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Transmission electron microscopy (TEM) and low energy electron diffraction (LEED) simulations
are performed by propagating electron wave packets in real space and real time. The method
accurately describes electron scattering in solids for high (>200 keV) and low (20-200 eV) energies.
The applicability of the method is demonstrated by calculating TEM images and LEED intensities
of silicon and graphene.
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I. INTRODUCTION

Electron beams are among the most important tools used to probe the properties of materials at various energy
ranges. Low-energy electron diffraction (LEED) is a powerful tool for determining the atomic structure of surfaces1–3.

In LEED, a collimated electron beam of energy E =20-200 eV (corresponding to a wavelength λ =
√

150/E Å)
strikes the surface of a crystalline material. By observing the diffracted electrons as spots on a fluorescent screen, the
surface structure can be determined4. Low-energy electron point-source microscopy (LEEPS) also utilizes a low-energy
electron beam and is important for imaging biological molecules and lens-less electron holographic imaging5.
On the high-energy side, the electrons used in TEM typically have kinetic energies of Ek = 100-300 keV corre-

sponding to a wavelength λ = 0.037-0.02 Å6–8, which enables high-resolution imaging. Unlike the optical microscope,
the best achievable spatial resolution in a TEM is not limited by the electron wavelength, but instead is set by the
intrinsic imperfections of electron lenses, which are referred to as spherical and chromatic aberrations6.
Very recently, the aberration-corrected, monochromated TEAM 0.5 TEM9 has achieved sub-angstrom resolution10

for electrons accelerated with a 80 kV voltage11–13. The relatively low energy and aberration correction technique
provide the capability to resolve every single atom in the sample with small radiation damage and high contrast,
especially for light element materials14. This is important for organic materials, which are too fragile for the high
energy electrons used in other methods. The desired electron energy is from 10 to 100 keV, usually referred to as the
intermediate energy range6.
Due to the quantum nature of the interaction between electrons and solids, the correct interpretation of the LEED

pattern and TEM image requires very careful computer simulations2,15–21. For TEM with high-energy electrons, two
methods are widely used: the Bloch wave method22,23 and multislice theory24,25. While the Bloch wave method yields
accurate results for crystalline films, it is generally limited to calculations employing relatively small simulation cells.
The multislice method, on the other hand, is very successful in describing high-energy TEM imaging. However, due
to the approximations adopted in the theory21, it may be less accurate in describing the scattering processes for the
electrons in the intermediate energy range.
Electron scattering is essentially a time-dependent process. When a free-electron wave packet scatters on the sample,

part of the wave packet is reflected back, and the rest is propagated through the solid. Conventional time-independent
electron scattering calculations are done in energy space. The wave function in the scattering region is calculated for a
given energy and connected to assumed asymptotic states. The calculation has to be repeated for each desired energy.
Here we pursue an alternative approach to calculate the scattering wave function in a time-dependent framework by
time propagating a Gaussian wave packet. The time-dependent approach is similar to experiments in that a Gaussian
free-electron wave packet is propagated in real-time and real-space, and the scattering information is extracted from
the transmitted and the reflected part of the wave packet. The main advantage of the approach is that the scattering
wave function is calculated for all desired energies at once.
In this work, we present a unified framework to study electron diffraction in solids. We show that both the low

energy and high energy electron diffraction patterns can be obtained by propagating the wave packet in real space
and real time, and therefore are treated on an equal footing. For high-energy electrons, time-dependent calculations
have not been pursued in the past because the oscillatory nature of the propagated electron wave packet, requires an
extremely dense grid, which is prohibitively expensive21. At these high energies, we use an ansatz in which the incoming
electron wave function is expressed by a product of a fast-varying part and a slowly-varying envelope function. The
slowly-varying function will evolve according to a modified Hamiltonian derived from the time-dependent Schrödinger
equation. This is somewhat similar to a change in reference frame when analyzing relative object motion. After
this transformation, the dense grid sampling becomes unnecessary and electron scattering for both the intermediate
and the high energy ranges can be described accurately on a regular grid in the time domain. Electron scattering
simulations so far have concentrated on static imaging, but the advent of attosecond technology26 and ultrafast
electron microscopy (so called 4D electron imaging) has made it possible to observe electron dynamics at the sub-fs
scale27–30. The method presented in this paper could be useful for simulating these ultrafast electron dynamics31 as
well.

