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Abstract

We discuss propagation of symmetric and antisymmetric Josephson plasma waves in a slab

of layered superconductor clad between two identical dielectrics. We predict two branches of

surface waves in the terahertz frequency range, one above and another below the Josephson plasma

frequency. Apart from this, there exists a discrete set of waveguide modes with electromagnetic

fields oscillating across the slab thickness and decaying exponentially away from the slab. We

consider the excitation of the predicted waves by means of the attenuated-total-reflection method.

It is shown that for specific set of the parameters of the structure the excitation of the waveguide

modes is accompanied by total suppression of specular reflection.

PACS numbers: 74.72.-h, 74.50.+r, 74.78.-w, 74.25.Gz
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I. INTRODUCTION

Interaction of light with inhomogeneous metallic structures gives rise to many interesting

effects. A well-known example is the Wood anomalies in light reflection from a periodic

metal grating. More recent example is extraordinary transmission of light through metal

films perforated by subwavelength holes.1 The observed transmission coefficient turned out

to be much larger than that predicted by Bethe’s theory of electromagnetic diffraction at

small apertures.2 The enhancement of light transmission is related to coupling of surface

plasmons resonantly excited at the both sides of the perforated film. Discussion of this and

some alternative mechanisms of extraordinary transmission can be found in the review by

Zayats, et. al.3 Excitation of surface plasmons may also lead to an inverse effect of resonant

suppression of light transmission through perforated metal films with thickness less than

the skin-depth.4 The latter effect is accompanied by abnormal absorption of electromagnetic

energy. Recent interest to the aforementioned anomalies is due to their possible applications

for light control, photovoltaics, detection and filtering of radiation in visible and far-infrared

frequency ranges.

It would be very desirable to have a possibility to control the electromagnetic radiation

also in the terahertz frequency range. Due to promising and important applications, master-

ing of this frequency range (0.3− 10 THz) is a new and rapidly developing area of research

. Recently a new approach for waveguiding of THz waves has been proposed in Refs. [5–9]

using structured metals, for instance, a set of metallic wires with diameter of about 1 mm

or arrangement of subwavelength holes in a film of stainless steel. However, such metallic

waveguides have a serious disadvantage. Indeed, since the terahertz frequencies are well be-

low the frequency of surface plasmon resonance, the extension of the terahertz waves away

from the metallic waveguides exceeds significantly the wavelength.10 Therefore, essential

part of the electromagnetic energy flows out of the waveguide, leading to strong radiation

losses. To overcome this disadvantage, new materials, e.g., layered superconductors being

considered for design of the THz waveguides, instead of metals.

Layered superconductors are either artificially grown stacks of Josephson junctions, e.g.,

Nb/Al-AlOx/Nb, or natural high-temperature superconductors, such as Bi2Sr2CaCu2O8+δ.

These materials contain quite thin superconducting layers separated by thicker dielectrics.

Many experiments on the c-axis transport in layered superconductors justify the use of a
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theoretical model in which the superconducting layers are coupled by the intrinsic Josephson

effect through the layers (see, e.g., Refs. [11,12]). Due to layered structure, these supercon-

ductors possess strongly anisotropic current capability. Anisotropy here has a qualitative

character: not only the values of the in-plane and out-of-plane critical current densities are

strongly distinct, but even the nature of these currents is quite different. The origin of the

in-plane current is the same as in bulk homogeneous superconductors and it can be de-

scribed, for instance, in the local London limit. Unlike this, the out-of-plane current is due

to the Josephson effect. Because of strong anisotropy, the layered superconductors exhibit

a wide variety of interesting physical properties.

Multi-layered structure of Bi2Sr2CaCu2O8+δ (and similar superconductors) supports

propagation of specific Josephson plasma electromagnetic waves (JPWs) (see, e.g., re-

view [13] and Refs. [14–21]). For infinite layered superconductors, the spectrum of JPWs

lies above the so-called Josephson plasma frequency ωJ . Possible applications of layered su-

perconductors are related to the fact that ωJ belongs to the terahertz frequency range. In a

semi-infinite sample, apart from bulk JPWs, surface Josephson plasma waves (SJPWs) can

propagate along the interface between external dielectric and layered superconductor. As

shown in Refs. [22–27] the spectrum of SJPWs also lies in the terahertz range and consists

of two branches, one above ωJ and the other below it. These waves are similar to the sur-

face plasmon-polaritons in normal metals. Thus, in analogy with normal metals, we expect

that the resonance electromagnetic effects, in particular, the extraordinary transmission of

terahertz signals, can exist in slabs of layered superconductor due to excitation of SJPWs.

