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We propose a method to study dynamical response of a quantum system by evolving it with an
imaginary-time dependent Hamiltonian. The leading non-adiabatic response of the system driven to
a quantum-critical point is universal and characterized by the same exponents in real and imaginary
time. For a linear quench protocol, the fidelity susceptibility and the geometric tensor naturally
emerge in the response functions. Beyond linear response, we extend the finite-size scaling theory
of quantum phase transitions to non-equilibrium setups. This allows, e.g., for studies of quantum
phase transitions in systems of fixed finite size by monitoring expectation values as a function
of the quench velocity. Non-equilibrium imaginary-time dynamics is also amenable to quantum
Monte Carlo (QMC) simulations, with a scheme that we introduce here and apply to quenches of
the transverse-field Ising model to quantum-critical points in one and two dimensions. The QMC
method is generic and can be applied to a wide range of models and non-equilibrium setups.

I. INTRODUCTION

The dynamics of thermally isolated quantum systems
beyond linear response has become a focus of experimen-
tal and theoretical research in thermalization,? univer-
sal quantum critical dynamics,>* quantum annealing,’
and many other areas.®” It has been realized® that de-
viations from adiabaticity in gapless systems and near
quantum-critical points, in particular, can be charac-
terized by scaling behavior of the fidelity susceptibility
and its adiabatic generalizations. These susceptibilities
are related to non-equal time correlations of the cor-
responding quench operator®? evaluated either at the
beginning or the end of the dynamical process. One
can, thus, extract valuable information on the dynam-
ical properties of quantum systems by analyzing their
non-adiabatic response. Such response can be directly
measured experimentally'®!! or studied numerically. At
the moment, numerical studies of real-time dynamics of
interacting systems are limited to small systems, mostly
in one dimension, however.'?

We here show that quantum dynamics can also be sim-
ulated by evolving the system in imaginary time. In par-
ticular, we demonstrate that the leading non-adiabatic
response of a system with its Hamiltonian changing in
imaginary time is very similar to that of the real-time dy-
namics. This allows us to use powerful quantum Monte
Carlo (QMC) techniques to investigate the dynamical re-
sponse. Another advance presented here is the extension
of the standard linear response theory, both in real and
imaginary time, to non-linear driving protocols where the
velocity or acceleration of the quench replaces the ampli-
tude. In particular, we show that the linear response of
physical observables in the case of linear quenches is char-
acterized by the components of the geometric tensor.”!3
This allows one to experimentally measure them, or simu-
late them using QMC, and study their singularities near
quantum critical points. Previously, with QMC simu-
lations it was only known how to compute the diago-
nal elements of the geometric tensor, i.e., the fidelity
susceptibilities.™*

We show that the non-perturbative response of generic
observables can be described by extending the standard
finite-size scaling theory of quantum phase transitions to
non-equilibrium protocols (e.g., by simultaneous scaling
in the system size and the quench velocity, or by only
changing the velocity at fixed system size), with expo-
nents that we derive here. In this work we focus on
imaginary time dynamics, but all universal results also
apply to real-time protocols.

We discuss the underlying time-evolution formalism
and results of adiabatic perturbation theory in Sec. II,
followed by results from linear response theory of phys-
ical observables to the quench velocity and the emer-
gence from it of the geometric tensor in Sec. III. Then,
in Sec. IV we formulate the scaling theory of non-
perturbative response of interacting systems to slow per-
turbations near quantum-critical points, extending the
scaling theory of phase transitions to non-equilibrium
setups. In Sec. V we apply the theory to the particu-
lar example of the one-dimensional transverse-field Ising
model, where the scaling forms derived can be compared
with exact results. In Sec. VI we present the QMC
method and numerical results obtained with it for the
two-dimensional transverse-field Ising model. We con-
clude in Sec. VII with a brief summary and discussion.
More details of the adiabatic perturbation theory are
given in Appendix A, and properties of the dynamic sus-
ceptibilities derived are further discussed in Appendix B.