II. TIME-DEPENDENT SIMULATION OF ELECTRON SCATTERING

A. Low Energy Electrons

With the recent development of ultrafast laser techniques26, it has become possible to manipulate electron pulses
in a controllable manner28,30. The coherence in both space and time can be tuned32, which for the first time opens
up the possibility of studying ultrafast electron dynamics in real space and real time30. From a practical applications
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point of view, as the size of electronic and optoelectronic devices continues to decrease to the nanometer regime, the
effect of the electrons’ distribution will become relevant for understanding electron dynamics.
The wave packet (WP) description of an electron is a natural combination of its dual wave and particle nature. As

compared to pure plane waves, the wave packet has many advantageous features. The parameters of the Gaussian
wave packet widths can be tuned separately in three directions, allowing for a simulation of the finite size effects of the
electron source10. A variety of quantum systems can be controlled with a sequence of short laser pulses whose relative
phases are finely adjusted to control the interference of electronic or nuclear WPs32. Quantum information such as the
amplitudes and phases of eigenfunctions superposed to generate a WP can be retrieved. The WP description has been
used to study theoretically quantum electron scattering33, barrier tunneling34–36, and transport37. WP propagation in
the time domain has been shown to yield the eigenfunctions of arbitrary nanostructures38. Very recently, an analogy
between the evolution of a free WP and the Fresnel diffraction has been demonstrated39. The study of WP dynamics
is also of pedagogical interest for visualizing quantum mechanics40. Similar to electron scattering, the WP method
has also been successfully applied to the study of chemically reactive processes41.
We will consider only single electron scattering because the duration (∼10−9 s) between the electron pulses is much

larger than the very fast propagation process (∼10−15 s) in the solid. We start from the time-dependent Schrödinger
equation for the incoming electron wave function Φ(r, t):

i~
∂Φ(r, t)

∂t
= HΦ(r, t) =

[

−
~
2

2m
∇

2 + V (r)

]

Φ(r, t). (1)

Here, V (r) is the effective potential of the crystal film, which can be taken as frozen because of the speed of electron
propagation.
At t = 0, an incoming electron wave packet of initial (average) kinetic energy E0=~

2k20/2m and momentum p0 =
~k0 can be expressed as:

Φ(r, t = 0) = eik0xφg(r, 0), (2)

with φg(r, 0) the initial distribution of the wave packet. The form of φg(r, 0) must be easy to implement in real space,
e.g. a Gaussian wave packet (GWP).
The calculation is schematically illustrated in Fig. 1. A wave packet is placed far away from the sample and

propagated in time. Part of the wave function is reflected and part of it is transmitted. To avoid artificial reflec-
tions from the boundaries of the simulation cell, a complex absorbing potential42–44 is placed near these boundaries
(see Appendix A for further details). Periodic boundary conditions are used in the directions perpendicular to the
propagating direction. This boundary condition does not restrict the calculations in any way, the change in interlayer
spacing and surface layer contractions can be included in the calculations.
The wave function is propagated by using

Φ(r, t+∆t) = exp(−
iH∆t

~
)Φ(r, t). (3)

Once the evolution of the GWP in the whole lattice is complete, we transform the wave function from the time domain
into energy space:

Φ(r, E) =
1

2π

∫

Φ(r, t)eiEt/~dt. (4)

In the asymptotic regions to the left and right of the sample (see Fig. 1), the wave function can be written as

Φ(r, E) =

{

eik0‖·ρeik0⊥x +
∑

g Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x) x → −∞
∑

g Tk0⊥ge
i(k0‖+g)·ρeik

+
g⊥x x → +∞,

(5)

where ρ = (x, y). To characterize the scattering for a given energy E one has to calculate the transmission and
reflection coefficients Tk0⊥g and Rk0⊥g.
Eq. (5) is valid for a thin film where the incident electrons are reflected or transmitted through the sample. In the

case of a bulk crystal, there is no transmission and Eq. (5) has to be replaced by

Φ(r, E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x) x → −∞. (6)
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In this case we add a complex absorbing potential (CAP) to the Hamiltonian (see Appendix A for details). The CAP
is reflection free, therefore it does not change the reflection coefficients. The CAP absorbs the electrons deep inside
the sample and serves the same purpose as the imaginary potential used in the LEED calculations1–3.
The transmission and reflection coefficients in Eqs. (5) and (6) can be determined by fitting the calculated wave

function Φ(r, E) to the asymptotic forms defined in Eq. (5). The details of this calculation are given in Appendix A
for one dimension and in Appendix B for three dimensions.

B. Intermediate and High-Energy Electrons

For an electron with more than a few tens of keV, a direct calculation of the wave function Φ(r, t) requires a very
dense spatial grid sampling. According to the Nyquist theorem, a small grid spacing ∆x < π/k0 (where ~k0 is the
electron’s momentum) is required in order to account for the rapidly oscillating wave packet components. This results
in the need for a large dense grid (for example for electrons with 0.02 Å wavelength the grid spacing should be around
0.002 Å), which is computationally prohibitively expensive.
To avoid this, we note that the electron momentum along the propagation direction (here x) does not change

significantly during the scattering process, therefore the time-dependent wave function can be written as

Φ(r, t) = ei(k0x−
E0t

~
)φg(r, t), (7)

where the electron energy is E0 = ~
2k20/2m. In Eq. (7) the slowly-varying and fast-varying parts of the wave function

are separated. Substituting Eq. (7) into Eq. (1), we obtain

i~
∂φg(r, t)

∂t
=

[

−
~
2

2m
∇

2 + V (r)−
~
2k0
m

i
∂

∂x
+ k2

]

φg(r, t)

≡ Hφg(r, t). (8)