The first step in the study of the effect of extraordinary transmission is the calculation

of the spectrum of the SJPWs in a finite-thickness slabs of layered superconductors. Prop-

erties of collective modes in layered superconductors have been a field of interest since 90’s.

The collective modes were studied in the limits of infinite14–21, extremely small28–30, and

arbitrary31,32 slab thickness. However, there exist only a few publications33–35 where the

impedance boundary conditions (i.e., the continuity of the tangential components of electric

and magnetic fields at the film interfaces) have been taken into account. Here we accomplish

such calculations and give classification of all the branches in the spectrum of the eigenwaves

in slabs of layered superconductors. We have found two types of eigenwaves. One of them

is ’true’ surface modes, which decay exponentially from the slab boundaries. The second

type of eigenwaves is waveguide modes (WGMs); their fields oscillate across the layers. The
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fields for the both types of waves are evanescent outside the slab. We consider the case

of symmetric environment when the external dielectrics are the same. For this symmetric

geometry, the eigenwaves are either symmetric or antisymmetric with respect to the central

plane of the slab. As an example, we also study theoretically the problem of excitation of one

of the waveguide modes by the attenuated-total-reflection method. For certain geometrical

parameters, we predict an interesting effect of total suppression of specular reflection due to

the resonance excitation of the WGM.

II. FORMULATION OF THE EIGENVALUE PROBLEM AND DERIVATION OF

THE DISPERSION EQUATION

Consider a slab of layered superconductor of thickness L clad between two non-magnetic

dielectrics with the same permittivity εd. The xy-plane coincides with the crystallographic

ab plane, and the z-axis is along the crystallographic axis c. The plane z = 0 passes through

the middle of the slab, see Fig. 1.

L

q

Layred superconductor

qz

x
y

Dielectric

Dielectric

FIG. 1: (Color online) Geometry of the eigenvalue problem.

We search the eigenmodes of the transverse-magnetic (TM)-polarization with the follow-

ing components of the electric and magnetic fields:

~E = (Ex, 0, Ez), ~H = (0, Hy, 0). (1)

The electromagnetic field inside a layered superconductor is related to the gauge invariant

phase difference ϕ(x, z, t) of the order parameter in two neighboring layers. This phase dif-

ference is obtained from a set of coupled sine-Gordon equations (see, e.g., review13 and refer-

ences therein). For linear JPWs in the continuum limit, the phase ϕ(x, z, t) can be excluded
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from the electrodynamic problem, which then can be reformulated in terms of anisotropic

frequency-dependent dielectric tensor with in-plane and out-of-plane components εab(ω) and

εc(ω), respectively. In most practical cases, the thickness of the superconducting layers is

much less than the thickness of the interlayer dielectrics. In this limit, the components

εab(ω) and εc(ω) have the following form:36,

εc(ω) = εs

(

1− ω2
J

ω2
+ iνc

ωJ

ω

)

,

εab(ω) = εs

(

1− ω2
J

ω2
γ2 + iνab

ωJ

ω

)

. (2)

Here ωJ = (8πeDjc/~εs)
1/2 is the Josephson plasma frequency, jc is the maximum value of

the Josephson current density jz = jc sinϕ, D is the spatial period of the layered structure,

εs is the interlayer dielectric constant, γ = λc/λab ≫ 1 is the current-anisotropy parameter,

λc = c/ωJε
1/2
s and λab are the magnetic-field penetration depths along and across the layers,

respectively. The dimensionless relaxation frequencies νab = 4πσab/εsωJ and νc = 4πσc/εsωJ

are proportional to the averaged quasi-particle conductivities σab (along the layers) and σc

(across the layers).

Equation (2) accounts for the inductive coupling between superconducting layers caused

by Josephson interlayer current. There exists also the capacitive, mechanism of coupling

which is related to violation of electro-neutrality condition.37 The latter mechanism manifests

itself in the dispersive characteristics of JPWs only in close vicinity to ωJ .
20 Here we study

the dispersion equation for the SJPWs in a wide range of frequencies, therefore in what

follows we neglect the capacitive mechanism of coupling.