II. TIME EVOLUTION

We consider the imaginary-time evolution described by
a Hamiltonian H(\) which implicitly depends on time
through the tuning parameter A(7). We assume that the
evolution starts at some time 79 < 0 and ends at 7 = 0,
A(0) being the point of interest. To simplify the notation
we set A(0) = 0. The imaginary-time propagation of the
wave function in this setup is governed by the Shrodinger



equation in imaginary time:

O (1) = =H(A(T)) ¥ (7). (1)

The formal solution at time 7 is given by the evolution
operator, ¥(7) = Ut(rp), with U given by the time-
ordered exponential:

U =T, exp [_ / dT’H(A(T’))] . @)

Before going into details of the dynamics, let us make
some remarks: (i) In the adiabatic limit, A — 0, the
system rapidly falls into its instantaneous ground state,
after a transient time, and then follows this state. (ii) At
finite A the system is constantly excited from the ground
state by the evolving Hamiltonian and relaxes back due
to imaginary-time propagation. The proximity to the in-
stantaneous ground state is controlled by A(7) near the
final point 7 — 0. If the velocity vanishes at the final
point, A(0) = 0, then the degree of nonadiabaticity is
controlled by the acceleration A(0), etc. (iii) Imaginary
time evolution is amenable to QMC simulations, giving
access to universal aspects of quantum dynamics in a
wide range of systems. We will outline such a gener-
alization of standard equilibrium QMC in Sec. VI and
apply it to the transverse-field Ising model. We first dis-
cuss the analytical framework needed for analyzing both
QMC and experimental results.

The easiest way to analyze the general properties of the
solution of Eq. (1) is to go to the adiabatic (co-moving)
basis. This procedure is similar to that in real time,
though containing very important subtleties. The de-
tails of the analysis are given in Appendix A. Here we
present only the final result of the first order of adiabatic
perturbation theory, which contains all relevant scaling
information. Denoting by a,,(0) the expansion coefficient
of the wave-function ¢(0) in the eigenstates of the final

Hamiltonian we have
0
exp {_ / dT’Ano(T’)], (3)

0
an(0) = / dr
— 00
where A,o(7) = E,(7) — E(7) is the instantaneous en-
ergy of the n-th level relative to the ground state and
(n|0;H|0) is the transition matrix element between the
instantaneous eigenstates.

To make further progress in analyzing the transition
amplitudes (3), let us consider the very slow asymptotic
limit A — 0. To be specific, we assume that near 7 =
0 the tuning parameter has the form \(7) =~ v|7"|/r!
(see also Ref. 8). The parameter v, which controls the
adiabaticity, plays the role of the quench amplitude (r =
0), velocity (r = 1), acceleration (r = 2) etc. It is easy to
check that in the asymptotic limit v — 0, Eq. (3) gives

(n]0-H|0)
Ano(T)

(n[0x]0)

o, A (n]0,#10)
" (gn - SO)T

e W

where all matrix elements and energy levels are evaluated
at 7 = 0. From this perturbative result we can evaluate
the leading non-adiabatic response of various observables
and define the corresponding susceptibilities.

IIT. LINEAR RESPONSE AND GEOMETRIC
TENSOR

Let us represent the observables of interest as gener-
alized forces, i.e., derivatives of H with respect to the
couplings p; M, = —0,H. By using this representation
we do not loose any generality. For example, a spin-spin
correlation function s; - s; of some lattice model can be
represented as a response with respect to an infinitesimal
coupling connecting these spins. Then we find

M, = C + 2L, (5)
where C' = (¥(0)|M,]1(0)) and
(T+1) (0]OAH|n) (n|0, H|0) + p <> )\
Xpx Id Z gn _ go)r+1 (6)

n#0

These susceptibilities can be also expressed through the
imaginary” and real time connected correlation functions,

r+1
X#A )= /
0
(7)

where O\H - is the imaginary-time Heisenberg representa-
tion of the operator O\ H evaluated at 7 (and in real time
one substitutes 7 — it + 0%, as discussed in Appendix
B). Thus, by changing the exponent r of the quench pro-
tocol one can probe different moments of the real and
imaginary time correlation functions. Let us point out
that the factor L=¢ in Eqs. (6) and (7) is inserted for
convenience for extensive observables, which appear as a
response to global perturbations. For intensive observ-
ables this factor is not needed.

The situation is slightly different for diagonal observ-
ables like the energy,

0|3 H-O\Ho + O H-O 7'[0|0>

Q= (M) — &, (8)
the log-fidelity,'®

F = —In(|((0)[0)[*), 9)

or the entropy entropy which in the lowest order of per-
turbation theory are described by quadratic rather then
linear response:®

(2r+1)

o 2
Q ~ v X)\)\ 9
F = vzxg\2;+2). (10)

The response coefficients in Eq. (5) have a very interest-
ing geometric interpretation for linear quenches (r = 1).