We can time propagate φg as

φg(r, t) = e−
i

~
Htφg(r− r0, 0). (9)

where the propagator e−
i

~
Ht can be approximated in many ways, e.g. using a Taylor expansion. The total electron

wave function Φ(r, t) is then given by Eq. (7). Equation (8) is the key equation governing the evolution of the slowly-
varying part φg(r, t). Since φg(r, t) is slowly varying in space, moderate grid spacings can be used (typically 0.1 ∼ 0.3

Å). By propagating the wave packet according to the modified Hamiltonian H, dense grid sampling can be avoided
without loss of accuracy.
To demonstrate the feasibility of the above technique, we simulate a 1D GWP propagating in free space, with an

initial wave vector of k0 = 50 Å−1 (Ek ∼ 10 keV). Figure 2 shows the wave packet distribution propagated according
to Eq. (8) for t = 0.085 fs. The analytical result is also shown for comparison. As can be seen from Fig. 2 the numerical
result is in excellent agreement with the analytical solution, demonstrating that the high-energy wave packet can be
accurately propagated using Eq. (8).

III. RESULTS AND DISCUSSION

A. Diffraction of low energy electrons from graphene

As a first example for the application of the time-dependent approach we show electron diffraction patterns from a
graphene sheet. The remarkable properties of graphene have stimulated a large amount of experimental and theoretical
research in condensed matter physics and nanoscience45,46. One interesting application of graphene is to serve as a
support for imaging nanostructures, biomolecules, and soft-hard interfaces47,48.
The setup of the computational cell is shown in Fig. 3. We time propagate a single wave packet through the

graphene lattice until the scattered wave function is completely adsorbed by the CAP (see Appendix A) at the
boundary. The evolution of the wave function with respect to time will be recorded on the two slice planes indicated
in Fig. 3. Using Eq. (4) we transform the scattered wave functions from time domain to energy domain, and the
diffraction pattern for the energy range of 20 eV to 200 eV can be obtained in a single calculation.
The reflected electron densities for various incoming electron energies are presented in Figs. 4 and 5 showing the

diffraction patterns of graphene. Because the wavelength of low energy electrons depends significantly on the energy
(λ =

√

150/E Å), the diffraction patterns vary with respect to incoming electron energy.



5

In Fig. 6 we present the transmission and reflection coefficients calculated by dividing the transmitted/reflected
electron intensity through the slice plane by the incoming electron intensity. One can see that within a large energy
range (40-200 eV), nearly 80% of the electron beam can penetrate the graphene lattice, showing that the graphene
could be useful for LEEPS imaging of biological molecules. A recent LEEPS measurement by Mutus et al.49 showed
that nearly 75 % of electrons with energy from 100 eV to 200 eV can penetrate the graphene lattice, in good agreement
with our simulation result. From Fig. 6, there is also a considerable portion (around 15 %) of the electron beams
reflected back from the graphene lattice. This result suggests that graphene could also be useful for in-line reflected
holographic imaging.
Our next example is the calculation of the LEED intensity. Two different systems, the diamond(111) 1× 1 and the

Cu(100) surface, are used as examples. The surface is represented by a few-layer crystal slab. The number of layers
is increased until the results converge. In the present case, about 15 atomic layers was found to be satisfactory to
obtain accurate results.
The LEED intensity for the diamond surface is shown in Fig. 7. A screened Thomas-Fermi potential is used to

represent the carbon atomic potentials. The results of our approach are compared to the intensity curve calculated
by the multislice finite difference method50 (see Fig. 7). The two results are in very good agreement. The slight
disagreement is due the the use of different potentials in our calculation (Thomas-Fermi) and in the multislice finite
difference approach (muffin-tin)50.
The calculated LEED intensity for a Cu(100) surface is compared to a tensor LEED calculation51 in Fig. 8. While

the overal agreement between the calculations is good, the differences in the crystal potentials might explain the slight
disagreement between the present approach and the tensor LEED results (see Fig. 8). In our approach the crystal
potential was determined by density functional theory (DFT) calculations. In tensor LEED calculations, the crystal
potential is modelled by a lattice of muffin-tin potentials characterized by a set of atomic phase shifts and the inelastic
processes are modelled by a uniform imaginary potential. The DFT potential is a fully self-consistent potential of
the electrons of the crystal. Unlike the muffin-tin potential, the DFT approach properly describes the potential in
the interstitial regions, but the inelastic scattering effects are not fully included in the DFT potential. The present
approach can use any potential that is numerically or analytically defined in a three-dimensional space grid, including
muffin-tin type potentials, all electron potentials, or pseudopotentials.