We look for the magnetic field Hs(x, z, t) of the TM-eigenmodes in the slab in the form

of a wave running along the x-axis,

Hs(x, z, t) = A(z) exp[i(qx− ωt)]. (3)

Substituting Eq. (3) into the Maxwell equations we easily obtain the symmetric

A(z) = Ceven cos(ksz) (4)

and antisymmetric

A(z) = Codd sin(ksz) (5)

solutions with the transverse wave number

k2
s =

1

λ2
c

(

Ω2 − γ2 + iΩνab
)

(

1− κ2

Ω2 − 1 + iΩνc

)

. (6)
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Here we introduced the dimensionless frequency Ω = ω/ωJ and the wave number κ = qλc.

It follows from Eqs. (4) and (5) that the structure of the eigenwaves in the transverse

direction (along the z-axis) is defined by the sign of the real part of k2
s . If Re(k2

s) > 0 the

fields oscillate with coordinate z and the corresponding solution is a waveguide mode. In

the opposite case, when Re(k2
s) < 0, the fields decay exponentially from the slab boundaries.

These solutions give rise to the surface modes. From Eq. (6), one can obtain the equations for

curves in the (κ, Ω)-plane that separate the regions of the surface and waveguide eigenmodes.

If the dissipation is neglected, these equations have the following forms:

Ω = 1, Ω = γ, Ω =
√
1 + κ2. (7)

It is easy to see that the waveguide modes may exist in two different regions,

1 < Ω < γ, κ2 > Ω2 − 1 (8)

and

Ω > γ, κ2 < Ω2 − 1. (9)

Similarly, the surface modes may exist for

0 < Ω < 1 (10)

or

1 < Ω < γ, κ2 < Ω2 − 1. (11)

The separatrices Eq. (7) are shown by red lines in Figs. 2, 3, and 4.

Knowing the magnetic component Hs(x, z, t), it is easy to calculate from the Maxwell

equations the electric fields. For the symmetric and antisymmetric modes, we derive, re-

spectively:

Es
x(x, z, t) = −iCeven

ksλcΩ√
εs

sin(ksz)

γ2 − Ω2 − iΩνab
exp[i(qx− ωt)], (12)

Es
x(x, z, t) = iCodd

ksλcΩ√
εs

cos(ksz)

γ2 − Ω2 − iΩνab
exp[i(qx− ωt)]. (13)

The relation

Es
z(x, z, t) = −Hs(x, z, t)

Ωκ

Ω2 − 1 + iΩνc
. (14)

between Es
z(x, z, t) and Hs(x, z, t) has the same form for the symmetric and antisymmetric

modes.
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FIG. 2: (Color online) (a) Numerically calculated dispersion curves for the symmetric eigenmodes

in a slab of layered superconductor placed in vacuum. The dispersion curves for the surface

(waveguide) modes are shown in blue (black). The light line Ω =
√

εs/εdκ and the separatrices

Ω = 1, Ω = γ, and Ω =
√
1 + κ2 are shown in red. (b) Blow up of the region of low frequencies for

the graph in (a). The plots are given for γ ≈ 60, εs = 16, and L/λab = 10.

The fields above the slab decay exponentially and can be written as follows:

Hd(x, z, t) = Cd exp (iqx− iωt− kdz),

Ed
x(x, z, t) = iCd

√
εsλckd
εdΩ

exp (iqx− iωt− kdz), (15)

Ed
z = −Cd

√
εsκ

εdΩ
exp (iqx− iωt− kdz)
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FIG. 3: (Color online) The same as in Fig. 2 but for the antisymmetric eigenmodes.

where the inverse decay length

kd =
1

λc

√

κ2 − εd
εs
Ω2. (16)

The fields Hd and Ed
z below the slab for the symmetric (antisymmetric) modes are obtained

by symmetric (antisymmetric) reflection of the fields in Eq. (15). The component Ed
x is an

odd (even) function of the coordinate z for the symmetric (antisymmetric) modes.

The dispersion relation Ω(κ) for the eigenmodes is obtained by matching the impedance

ratio Ex/H taken on the both sides of the boundary z = L/2. This condition gives

kd
ks

=
εd
εs

Ω2

Ω2 − γ2 + iνabΩ
tan

(

ksL

2

)

(17)

for the symmetric modes and

kd
ks

= −εd
εs

Ω2

Ω2 − γ2 + iνabΩ
cot

(

ksL

2

)

(18)
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FIG. 4: (Color online) The same as in Fig. 2 but for the symmetric eigenmodes in a slab of layered

superconductor placed between optically dense dielectrics.

for the antisymmetric modes.