(2)
LA
puA-component of the geometric tensor,” '3 which defines
the Riemannian metric in the manifold of the ground

states of the Hamiltonian H(u, A).'* The diagonal com-

Then the susceptibility x,y reduces to the symmetrized

ponents of the geometric tensor XE\Q)? define the fidelity
susceptibilities.'® We emphasize that the metric ten-
sor, which was originally thought to have no physical
significance,'® emerges here as a response of physical ob-
servables to the quench velocity. Thus, Eq. (5) opens a
practical (numerical or experimental) way of analyzing
the geometry of the ground state wave function in the
parameter space and studying its universality, nature of
its singularities, and its topology.

IV. SCALING THEORY

In gapped systems all non-equal time correlation func-
tions decay exponentially with time, implying that the
susceptibilities XS;\L) converge for all m in the thermody-
namic limit. For gapless systems the situation is more
complicated and the susceptibilities can diverge. To un-
derstand the nature of this divergences we will employ
scaling analysis.

If the quench operator 0\H is marginal or relevant,
then its scaling dimension is,

Ay = dim[O\H] = z — dim[A]. (11)

For a marginal perturbation maintaining gaplessness in
the vicinity of A = 0 and not affecting the dynamic ex-
ponent z, we have dim[A] = 0 and Ay = z. Such cases
include superfluids and Fermi liquids (with A the inter-
action coupling). If O\H is relevant, e.g., when driving
the system to a gapped phase at A # 0, then by def-
inition dim[\] = 1/v,where v is the correlation length
exponent.!” Then Ay = z — 1/v, and from Eq. (6) we
obtain

n(rJrl) = dim[XLT)\+1)] =A,+d—-1/v—zr (12)

For ;v = X this expression reduces to a known result.® 18

If nffl\ﬂ) < 0 the susceptibility diverges with the sys-
tem size,
(r+1)
x o~ L (13)

and the perturbative result (5) breaks down in the ther-
modynamic limit. To find the correct asymptotics of the
observables in this case, we introduce the scaling dimen-
sion of the velocity; dim[v] = dim[A] + zr = 1/v + zr.
Following arguments similar to Ref. 8 instead of Egs. (5)
and (10) we then find:

(d+Ap)v
M, ~ C+ Lt 105 f\ (L")
= C 4 L2 fa(vL* /), (14)

Here C' is some non-universal constant. However, unlike
in Eq. (5), this constant does not have to be the ground

state expectation value. Whether the ground state ex-
pectation value is included or not in C determines the
small velocity asymptotics of the scaling functions f,(x)

and f,x(x). In general these asymptotics can be deter-
mined from physical arguments. For x < 1 we should
recover linear or quadratic response for diagonal and off-
diagonal observables, respectively, plus possibly universal
ground state contribution if it is not included in C. The
large argument asymptotic of the scaling function can
be obtained from other considerations. For example, for
extensive operators the scaling functions should saturate
at large x so that M, is extensive. The properties of the
susceptibilities (6) are further discussed in Appendix B.

Instead of the length scale equal to the system size L
in Eq. (14) there can be another relevant length scale,
e.g., the distance z12 = |x1 — X2| between two points
x; and xo if we are interested in correlation functions.
Thus, in a translationally invariant system one expects
that the non-equilibrium connected correlation function
in a large system should scale as:

(M) My (02))e & —f (w5 ™7) . (15)
12

Likewise we can generalize Eq. (14) to quenches which at
the final time end up in the vicinity of the QCP, i.e., at

Af # A

(d+Au)v Ar— A
M, ~ C+ Ly 555 £, (ULZT+1/V M) . (16)

T 1/ (zvr1)

This scaling relation can be used for independently locat-
ing the quantum critical point by, e.g., sweeping across
the phase transition in a sufficiently big system with dif-
ferent velocities (such that vL*T'/¥ > 1). Then there
will be a crossing point in M, /v(4T4:)¥/(14v2) plotted
versus the coupling A in curves corresponding to differ-
ent velocities. The expression (16), which is applicable
to real-time protocols as well, also suggests a convenient
way for determining the location of the critical point ex-
perimentally, by changing the velocity for a fixed sys-
tem size. The usual finite-size scaling procedure requires
changing the system size, which is not always feasible.
On the other hand, changing the quench velocity would
normally be quite straightforward in experiments on, e.g.,
cold atoms.