B. Simulation of transmission electron microscopy (TEM) imaging

The transmission electron microscope (TEM) is a powerful tool for determining crystal structures52–56. In high
energy electron microscopy, where the kinetic energy of the incoming electron is much higher than that of the electrons
in the film, the crystal potential can be treated as the summation of all atomic potentials in the sample and will not
change during the scattering process (i.e., the crystal potential is frozen). Although frozen atomic potentials are used
here, a self-consistent all-electron potential calculated by density-functional theory can be easily incorporated. Below
we adopt the all-electron potentials employed in the multislice method, as implemented in Ref. 21.
To illustrate the approach, described in Section II.B, for high energy electrons we simulate the TEM image for a

silicon thin film along the [110] direction. To obtain the TEM images a Gaussian wave packet

φg(r, 0) =

(

2

πα2
0

)
1
4

e
−

(x−x0)2

α2
0 , (10)

is propagated in the x direction as shown in Fig. 9. Periodic boundary conditions are used along the y and z directions.
The silicon film (4.4 nm thick) is located at the center of the simulation box. A large vacuum region (more than
10 Å) on both sides of the film along the x direction is used to minimize the possible boundary reflection. For all
the simulations below, we fix the grid spacing to be 0.2 Å×0.1 Å×0.1 Å. Initially, the wave packet center x = x0 is
located beyond the region of the crystal potential.
During image formation, the key process is the electron scattering in the crystal film. The exiting scattered wave

function will have the necessary information about the crystal structure projected perpendicular to the propagation
direction. A direct comparison with the experimental TEM image needs to take into account the instrument’s effects,
such as the transfer function of the lens. In this work, we focus on the electron scattering in the sample and discuss
the scattered wave packet on the exit plane, as indicated by the dashed line in Fig. 9. The projected intensity is
calculated by integrating the wave packet density along the propagating x direction.
Figure 10 shows the results calculated from our time-dependent simulation for a crystalline silicon film at two

different energies, 25 keV and 75 keV. Results from the multislice method as implemented in Ref. 21 are also shown
for comparison. The zigzag chain on the projected plane can be identified in all cases. At the 25 keV energy the
intensity distribution obtained from the multislice method in Fig. 10 (a) is significantly distorted. In contrast, our
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time-dependent simulation shows a clear well-known dumbbell structure, as can be seen in Fig. 10(b). At the higher
75 keV energy, the intensity distributions from two methods are similar. This demonstrates that our technique yields
accurate results for both the high energy and the intermediate energy ranges.
A line scan of the intensity along the projected OA bond allows us to compare the results quantitatively. In Fig. 11,

the change of the intensity profiles with respect to the energy are shown. For a fixed thickness, the incoming electron
energy varies from 25 keV to 100 keV. Results from the multislice method are shown as shaded areas.
Comparing the intensities in Figs.11(a) and 11(b), we find that for a given incoming electron energy the intensity is

smaller for thinner films. Thicker samples give higher contrast. For a given sample thickness, the intensity decreases
as the energy increases, which indicates that electrons of lower energy will be scattered more significantly by the
crystal potential. This results in a higher intensity contrast. Overall, the results from the two methods are very
similar, especially for thin films at intermediate energy ranges and thick samples at high energies. However, as can be
seen from the bottom panels in Fig.11(a) and 10(b), the atomic sites in the profile from the multislice method are not
easy to identify. This is also true for the profile of 50 keV in Fig.11(b). In contrast, our time-dependent simulations
yield rather regular intensity profiles for both 25 keV and 50 keV, as can be seen in Figs.11(a) and 11(b).
Fig. 12 shows the change of intensity with respect to the film thickness for a fixed energy (50 keV). Thicker samples

have larger relative intensity signals and therefore higher contrast. Although the two methods give very similar
intensity distributions for the thickness of 2.2 nm, a noticeable difference can be seen starting from 4.4 nm, which
becomes clearer for 6.6 nm. There are several small peaks appearing on the profile from the multislice calculation.
The result for 6.6 nm is heavily distorted and the dumbbell structures on the projected plane are barely identified.
In contrast, the time-dependent simulation still yields well-defined intensity distributions for thicker samples. Note
that in the thick samples, a considerable intensity accumulates between the two atoms, indicating a bonding feature
between silicon atoms at O and A sites.
It is well-known that the multislice method is more accurate for higher energy TEM simulation, typically, E >

100 keV. This is because of the approximations employed in the multislice theory, i.e., the second-order term along
the propagation direction has been neglected.21 However, when the energy becomes smaller, the validity of this
approximation becomes questionable. As can be seen above, distortions in the intensity distribution become evident
for lower energy electrons and thicker samples, indicating the limitation of the multislice method to the intermediate
energy range. In contrast, our time-dependent simulations start from the time-dependent Schrödinger equation.
Without any approximation, the time-dependent simulation in principle yields the most accurate results for both
high and intermediate energy ranges. This unified framework might also be useful for the further study of ultrafast
electron dynamics in the time domain.
Another advantage of our time-dependent simulation is its ease of use. The multislice method requires a careful

choice of the slices along the propagation direction for a given sample. In contrast, only the atomic structure is neces-
sary in our simulations. Therefore, our time-dependent simulation can be easily extended to study more complicated
structures, including interfaces and nanostructures.
The present approach is using frozen atomic positions, but the statistical fluctuation of the atomic positions can

also be included by averaging the atomic potentials over positions describing the motion of atoms. One way to achieve
this is to use the frozen phonon approximation21 in the same way as in the multislice approach.