For extremely thick slabs, L → ∞, Eqs. (17) and (18) become identical if the argument

of the trigonometric functions is pure imaginary. In this case the waves propagating along

the both surfaces of the slab are decoupled. The symmetric and antisymmetric modes are

transformed into independent surface Josephson plasma waves with the following dispersion

relation:

κ(Ω) =

√

εd
εs
Ω

(

εc(Ω)
εd − εab(Ω)

ε2d − εc(Ω)εab(Ω)

)1/2

. (19)

This equation coincides with the dispersion relation for SJPWs in a semi-infinite layered

superconductor.27 We analyze the dispersion relations Eqs. (17) and (18) for the surface and

waveguide modes in the next section.
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III. ANALYSIS OF THE DISPERSION RELATIONS FOR SURFACE AND

WAVEGUIDE MODES

All the eigenmodes of the slab are evanescent, i.e. they decay exponentially in the sur-

rounding external dielectrics. Therefore, according to Eq. (16), all the dispersion curves

should lie below the light line Ω = (εs/εd)
1/2κ and the region above the light line is forbid-

den. The structure of the spectrum of the eigenmodes depends on the relation between the

permittivity εd of the external dielectrics and the permittivity εs of the interlayer constituent

of the slab. Indeed, for optically soft external dielectrics,

εd < εs, (20)

the both regions (given by Eqs. (10) and (11)) in the (κ, Ω) plane for SJPWs lie below the

light line. In the opposite case of optically dense environment,

εd > εs, (21)

the region given by Eq. (11) lies completely within the forbidden region Ω > (εs/εd)
1/2κ. Be-

low we analyze the spectrum of the eigenmodes for the cases εd < εs and εd > εs separately.

This analysis is done for a lossless medium.

A. Optically soft environment, εd < εs

1. Low-frequency surface waves, Ω < 1

Here the transverse wave number ks given by Eq. (6) is pure imaginary,

ks =
i

λab

√

1 +
κ2

1− Ω2
, (22)

and the trigonometric functions in Eqs. (17) and (18) are replaced by the hyperbolic ones.

Thus, the dispersion equations for low-frequency symmetric and antisymmetric SJPWs take

the following form:
kd
|ks|

=
εd
εs

Ω2

γ2
tanh

( |ks|L
2

)

, (23)

kd
|ks|

=
εd
εs

Ω2

γ2
coth

( |ks|L
2

)

. (24)
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The dispersion curves Eqs. (23) and (24) start at κ = Ω = 0, then they follow the light line,

deviating from it at Ω close to unity. For κ → ∞, the slope of the dispersion curves tends

to zero, and Ω(κ) → 1 with accuracy up to the terms ∼ 1/γ2 ≪ 1. The numerical plots

Ω(κ) for the low-frequency symmetric and antisymmetric SJPWs are shown in Figs. 2 (b)

and 3 (b).

2. High-frequency surface waves, 1 < Ω < γ

In this frequency region, the transverse wave number ks given by Eq. (6) is pure imaginary

if
√

εd/εsΩ < κ <
√
Ω2 − 1. (25)

We obtain the following dispersion relations for the symmetric and antisymmetric high-

frequency SJPWs respectively,

kd
|ks|

=
εd
εs

Ω2

γ2 − Ω2
tanh

( |ks|L
2

)

, (26)

kd
|ks|

=
εd
εs

Ω2

γ2 − Ω2
coth

( |ks|L
2

)

, (27)

respectively. These dispersion curves start at the point with coordinates

κin =

√

εd
εs − εd

, Ωin =

√

εs
εs − εd

> 1 (28)

where the light line intersects with the hyperbola Ω =
√
κ2 + 1. Thus, there exists a gap

1 < Ω <

√

εs
εs − εd

(29)

in the spectrum of SJPWs in slabs of layered superconductors, similarly to the case of

semi-infinite samples.27

The spectrum of the symmetric high-frequency SJPWs ends at the point

κfin ≈ λcεs
Lεd

√

√

√

√2 +
ε2d
ε2s

L2

λ2
ab

− 2

√

1 +
ε2d
ε2s

(

1− εd
εs

)

L2

λ2
ab

, (30)

Ωfin = γ.