The scaling relations (14) generalize the standard
finite-size scaling theory of quantum phase transitions
(corresponding to 7 = 0) to non-equilibrium protocols
and constitute our main analytical result. Eq. (14) is
valid both for real and imaginary time, and also for the
expectation value (M) (in which case the small argu-
ment asymptotics is dictated by the requirement that
(M,,) reduces to its equilibrium value in the adiabatic
limit), as well for any other observable O with scaling
dimension Ap. For example, for the particular cases of
the energy and the fidelity, Ap = z and Ar = 0, respec-
tively, and Eq. (14) reduces to known results,® which were
recently verified numerically for a particular 1D model.'?



Observable E. Q F
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v <1 %”L}L T2V L ﬁv L
vL? > 1 [0.264/vL|0.0265vL|0.0276y/0L

TABLE I: Scaling of the excess interaction energy FE. with
respect to the final ground state, the excess total energy @,
and the log-fidelity I’ with the quench rate and the system
size for the transverse-field Ising chain.

V. 1D TRANVERSE-FIELD ISING MODEL

To illustrate the above general scaling results we
consider a linear quench in the one-dimensional (1D)
transverse-field Ising model with Hamiltonian

H:—ZO';-E—J o;o3, (17)
J (i7)

where o, and o, are the Pauli matrices and (ij) are near-
est neighbours sites. The dimensionless coupling con-
stant J drives the system through a critical point at
J. = 1, with critical exponents z = v = 1. We consider
the following quench protocol: J(r) = 1+ X = 1 + vT,
starting in the ground state at 7 = —1/v. Using
the Jordan-Wigner transformation, the model can be
mapped to free fermions. The analysis of the imagi-
nary time dynamics is straightforward and available in
the literature for similar real-time setups.!?2° We there-
fore only quote our results in Table I.

It is evident that the general scaling prediction (14)
indeed applies to this example. To illustrate further the
finite-size scaling behavior predicted by Eq. (14), in Fig. 1
(left panel) we plot the shift of the interaction energy
with respect to the final ground state,

E.=—J | (olol) = (0lotall0)| . (18)
(i7) (i7)

versus vL2. The data for different system sizes collapse,
showing that one can use the proposed imaginary-time
adiabatic approach to extract critical properties of a
quantum phase transition. To test our predictions fur-
ther, we analyze the square of the longitudinal magneti-
zation (the order parameter);

1 AN
m§:ﬁ< Za; > (19)
j=1
which has scaling dimension A, = 1/4.2! This together
with Eq. (14) imply that
m? ~ Lo/8 [, ;(Lv?) = L™Y4f, ;(vL?).  (20)
The large and small argument asymptotics of the scaling

function f.; are dictated by the equilibrium asymptotics
in the diabatic limit, f,;(z) ~ const at < 1, and by the

FIG. 1: (Color online) Excess interaction energy E. (left) and
squared magnetization (right) of Ising chains graphed accord-
ing to our scaling predictions. The lines show the expected
asymptotic forms; the slope is 1 for vIL? < 1 and 1/2 for
vL? > 1 on the left and —3/8 for vL? > 1 on the right.

requirement that m? ~ 1/L at vL? > 1 when quenching
from the disordered phase. If we quench from the ordered
phase, J(10) > 1, then f.;(x) ~ 2'/® at 2 > 1 (so
that m?2 ~ const). The finite-size scaling predictions and
asymptotics are in excellent agreement with numerical
data (Fig. 1, left panel) obtained using QMC simulations
with the algorithm discussed next.

VI. QUANTUM MONTE CARLO METHOD

A major advantage of the imaginary-time approach is
that generalized QMC methods can be applied to evolve a
state with the operator (2). Here we use an approach sim-
ilar to the stochastic series expansion (SSE) method, dis-
cussed in the context of the transverse-field Ising model
in Ref. 22. The method is generally applicable to all mod-
els for which standard equilibrium QMC simulations can
be used, i.e., those for which there is no sign problem.
Below we first briefly review standard finite-temperature
and ground-state QMC approaches. We then outline
the general idea of the non-equilibrium QMC (NEQMC)
method in imaginary time and apply it to the one- and
two-dimensional transverse-field Ising models.