IV. SUMMARY

In summary, we have presented a unified framework for simulating electron diffraction in solids in any energy range
in real-space and real-time. The method is straightforward and easy to implement. Since we directly propagate the
incoming electron wave function according to the time-dependent Schrödinger equation, the results are expected to be
more accurate than previously used methods that are based on various levels of approximations. The main advantage
of the method is that the scattering information can be extracted for all energies at once from a single wave packet
propagation, i.e., the calculation does not have to be repeated for many energy points. At the same time, the present
method has to be repeated for each scattering directions, while other methods used in LEED calculations can handle
all scattering directions at once. The computational time, therefore, depends on the number of required energy points
and scattering directions.
Nearly all previous LEED calculations have been performed by employing an average potential, using a muffin-

tin shape. Our approach can be implemented with a full potential (e.g. all electron density functional potential)
description without relying on a muffin-tin description. In muffin-tin approaches the potential is averaged around the
ionic core with a chosen radius and assumed constant in the interstitial region. This drastic approximation works
relatively well in metals, but the agreement with experiments is poorer for materials with covalent bonds57. Full
potential calculations have been proposed50 but their applications so far are limited due to the high computational
cost. The present approach greatly reduces the required computational time; most calculations require about an hour
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on a single processor.
In this work, we have presented examples for the application of the time-dependent approach to low and high

energy regions. In the intermediate energy range (10-50KeV), the reflection high-energy electron diffraction (RHEED)
technique is used to characterize the surface of crystalline materials. The most accurate method for calculating RHEED
intensities was developed by Zhao et al.58. In principle, the present time-dependent approach may also be used to
calculate RHEED intensities and we will implement and test such approach in the near future.
Using a special ansatz, the rapidly oscillating high energy scattering wave function can also be simulated by the

present approach. The present work is concentrated on time-independent TEM images, but the approach can also be
extended to 4D electron imaging to observe electron dynamics at the fs scale27–30.
We thank Mark Oxley, Andrew Lupini, and E. Kirkland for useful discussions of multislice simulations. This

work was supported in part by DOE grant DE-FG02-09ER46554 and NSF grant CMMI0927345. This research used
resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Appendix A: Scattering of low energy electrons in 1D

In this Appendix, we show the application of the method to calculate the transmission probability for a one-
dimensional finite square potential barrier.
In one dimension, the time-dependent Schrödinger equation reads:

i~
∂Φ(x, t)

∂t
= HΦ(x, t) = [−

~
2

2m
∇

2 + V (x, t)]Φ(x, t). (A1)

To solve this equation, the wave function and the Hamiltonian are discretized in space and time using finite differences
and the wave function is time propagated

Φ(x, t+∆t) = exp(−iH(x, t)∆t/~)Φ(x, t), (A2)

where the initial wave function is a chosen to be a Gaussian wave packet

Φ(x, 0) =

(

2

πα2
0

)
1
4

e
−

(x−x0)2

α2
0 (A3)

and a fourth-order Taylor expansion will be used to represent the exponential operator.
Due to the finite size of the lattice grid, if the wave packet spreads quickly, any reflected portion of the wave

will then interfere with the incident wave, giving rise to a non-physical interference pattern. This situation imposes
limitations on the choice of the input parameters, e.g. x0 and α0 in Eq. (A3), which must be chosen so that the wave
functions at the boundaries are essentially zero, at least at the beginning t = t0

40. To avoid unphysical reflections, a
complex absorbing potential (CAP), iW (x)42–44 is added to the Hamiltonian

H(x, t) = −
~
2

2m
∇

2 + V (x, t)− iW (x). (A4)

The CAP approach is widely used in time-dependent quantum mechanical calculations to avoid artificial reflections
caused by the use of finite basis sets or grids59. These CAPs are located in the asymptotic region and annihilate the
outgoing waves, preventing the undesired reflections (see Fig. 1).
Once the evolution of the GWP in the whole lattice is known for the scattering process, we can transform the WP

from t to E:

Φ(x,E) =
1

2π

∫

Φ(x, t)eiEt/~dt. (A5)

In the asymptotic region, Φ(x,E) can be written as

Φ(x,E) =

{

eikx +Re−ikx x → −∞

Teikx x → +∞.
(A6)

By writing the asymptotic wave function in this form we have assumed that the wave packet is propagated from left
to right, that is there is no incoming wave from the right. In principle, one can use Eq. (A6) to extract R and T
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by fitting the calculated wave function and its derivative to the asymptotic expression. In practice, it is found to be
more accurate to fit the wave function in an extended region (see Fig. 1) to the asymptotic form.
To test the approach a wave packet with initial momentum k0 = 6.2 Å and average energy of 146 eV is scattered at

a potential barrier (see Fig. 13). The calculated transmission coefficient, shown in Fig. 14, is in excellent agreement
with the analytical results showing that the scattering information over a wide energy range can be extracted from a
single wave packet propagation.
As has been discussed in Section II.A, in case of a bulk target, the asymptotic behavior of Φ(x,E) can be written

as

Φ(x,E) = eikx +Re−ikx x → −∞, (A7)

and a CAP is added to the Hamiltonian to absorb the electrons deep inside the sample. In this work we will adopt
the CAP suggested in Ref.60. This negative, imaginary CAP is derived from a differential equation and its form is

iw(r) = −i
~
2

2m

(

2π

∆x

)2

f(x̃) (A8)

where ∆x = x2 − x1, x1 is the start and x2 is the end of the absorbing region, c is a numerical constant, m is the
electron’s mass, and

f(x̃) =
4

(c− x̃)2
+

4

(c+ x̃)2
, x̃ =

c(x − x1)

∆x
. (A9)

The CAP goes to infinity at the end of the absorbing region and effectively cuts off the bulk beyond that distance.