It is of interest that this ending point is simultaneously the starting point for one of the

branches (with n = 0) of the high-frequency WGMs (the WGMs are discussed in the next
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subsubsection). In other words, the surface wave is continuously converted into the waveg-

uide mode exactly in this point. This smooth transition is clearly seen in Fig. 2 (a).

The ending point in the spectrum of the antisymmetric SJPWs lies on the hyperbola

Ω =
√
κ2 + 1 at the frequency Ωfin,

Ωfin ≈ γ

(

1− εdλab√
εs − εdL

)

, λab ≪ L. (31)

The difference between Ωfin and γ is proportional to λab/L and it vanishes for a thick slabs.

The numerical plots Ω(κ) for the high-frequency symmetric and antisymmetric SJPWs

are shown in Figs. 2 (a) and 3 (a) respectively.

In the extremely thick slabs with L → ∞, the surface waves propagate independently of

each other along the upper and lower boundaries of a superconductor. For this case, the

spectrum of SJPWs was studied in Refs. [22,25–27]. The behavior of the dispersion curves

for the low- and high-frequency surface waves in a slab of finite thickness are very similar

to the case L → ∞. The main difference is in the coordinates of the ending point in the

spectrum, see Eqs. (30) and (31).

3. Low-frequency waveguide modes, 1 < Ω < γ

In this frequency region, the transverse wave number ks given by Eq. (6) is real and

positive for

κ >
√
Ω2 − 1. (32)

This condition corresponds to the waveguide eigenmodes with fields oscillating across the

slab thickness. The ratio kd/ks in the left-hand sides of Eqs. (17) and (18) is positive. Then,

the argument ksL/2 of the trigonometric functions in these equations is allowed to vary

within the intervals,

π (2n− 1) /2 < ksL/2 < πn, n = 1, 2, 3 . . . (33)

for the symmetric waveguide modes, and within

πn < ksL/2 < π (2n+ 1) /2, n = 0, 1, 2 . . . (34)

for the antisymmetric ones. Here n numerates different branches of the waveguide modes.
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Each branch of the Ωn(κ) curve starts from the light line at the frequency Ω = Ω
(n)
in where

1 < Ω
(n)
in <

√

εs
εs − εd

. (35)

Note that the frequency interval Eq. (35) where the branches Ωn(κ) start, coincides exactly

with the frequency gap Eq. (29) in the spectrum of the surface waves.

For κ → ∞, all the dispersion curves Ω(n)(κ) of the waveguide modes tend to γ (see

Figs. 2 (a) and 3 (a)). The distances between the dispersion curves diminish as n increases.

The dispersion curves become more crowded approaching the line Ω = 1.

4. High-frequency waveguide modes, Ω > γ

The waveguide modes can propagate in this frequency range if
√

εd/εsΩ ≤ κ <
√
Ω2 − 1.

The right-hand sides of Eqs. (17) and (18) are positive if the argument ksL/2 of the trigono-

metric functions in these equations lies within the intervals,

πn < ksL/2 < π (2n+ 1) /2, n = 0, 1, 2 . . . (36)

for the symmetric waveguide modes, and within

π (2n+ 1) /2 < ksL/2 < π(n+ 1), n = 0, 1, 2 . . . (37)

for the antisymmetric ones.

All the dispersion curves, but the one for the symmetric mode with n = 0, start from

the light line and asymptotically tend to the limiting value Ω = κ at κ → ∞ (see Figs. 2

(a) and 3 (a)). The dispersion curve for the symmetric mode with n = 0 starts at the point

(κ = κfin, Ω = γ) which is the ending point for the high-frequency surface mode. The value

of κfin is given by Eq. (30).

B. Optically dense environment, εd > εs

In this case, the separatrix Ω =
√
1 + κ2 passes through the forbidden region Ω >

(εs/εd)
1/2κ (see Fig. 4). Therefore, contrary to the case of optically soft environment, there

exists only one region for the surface waves in the (κ, Ω)-plane [Eq. (10)] and only one region

for the waveguide modes,

1 < Ω < γ, κ > (εd/εs)
1/2Ω. (38)
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The plots of the dispersion curves for the SJPWs and WGMs are similar to the low-frequency

branches of the spectrum shown in Figs. 2 and 3 for the case of εd < εs. These curves for

the symmetric modes are presented in Fig. 4.