A. Standard QMC methods

Standard QMC algorithms can be classified into finite-
temperature methods, where the goal is to compute a
quantum-mechanical thermal average of the form

()= S Tefe ™), Z=Tefe ™), (21)

and ground-state projector methods, where some oper-
ator P(f) is applied to a “trial state” |¥p), such that
|[Wg) = P(5)|¥o) approaches the ground state when
[ — oo. Normally one is interested in expectation values,

()= (UslAITs), 2= (Wl0s),  (22)



which approache the corresponding true ground state ex-
pectation values, (A) — (0|A]0), when § — oo. For
the projector, one can use the imaginary-time evolution
operator (2), P(B) = U(B) = e ™ with a fixed (time-
independent) Hamiltonian, or one can use a high power of
the Hamiltonian, P(3) = H™, where § o< m/N gives the
same rate of convergence (which is governed by the gap
between the ground state and the first excited state in
the symmetry sector of the trial state) for the two choices
for a given system volume N. This follows from a Taylor
expansion of the time evolution operator, which for large
B is dominated by powers of the order n = §|Ey|, where
Ey is the ground state energy (and Ey < N) .

There are several ways to deal with the exponential.
In the context of spins and bosons, the most frequently
used methods are based on (i) the Suzuki-Trotter-
decomposition, which leads to world-line methods,??2*
(ii) the continuous-time version of world-lines (e.g., the
worm algorithm?®) and (iii) the Taylor expansion lead-
ing to the SSE method??:25:27 (see Ref. 28 for a recent
review of these approaches). The latter two methods are
not affected by any approximations (beyond statistical
sampling errors), while (i) has a discretization error.

B. Non-equilibrium QMC algorithm

The NEQMC algorithm is similar to a ground-state
projection, but instead of e #* for a fixed Hamiltonian
one uses the evolution operator (2) with a time dependent
Hamiltonian. As in equilibrium QMC, one can treat the
exponential operator in several different ways. Here we
employ the series expansion.

Evolving from 7y to 7, Eq. (2) is expanded in a power-
series and applied to an initial state |¥(0)):

Z/ dTn/ drp_1 - /2d7—1><
H(ma)] - [=H ()] [¥(0)).

Writing —H in terms of individual site and bond opera-
tors, here denoted H;, i =1,..., Nop,

(23)

Nop

~H =Y H,

=1

(24)

the operator product is written as a sum over all strings
of these operators. Truncating at some maximum power
n = m (adapted to cause no detectable truncation error,
as in the SSE method?®) and introducing a trivial unit
operator Hy = 1, we can write Eq. (23) as

W(r)) = Z%/T:dnn---/;sdm/;zdﬁx

H
H;, (m2)Hi, (11)|9(0)), (25)

Hiy ()
where i, € {0,...,Nop}, >y is the sum over all se-
quences i1, ...,%y,, and n is the number of indices i, #
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FIG. 2: (Color online) Sampled imaginary-time sequences

shown versus the propagation index p after two successive
Monte Carlo sweeps in a linear-quench simulation of an 8 x 8
2D transverse-field Ising model. At the initial time 70 = 0 the
Hamiltonian contains only the transverse field (J = 0,h = 1).
The J-term is increased linearly with time to the critical point
(J =~ 3.05,h = 1) at the final time 7 = 2. There is a total
of 2m = 1280 operators, with p = 1,...,640 in a term of the
projection of the ket state in (23) and p = 641,...,1280 in
a corresponding bra term. The set of time points shown in
red was obtained from those shown in black by the method
of updating several overlapping segments of a large number
of times (here approximately 100) as discussed in the text.
The right panel shows the behavior close to the center of the
string (the final time) in greater detail.

0 in a given sequence. More generally, beyond the
transverse-field Ising model, i would refer to a lattice unit
as well as a diagonal or off-diagonal part of the operator
on this unit. The operators H; then have have the prop-
erty that H;|a) = h;(a)|a’), where |o) is a basis state,
i.e., in the basis chosen to expand the states, there is no
branching of the series of states obtained in the sequence
of states resulting from the operators acting one-by-one
in Eq. (25).