Appendix B: Extraction of transmission and reflection coefficients

In a three dimensional system the wave packet can be calculated by time propagation in the same way as in one
dimension by extending the grid into three spatial dimensions. The extraction of the scattering information, however,
is more complicated because the three dimensional asymptotic form (Eq. (5)) has to be used.
In the asymptotic region, the wave function can be decomposed into plane waves. One needs to calculate the

transmission and reflection probabilities of a plane wave with wavevector k0 incident on the surface of a slab of
crystal. We may decompose k0 into components parallel and perpendicular to the direction of propagation:

k0 = k0‖ + k0⊥ (B1)

When the incident wave reaches the crystal surface, part of the wave function will be reflected. The reflected portion
will travel with wavevectors that can similarly be decomposed into parallel and perpendicular components:

k−
g = k−

g‖ + k−
g⊥ (B2)

The other part will be transmitted, with corresponding wavevectors:

k+
g = k+

g‖ + k+
g⊥. (B3)

Above we have used + and - to indicate transmission and reflection, respectively. From 2D momentum conservation,
we obtain:

k+−
g‖ = k0‖ + g (B4)

where g is the 2D reciprocal lattice vector of the crystal. To extract the transmission and reflection coefficients, we
proceed by placing matching planes close to the top and bottom of the crystal slab (see Fig. 1). At points above the
upper matching plane, we may write the wave function using the incident and reflected plane waves:

Φ(r, E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x) (B5)

where

E =
~
2

2m
(k0‖

2 + k0⊥
2) (B6)
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is the electron energy. Below the lower matching plane, we may write the wave function in terms of the transmitted
plane waves:

Φ(r, E) =
∑

g

Tk0⊥ge
i(k0‖+g)·ρeik

+
g⊥x (B7)

Once Φ(r, E) is known, one can use a Fourier transformation over the perpendicular plane (y, z):

∑

y,z

Φ(E, r)e−i(k0‖+g′)·ρ = [eik0⊥xδg′,0 +Rk0⊥g′e
−ik−

g′⊥x]Ns, (B8)

∑

y,z

Φ(E, r)e−i(k0‖+g′)·ρ = Tk0⊥g′e
ikg′⊥

+xNs, (B9)

where Ns is the number of surface points on our grid. With this transformation we have obtained an equation that
is analogous to Eq. (A6) and the transmission and reflection coefficients can be obtained in a similar way by fitting
the Fourier transformed wave function.

1 J.B. Pendry, Low Energy Electron Diffraction, Academic Press 1974.
2 M.A. Van Hove, W.-H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Springer 1986.
3 K. Heinz, LEED and DLEED as modern tools for quantitative surface structure determination, Rep. Progr. Phys. 58, 637
(1995).

4 S. E. Chamberlin, C. J. Hirschmugl, H. C. Poon, and D. K. Saldin, “Geometric structure of TiO2(011(2×1) surface by low
energy electron diffraction (LEED),” Surface Science 603, 3367 (2009).

5 H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Theory of the Points Source Electron Microscope,
Ultramicroscopy 45, 381-403 (1992).

6 L. Reimer, “ Transmission electron microscopy: physics of image formation and microanalysis,” Springer, 1997.
7 J. C. H. Spence, “Experimental High-Resolution Electron Microscopy,” Oxford University Press, New York, 3rd Edition,
2003.

8 D. B. Williams and C. B. Carter, “Transmission Electron Microscopy, A Textbook for Materials Science,” Plenum Press,
New York, 1996.

9 http://ncem.lbl.gov/TEAM-project.
10 R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, “Atomic-Resolution Imaging with a Sub-50-pm Electron Probe,”

Phys. Rev. Lett. 102, 096101 (2009).
11 J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, “Direct Imaging of Lattice Atoms and

Topological Defects in Graphene Membranes,” Nano Lett. 8, 3582 (2008).
12 K. W. Urban, “Studying atomic structures by aberration-corrected transmission electron microscopy,” Science 321, 506

(2008).
13 M. A. O’Keefe, “Seeing atoms with aberration-corrected sub-Angstrom electron microscopy,” Ultramicroscopy 108, 196

(2008).
14 J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,”

Nature 454, 319 (2008).
15 R. Kilaas. Interactive simulation of high-resolution electron micrographs. In G. W. Bailey, editor, Proceedings of the 45th

Annual Meeting of the Microscopy Society of America, pages 66-69. San Fransisco Press, 1987.
16 R. Kilaas, 2006. www.totalresolution.com/index.html.
17 M. A. O’Keefe and P. R. Buseck. Computation of high resolution TEM images of materials. Trans. American Crystallography

Assoc., 15, 27 (1979).
18 M. A. O’Keefe and R. Kilaas. “Advances in high-resolution image simulation,” In P. W. Hawkes, F. P. Ottensmeyer, W. O.