In the case of relatively small frequencies, for Ω ≪ γ, the dispersion relations for the

waveguide modes can be written as follows:

kd
ks

= mεdk
2λ2

ab tan
m

(

ksL

2

)

, ks =
1

λab

√

1− κ2

Ω2 − 1
, (39)

with m = −1 for symmetric modes and m = 1 for antisymmetric ones. This result was

reported in Refs. [33–35].

IV. EXCITATION OF A WAVEGUIDE JOSEPHSON-PLASMA MODE

It is known that excitation of surface waves in metal slabs may be accompanied by

anomalous resonance phenomena in the reflectivity and transmissivity (see, e.g., Refs. [38–

40]). In particular, complete suppression of specular reflection can be observed for some

specific parameters of the system. In this section, we discuss the excitation of a waveguide

mode in a slab of layered superconductor and show that specular reflection of the incident

terahertz wave can be completely suppressed.

We consider excitation of the symmetric low-frequency waveguide mode with number

n = 1 in a slab placed in vacuum. The wave vector and the frequency of the excited wave

are marked by filled square in Fig. 2 (a). This mode can be excited via so-called “attenuated

total reflection method” (Otto-configuration41). Two waves incident symmetrically from two

identical dielectric prisms onto boundaries of a superconducting slab. The slab is separated

from the prisms by two thin vacuum gaps (see Fig. 5). In the absence of the superconductor,

the incident waves completely reflect from the bottoms of the prisms, if the incident angle θ

exceeds the critical angle θt = arcsin
(

1/
√
εp
)

corresponding to total internal reflection (here

εp is the dielectric constant of the prisms). However, the evanescent waves penetrate into

the vacuum gaps at a distance of about the wavelength. The wave vectors of the evanescent

modes are directed along the surfaces of the prisms. The modulus of each wave vector

exceeds ω/c. The same is true for the wave vectors of the surface and waveguide modes. So,

the matching conditions for the frequencies and the wave vectors of the evanescent waves

and the waveguide Josephson plasma mode can be satisfied for a certain incident angle.
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FIG. 5: (Color online) Geometry of excitation of symmetric eigenmodes by the “attenuated-total-

reflection” method. Here ki and kr are the wave vectors of the incident and reflected waves,

respectively.

Under the condition of resonant excitation of the WGM the effect of strong suppression of

reflected waves can be observed.

Due to the symmetry of the problem, it is sufficient to find spatial distribution of the

electromagnetic field for semispace z > 0 (above the central plane of the slab) and the

coefficient R of reflection from the boundary z = L/2 + h of the upper prism. Here h is

the thickness of the vacuum gap. The dimensionless magnetic field Hp in the prism (for

z > L/2 + h) is a sum of the fields of the incident and specularly reflected waves,

Hp = exp(−iωt+ iqx− ikpz) +R exp(−iωt+ iqx+ ikpz). (40)

The longitudinal and transverse components, q and kp, of the wave vector in the prism are,

q =
ω
√
εp

c
sin θ, kp =

ω
√
εp

c
cos θ, (41)

where θ is the angle of incidence exceeding arcsin(1/
√
εp).

The magnetic field Hv in the vacuum gap is a sum of two evanescent waves,

Hv = h+ exp(−iωt + iqx+ kvz) + h− exp(−iωt+ iqx− kvz). (42)
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The spatial decrement kv is defined as

kv =
ω

c

√

εp sin
2 θ − 1. (43)

The magnetic field Hs in the superconductor has a form,

Hs = C cos(ksz) exp(−iωt+ iqx) (44)

with the transverse wave number ks given by Eq. (6).

Using the Maxwell equations and Eqs. (40), (42), and (44), we can easily derive the

tangential components Ep
x, E

v
x, and Es

x of the electric field in the prism, vacuum, and layered

superconductor, respectively,

Ep
x = − kpc

ωεp
[exp(−iωt + iqx− ikpz)− R exp(−iωt+ iqx+ ikpz)] , (45)

Ev
x = −ikvc

ω

[

h+ exp(−iωt + iqx+ kvz)− h− exp(−iωt + iqx− kvz)
]

, (46)

Es
x = −iC

Ωksλc√
εs (γ2 − Ω2 − iΩνab)

sin(ksz) exp(−iωt+ iqx). (47)

The continuity conditions for the fields H and Ex at the interfaces z = L/2 and z =

L/2 + h give four linear equations for unknown field amplitudes R, h+, h−, and C. Solving

these equations, after some algebra, we obtain the reflectivity coefficient R,

R =
kp[kv + α tanh(kvh)]− iεpkv[α + kv tanh(kvh)]

kp[kv + α tanh(kvh)] + iεpkv[α + kv tanh(kvh)]
exp[−ikp(L+ 2h)] (48)

with

α =
Ω2ksλab tan(ksL/2)

εs(γ2 − Ω2 − iΩνab)
.