As always in QMC simulations, we are in practicve
restricted to systems for which the expansion is positive-
definite, which is the same class for which sign problems
can be avoided in equilibrium simulations. While the
sign problem is a limitation of the QMC approach in
general, the class of accessible models is still large and
includes highly non-trivial and important systems. With
the series expansion used in the NEQMC method here,
avoiding the sign problem places constraints on the ma-
trix elements h;(«)—the product of all matrix elements
corresponding to a term in (25) has to be positive.

Expectation values

(W(r)|A]¥(r))
(W(r)[¥(r))

are computed by sampling the normalization (¥ (7)|¥ (7))
written with (25). For the transverse-field Ising model,
which we will apply the method to below, the method is
very similar to the one developed in Ref. 22 in the context
of SSE QMC, the main difference being the change in
the time boundaries; from periodic at finite temperature
to those dictated by the initial state |¥(0)) of the time
evolution. Changes in the operator sequence are made

<A>‘r = (26)



with the times 7; fixed. The times are updated separately.

The operator sampling in the case of the transverse-
field Ising model is particularly simple when the starting
state is the equal superposition,

N
(0)) = @1+ b, 21)

which we use below, but other states can be used as well
(in particular, for Heisenberg and other spin-isotropic
systems, amplitude-product states in the valence-bond
basis?” are very convenient, and a generalization of the
loop updates used in the ground-state projector method
of Ref. 30 can be used).

Since efficient operator and state cluster-updates have
been described in detail in the literature for various
models in standard QMC simulations,??3° only the time
update (which is a generalization of a scheme previ-
ously discussed for equilibrium QMC in the interaction
representation®!) will be briefly outlined here. A whole
segment of times, 7;, ..., Tit+n, can be simultaneously up-
dated by generating n + 1 numbers within the range
(Ti=1, Titn+1), then order these times according to a stan-
dard scheme scaling as log(n),3? and inserting the ordered
set in place of the old segment of times. The Metropolis
acceptance probability is easily obtained from (25), at
a cost scaling as n. The number n can be adjusted to
give an acceptance probability close to 1/2. Fig. 2 shows
an example of a time sequence and how it changes af-
ter a sweep of updates of partially overlapping segments
covering the whole sequence of times.

C. Results

Using the NEQMC method we first confirmed that the
exact results for the Ising chain are reproduced. Com-
plete agreement was found to within very small statistical
errors. The results in the right panel of Fig. 1 are from
the NEQMC simulations.

We next considered the same model on the 2D square
lattice, i.e., the generalization of the 1D Hamiltonian
(17). The critical coupling in this case is J. = 0.32841
(based on exact diagonalization of a series of small lat-
tices, which show behavior agreeing very well with predic-
tions from low-energy field theory).?3 In the left panel of
Fig. 3 we show the scaling of the excess Ising energy FE.,
i.e., the 2D generalization of (18), for L x L lattices with
L up to 64, using the known®* exponent v = 0.6298 (ob-
tained for the classical 3D Ising model, which should be in
the same universality as the 2D quantum model studied
here, which has dynamic exponent when z = 1). We have
divided E. by the leading powers of L and v predicted
above and, hence, we should obtain a constant behavior
for large x. This is not quite seen yet for these systems
sizes, but the eventual convergence seems plausible. For
smaller = the data collapse very well and the asymptotic
xr — 0 behavior is reproduced. In the right panel we

(Bu-1)/(v+1 '
020l E, {1 |mtL
% 1+
0.101 oL=4 ] o L=4
o L=6 o L=6
o L=8 o L=8
8-82: e L=16 | o L=16
. e L=232 = =32
0.03} e L=64 7101 = L=64
0.02 L L L L L L L L L L L L
107 10" 10° 10" 10> 10° 107 100 10° 10' 10° 10°
VL(v+1)/v vL(v+1)/v

FIG. 3: Same as Fig. 1 for the square-lattice model (quenching
to its critical point J. = 0.32841). QMC data are scaled
according to the theoretical results, with the lines illustrating
the predicted asymptotic slopes with exponents z = 1, v =
0.6298, and n = 0.0364 (note that A, =1+ n).**

show that also the squared magnetization scales accord-
ing to our predictions, over five decades of vL(**+1)/¥ of
the scaling argument.

