. 20–24
is that our expression is written in terms of the quasiclas-
sical Green functions (in the dirty limit) that can be di-
rectly found from the Usadel equation. A similar expres-
sion was employed in Ref. 25, although it was formulated
in terms of contour integrals in the plane of complex E
and the cuts in the plane were made from±Eg, the values
of the AG gap, thus the AG regime with a single gap was
explicitly assumed. Our expression (B14) is more gen-
eral, applicable also in the case when the impurity band
is present and in the case of gapless superconductivity.
Defining the complex conductivity50 σ = σ1+ iσ2 that

determines the (local) response of current to electric field,

j(k, ω) = σ(ω)E(k, ω), (B15)

we see that

σ(ω) =
iQ(ω)

ω
. (B16)

Dissipation is determined by the real part of conductivity,
σ1(ω) = Reσ(ω) = − ImQ(ω)/ω, for which according to
Eq. (B14) we obtain Eq. (47) given in the beginning of
Sec. III B.
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