The coupling of the waves in the prism and superconductor results in breaking of the

total internal reflection. Indeed, the parameter α in Eq. (48) is not pure real if νc, νab 6= 0.

Therefore, the modulus of the reflectivity coefficient, |R|, is less than one. This means, that

reflectivity is suppressed due to excitation of the waveguide mode in the slab of layered

superconductor. Moreover, under the resonance conditions, both the real and imaginary

parts of the numerator in Eq. (48) can simultaneously vanish at appropriate choice of the

thickness hopt of the vacuum gaps. Thus, for a given frequency the resonant value of the

incidence angle and the optimal gap thickness hopt can be obtain by equating the numerator

in Eq. (48) to zero.
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FIG. 6: (Color online) Reflectivity |R|2 as a function of the incidence angle θ for given Ω = 20,

(a), and as a function of the frequency Ω for given θ = 59.7◦, (b). These resonant values of θ and

Ω determine a point on the dispersion curve in the (κ, Ω)-plane. In Fig. 2, this point is marked

by filled square on the dispersion curve with n = 1. The optimal thickness of the vacuum gap is

h = 0.28λab. Other parameters are: γ = 60, εs = 16, L/λab = 10, εp = 24, νab = νc = 5 ∗ 10−2.

Complete suppression of specular reflectivity can be observed for the optimal gap thick-

ness by either changing the incidence angle θ at a given frequency Ω or vice-versa, changing

the frequency Ω at a given incidence angle θ. An example of complete suppression is shown

in Figs. 6 (a) and (b) where we plot the functions |R(θ)|2 and |R(Ω)|2, respectively. Intensity
plot of the reflectivity in the (θ, Ω) plane is shown in Figure 7. Each point on the dispersion

curve (light-blue line) gives a pair of parameters (the incident angle and the frequency) for

which the total internal reflection is completely suppressed.
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FIG. 7: (Color online) The intensity plot of the reflectivity |R|2 in the (θ, Ω)-plane for the same

values of the parameters as in Fig. 6. The dispersion curve for the symmetric low-frequency

waveguide mode with n = 1 is shown by light-blue line.

V. CONCLUSIONS

Here we presented a systematic study of the dispersion properties of the surface and

waveguide eigenmodes in a slab of layered superconductor placed between two identical

dielectrics. The structure of the eigenspectrum depends on the relation between the dielectric

constants of the environment and the insulator separating superconducting layers. For

the case of optically soft environment, we show that there are two symmetric and two

antisymmetric branches of surface waves. The fields of these waves are concentrated near

the slab boundaries and decay exponentially away from them. In addition, the spectrum

contains infinite number of low- and high-frequency waveguide eigenmodes. These modes

oscillate across the slab thickness. For the case of optically dense environment, the high-

frequency branches vanish and the spectrum consists of only the low-frequency branches of

surface and waveguide modes. Since the spectrum of the eigenfrequencies fits the terahertz

region, the layered superconductors may find useful applications as effective waveguides for

terahertz radiation.

We show that the eigenmodes can be resonantly excited in a slab by means of the at-
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tenuated total reflection method. Weak coupling of the external electromagnetic wave with

one of the eiegenmodes occurs through the evanescent tail of the wave which is reflected

from the bottom of a prism. For a given frequency the conditions of the resonant coupling

are satisfied for specific angle of incidence. We predict that the resonant coupling may be

sufficient to completely suppress the reflected wave. This effect can be observed for the

optimal thickness of the vacuum gap between the prism and the slab. For this special con-

figuration of the parameters the energy of the incident wave is completely dissipated in the

slab. This phenomenon is analogous to the well-known Wood anomaly which is related to

surface-plasmon polariton resonance in the visible and near-infrared region.
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