Saxton, and A. Rosenfeld, editors, Image and Signal Processing in Electron Microscopy, Scanning Microscopy, Supplement
2, pages 225-244, Chicago, 1988. Scanning Microscopy Intern.

19 J. C. H. Spence and J. M. Zuo, “Electron Microdiffraction.” Plenum Press, New York, 1992. http://emaps.mrl.uiuc.edu.
20 P. A. Stadelmann. EMS - a software package for electron diffraction analysis and HREM image simulation in materials science.

Ultramicroscopy 21, 131 (1987). P. A. Stadelmann. JEMS - EMS Java version, 2004. cimewww.epfl.ch/people/stadelmann.
21 E. J. Kirkland, ”Advanced computing in electron microscopy,” Plenum Press, New York, 1998.
22 H. A. Bethe, Ann. Phys. 87, 55 (1928).
23 M. De Graf, “Introduction to Conventional Transmission Electron Microscopy, ” Cambridge Univ. Press, Cambridge, UK,

2003.
24 J. M. Cowley and A. F. Moodie, “The Scattering of Electrons by Atoms and Crystals. I. A New Theoretical Approach,”

Acta Cryst. 10, 609 (1957); ibid, 12, 353 (1959).



10

25 P. Goodman and A. F. Moodie, “Numerical evaluation of N-beam wave functions in electron scattering by the multislice
method,” Acta Cryst. A 30, 280 (1974).

26 F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
27 A. H. Zewail, “4D Ultrafast Electron Diffraction, Crystallography, and Microscopy,” Ann. Rev. Phy. Chem. 57,65 (2006).
28 A. H. Zewail, “Four-Dimensional Electron Microscopy,” Science 328, 187 (2010).
29 F. Carbone, O.-H. Kwon, and A. H. Zewail, “Dynamics of Chemical Bonding Mapped by Energy-Resolved 4D Electron

Microscopy,” Science 325, 181 (2009).
30 P. Baum and A. H. Zewail, “Attosecond Electron Pulses for 4D diffraction and microscopy,” Proc. Nat. Acad. Sci. 104,

18409 (2007).
31 H. Dömer, O. Bostanjoglo, Rev. Sci. Instrum. 74, 4369 (2003).
32 K. Ohmori, “Wave-Packet and Coherent Control Dynamics,” Annu. Rev. Phys. Chem. 60, 487 (2009).
33 B. Ritchie, “Time-dependent wave-packet theory for electron scattering,” Phys. Rev. A 45, R4207 (1992).
34 J. Wang, Y. Wang, and H. Guo, “Investigation of time-dependent resonant interband tunneling,” J. Appl. Phys. 75, 2724

(1994).
35 A. P. Stamp and G. C. McIntosh, “A time-dependent study of resonant tunneling through a double barrier,” Am. J. Phys.

64, 264 (1996).
36 F. H. Stoica, D. Dragoman, “Analytical treatment of wave packet tunneling through a resonant double barrier heterostruc-

ture,” J. App. Phys. 86, 2677 (1999).
37 S. Monturet and N. Lorente, “Inelastic effects in electron transport studied with wave packet propagation,” Phys. Rev. B

78, 035445 (2008).
38 D. M. Sullivan, D. S. Citrin,“Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation,”

J. App. Phys. 91, 3219 (2002).
39 T. L. Beach, “Initial phase and free-particle wave packet evolution,” Am. J. Phys. 77, 538 (2009).
40 F. L. Dubeibe, “Visualization of quantum mechanics into any computational software program,” arXiv:1005.0044v3 (2010).
41 S. C. Althorpe, “Time-dependent plane wave packet formulation of quantum scattering with application to H+D2→ HD+D,”

J. Chem. Phys. 117, 4623 (2002).
42 J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys. Rep. 395, 357 (2004).
43 D. E. Manolopoulos, J. Chem. Phys. 117, 9552 (2002).
44 T. Gonzales-Lezena, E. J. Rackham, and D. E. Manolopoulos, J. Chem. Phys. 120, 2247 (2004).
45 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry¡¯s

phase in graphene,” Nature 438, 201¨C204 (2005).
46 K. S. Novoselov, et al.,“Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197¨C200 (2005).
47 Z. Lee, K.-J. Jeon, A. Dato, R. Erni, T. J. Richardson, M. Frenklach and V. Radmilovic, “Direct Imaging of Soft-Hard

Interfaces Enabled by Graphene,” Nano Lett. 9, 3365¨C3369 (2009).
48 R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova et al. Appl. Phys. Lett. 97, 153102 (2010)
49 J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New. J. Phys. 13,