VII. SUMMARY AND DISCUSSION

We have shown that detailed information on static and
dynamic properties of a system can be obtained by prop-
agating it in imaginary time. There are many similarities
with real-time dynamics. In particular, we showed that
one can use imaginary time to obtain universal exponents
characterizing quantum critical points and to measure
the fidelity susceptibility and components of the geomet-
ric tensor as response of physical observables to a linear
quench. We obtained finite-size scaling expressions char-
acterizing the response of various observables with the
quench rate. In this way we extended the scaling theory
of quantum phase transitions to non-equilibrium proto-
cols. A clear advantage of the imaginary-time approach
is that one can use powerful QMC simulations and cir-
cumvent complications related to real-time simulations.
We have presented such a generic non-equilibrium QMC
scheme and illustrated this approach for the transverse-
field Tsing model. Exact results (in one dimension) and
QMC results (in one and two dimensions) show excel-
lent agreement with the scaling predictions. The QMC
method will be useful for studies of a wide range of non-
trivial models on large lattices.

The ideas presented here apply also to quantum an-
nealing, i.e., protocols where, in order to analyze the
ground state of a complicated classical or quantum prob-
lem, one introduces an auxiliary coupling which makes
the Hamiltonian simple and then slowly decreases this
coupling to zero. This will allow one to address quantum
annealing problems using QMC simulations.?>
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Appendix A: Adiabatic perturbation theory

Let us discuss the leading non-adiabatic correction to
the imaginary-time Schrédinger equation (1):

O (1) = —H(A(T)) (A1)
The natural way to address this question is to use adia-
batic perturbation theory (APT), similar to that devel-
oped in Refs. [20,36] in real time. We write the wave func-
tion in the instantaneous eigenbasis {|n(\))} of H()\):

=D an(D)n(A(7))- (A2)
Substituting this expansion into Eq. (1) we find
T O lodm) = eV (4

where &, () are the eigenenergies of H(\) corresponding
to the states |n). Making the transformation

() = an(r) exp { / i 8n(7’)d7’] ,

we can rewrite Eq. (1) as an integral equation [and note
that a,,(0) = a,(0)]:

0
an(7) = an(0) + Z/ dr' (] ) (')

(A4)

0
X exp [_ / a7 (Ea(r") - Em(r”)] (A5)
-
In principle one should supply this equation with ini-
tial conditions at 7 = 7y but, as we argued earlier, it is
not necessary if |7| is sufficiently large, since the sensi-
tivity to the initial condition will be exponentially sup-
pressed. Instead we impose the asymptotic condition
an (T — —00) — dp0, implying that far in the past the
system is effectively in the ground state.

Eq. (Ab) is convenient for analysis with the APT. In
particular, if the rate of change is very small, )\(T) — 0,
then to leading order in A the system remains in the
ground state; am,(7) & dmo (except during the initial
transient, which is unimportant at large |79|). In the
next higher order the transition amplitudes to the states
n # 0 are given by:

0

/ dr (n]|0) exp [_ /TO i’ AHO(T’)} ,

- (A6)

an(0) ~ —

where Ao (1) = E,(7)—Ep (7). The matrix element above
for non-degenerate states can also be expressed as:

(n[0-|0) = —(n|0-H(7)|0)/Ano(7)-

In what follows we will assume that we are dealing with
a non-degenerate ground state.

(A7)

Appendix B: Adiabatic susceptibilities and
non-equal time correlation functions

In this section we discuss the properties of the adia-
batic susceptibilities [Eq. (6) of the main text]:

. (0[OAH|n)(n|0 H|0) + 1 <> A
(+1 Ldz |,\|<| 0) . (B1)

A
# n#0 2én = &)
For linear quenches these quantities reduce to the sym-
metrized components of the geometric tensor? up to a
normalization factor. The representation of these suscep-
tibilities through imaginary time correlation functions is

a straightforward generalization of the result contained
in Ref. 9 (see also Ref. 8):

T 1 r T
o= 5 / A7 (010, Hr O\ Ho + 370, Ho|0).
0
(B2)
where
OH, = MO He T, (B3)

Performing the Wick’s rotation 7 — it + ¢, where ¢ is
an infinitesimal positive number, we extend this result to
real time:

X;(:,\H) 2;; /dt—r, (0[0, HiOxHo + OxH10,Ho|0) e,
0 (B4)
where
M = o\ He H (B5)
stands for the real-time Heisenberg operator. Thus we

see that the adiabatic susceptibilities of order r+ 1 probe
the r-th moment of the symmetric retarded correlation
function of the operators 9\H and 9, H. Introducing the
Fourier transform of this correlation function:

GU (w) = / dte™t (0|8, HiOrHo + O H10,Ho|0)e,
0
(B6)

we see that the susceptibility X( Y can be expressed

through derivatives of the imaginary part of functions

GLT/\H) which define the structure factors:

ey _ L 0"
BA 2r1Le Qw"

m GS}\H) (w) . (B7)

w=0



Finally let us mention the representation of these sus- ing Kramers—Kronig relations to the equation above or

ceptibilities through the real part of non-equal time cor- directly from the definition:
relation functions. This can be achieved either by apply-

2wr+1 r+1

1T (0]OxH|n) (0|0, H|0) + 11 +> A T
xL;)_ﬁ/ ny §(En— & —w) = /
0 n#0 0

ReG (" (w),  (BY)

where

G (w) = / dte™t (00xHeDu Ho + A ¢+ 41]0).
N (B9)



1

ot

10

11

12

13

14

15

16
17

18

T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440,
900 (2006).

M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).

W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett.
95, 105701 (2005).

A. Das and B. K. Chakrabarti, eds., Quantum Anneal-
ing and Related Optimization Methods, Lecture Note in
Physics, vol. 679 (Springer, Heidelberg, 2005).

J. Dziarmaga, Adv. in Phys. 59, 1063 (2010).

A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev.
B 81, 012303 (2010).

L. C. Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701
(2007).

C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys.
Rev. Lett. 104, 160403 (2010).

D. Chen, M. White, C. Borries,
arXiv:1103.4662 (2011).

M. Kolodrubetz, D. Pekker, B. K. Clark, and K. Sengupta,
arXiv:1106.4031 (2011).

J. P. Provost and G. Vallee, Comm. Math. Phys. 76, 289
(1980).

A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi, Phys.
Rev. B 81, 064418 (2010).

M. M. Rams and B. Damski, Phys. Rev. Lett. 106, 055701
(2011).

S.-J. Gu and H.-Q. Lin, Europhys. Lett. 87, 10003 (2009).
S. Sachdev, Quantum Phase Transitions (Cambridge Uni-
versity Press, 1999).

D. Schwandt, F. Alet, and S. Capponi, Phys. Rev. Lett.
103, 170501 (2009).

and B. DeMarco,

21

22
23

24

25

26

27
28

29

30

31

32

33

34

35

36

J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).

C. De Grandi and A. Polkovnikov, Lect. Notes in Phys.
802, 75 (2010).

S. Sachdev, Quantum Phase Transitions (Cambridge Uni-
versity Press, 1999).

A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).

M. Suzuki, S. Miyashita and A. Kuroda, Prog. Theor.
Phys. 58, 1377 (1977).

J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blanken-
becler, Phys. Rev. B 26, 5033 (1982).

N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Sov.
Phys JETP 87, 310 (1998) [arXiv:cond-mat/9703200].

A. W. Sandvik and J. Kurkijarvi, Phys. Rev. B 43, 5950
(1991).

A. W. Sandvik,J. Phys. A 25, 3667 (1992).
A. W. Sandvik, AIP Conf. Proc. 1297,
(arXiv:1101.3281).

S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett.
61, 365 (1988).

A. W. Sandvik and H. G. Evertz, Phys. Rev. B 82, 024407
(2010).

A. W. Sandvik, R. R. P. Singh, and D. K. Campbell Phys.
Rev. B 56, 14510 (1997).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.
T. Vetterling, Numerical Recipes: The Art of Scientific
Computing (Cambridge University Press, 2007).

C. J. Hamer, J. Phys. A: Math. Gen. 33, 6683 (2000).

M. Hasenbusch, K. Pinn, and S. Vinti, Phys. Rev. B 59,
11471 (1999).

C.-W. Liu, A. Polkovnikov, A. W. Sandvik, work in
progress.

G. Rigolin, G. Ortiz, and V. H. Ponce, Phys. Rev. A 78,
052508 (2008).

135 (2010)