063011 (2011).
50 Huasheng Wu,Jing Wang, Ricky So, and S Y Tong, J. of Phys.: Cond Matter. 19 386203 (2007).
51 P. J. Rous and J. B. Pendry, Surf. Sci. 219 373 (1989).
52 S. J. Pennycook and L. A. Boatner, “Chemically Sensitive Structure Imaging with a Scanning Transmission Electron Mi-

croscope,” Nature 336, 565 (1988).
53 N. D. Browning, M. F. Chisholm, and S. J. Pennycook, “Atomic-Resolution Chemical Analysis Using a Scanning Transmis-

sion Electron Microscope,” Nature 366, 143 (1993).
54 M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, and K. Urban, “Electron microscopy image enhanced,” Nature

392, 768 (1998).
55 P. E. Batson , N. Dellby and O. L. Krivanek, “Sub-Angstrom resolution using aberration corrected electron optics,” Nature

418, 617 (2002).
56 D. A. Muller, “Structure and bonding at the atomic scale by scanning transmission electron microscopy,” Nat. Matt. 8, 263

(2009).
57 Edmar A Soares, Caio M C de Castilho, and Vagner E de Carvalho, J. Phys.: Condens. Matter 23 303001 (2011).
58 Zhao et al. Phys. Rev. B 38, 1172 (1988).
59 R. Kosloff and D. Kosloff, J. Comput. Phys. 63, 363 (1986).
60 D. E. Manolopoulos, The Journal of Chemical Physics 117, 9552 (2002).



11

FIGURES
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FIG. 1. Schematic illustration of wave packet propagation.
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FIG. 2. Propagation of a 1D Gaussian wave packet in free space. The wave packet is located at x = -25 Å at t=0. Solid line:
the wave packet distribution obtained by propagating using Eq. (4). Dashed line: the analytical result. The time step is ∆t =
1.0×10−5 fs. Regular grid spacing ∆x = 0.2 Å is used.
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FIG. 3. Periodic unit of graphene lattice and our simulation box. Lx=60 Å, Ly=2.46 Å, and Lz=
√
3Ly . The graphene lattice

is placed at Lx=0.
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(a) E = 41 eV (c) E =116 eV(b) E = 75 eV

FIG. 4. Density distribution for the reflected electron on the slice plane at a distance of 12.0 Å from graphene. (a) E=41 eV,
(b) E=75 eV, and (c) E=116 eV.
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(a) E = 49 eV (c) E = 173 eV(b) E = 105 eV

FIG. 5. Density distribution for the transmitted electron on the slice plane at a distance of 12.0 Å from graphene. (a) E=49
eV, (b) E=105 eV, and (c) E=173 eV.
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FIG. 6. Calculated transmission and reflection coefficients of graphene for the low energy electron beam.
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FIG. 7. Intensity curves for a 1×1 diamond (111) surface. The solid lines are calculated by the present method and the dashed
lines are showing the results of the multislice finite difference approach50. The calculations assumed normal incidence of the
primary electron beam intensity curve belongs to the (00) exit beam.
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FIG. 8. Intensity curves for the Cu(100) surface calculated by the present method (solid line) and by the Tensor LEED approach
(dashed line). The tensor LEED data is taken from Ref.51. The calculations assumed normal incidence of the primary electron
beam intensity curve belongs to the (10) exit beam.
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FIG. 9. Atomic model for silicon {110} plane used in the simulation: (a) side view, and (b) top view. The incoming electron
propagates along x direction (indicated by arrows), perpendicular to the surface. Silicon atoms on the surface (e.g., O and its
two nearest-neighbors B and C) are denoted by larger balls, forming a zigzag chain. The center of the coordinates is located
at O atom. One of the nearest-neighbors to the silicon atom O inside the film is labeled as A. The position of the exit plane
is indicated by a dashed line.
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FIG. 10. Intensity distribution of the electron wave function at the exit plane obtained from the multislice method and our
time-dependent simulation. The thickness of the silicon thin film is 4.4 nm. The incoming electron energies are 25 keV in
(a) and (b), and 75 keV in (c) and (d), respectively. (a) and (c): the multislice method; (b) and (d): our time-dependent
simulation. The intensity scale of the contour plot is from 1 to 12.
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FIG. 11. Intensity profile along the projected O-A bond for the silicon thin film with thickness of (a) 2.2 nm, and (b) 4.4 nm.
The incoming electron energies are 25 keV, 50 keV, 75 keV, and 100 keV, respectively. Blue line: time-dependent simulation;
Shaded area: multislice method.
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FIG. 12. Intensity profile of the projected O-A bond on the yz plane for silicon specimen with thickness of 2.2 nm, 4.4 nm,
and 6.6 nm. The incoming electron energy is fixed at 50 keV. Blue line: time-dependent simulation; Shaded area: multislice
method.
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FIG. 13. Schematic plot of a Gaussian wave packet tunneling through a square potential barrier. The width of the barrier is
a = 8.3 Å, and the height of the barrier is V0 = 100 eV. Regular grid spacing of 0.2 Å is used.
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FIG. 14. Calculated (solid line) and analytical transmission probability T (E).


