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Ankylography is a new 3D imaging technique, which, under certain circumstances, 

enables reconstruction of a 3D object from a single sample orientation. Here, we 

provide a matrix rank analysis to explain the principle of ankylography. We then 

present an ankylography experiment on a microscale phase object using an optical 

laser. Coherent diffraction patterns are acquired from the phase object using a 

planar CCD detector and are projected onto a spherical shell. The 3D structure of the 

object is directly reconstructed from the spherical diffraction pattern. This work may 

potentially open the door to a new method for 3D imaging of phase objects in the 

visible light region. Finally, the extension of ankylography to more complicated and 

larger objects is suggested.   

PACS numbers: 87.59.-e, 87.15.B-, 87.64.Bx, 42.30.Rx 

 

I. INTRODUCTION 
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Lens-based microscopies, such as light, phase-contrast, fluorescence, confocal, x-

ray and electron, have made important contributions to a broad range of fields in both 

physical and life sciences. In 1999, a new form of microscopy was developed, termed 

coherent diffraction imaging or coherent diffraction microscopy [1], in which the 

diffraction pattern of a non-crystalline specimen was first measured and then directly 

phased to obtain an image. The well-known phase problem was solved by oversampling 

the diffraction intensity [2,3] in combination of iterative algorithms [4-7]. Using 

synchrotron radiation, high harmonic generation, soft x-ray laser sources and free electron 

lasers, coherent diffraction imaging has been applied to conduct structure studies of a wide 

range of samples in materials science, nanoscience and biology [8-31]. To perform 3D 

coherent diffraction imaging (CDI), it is necessary to acquire a sequence of 2D diffraction 

patterns by either tilting a sample at multiple orientations or using many identical copies of 

the sample [9,12,15,25,30]. In some applications, however, it is very desirable to obtain the 

3D structure of an object without requiring sample tilting or multiple copies. To achieve 

this challenging goal, ankylography has recently been developed [32], which under certain 

circumstances allows for 3D imaging of an object from a single sample orientation. 

Subsequently, two imaging methods that are somewhat related to ankylography have been 

demonstrated. The first is super-resolution biomolecular crystallography [33], which under 

some conditions can determine the high-resolution 3D structure of macromolecules from 

low-resolution data. The other is discrete tomography [34], which enables to achieve the 

3D atomic reconstruction of a small crystalline nanoparticle by only using two projections, 

combined with prior knowledge of the particle’s lattice structure. Compared to 

conventional 3D structure and imaging methodology, these three methods are 
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mathematically ill-posed problems, but represent a new and important direction in 

structural determination − retrieving 3D structural information from a portion of Fourier 

magnitudes or coefficients.  

In this paper, we first provide a matrix rank analysis to explain why ankylography 

under certain circumstances can be used to determine the 3D structure from a single 

sample orientation. We then perform the ankylographic reconstruction of a phase object 

using an optical laser. There are three significant implications of this experiment. First, it 

extends ankylography to the 3D imaging of phase objects in the visible light region that is 

currently dominated by confocal microscopy. Second, compared to the previous result that 

is somewhat controversial due to the use of a transparent sample on an opaque substrate 

[35,36], this work represents the first ankylographic reconstruction of a phase object on a 

transparent substrate. Finally, using X-ray free electron lasers, ankylography may be 

applied to determine the 3D structure of certain classes of samples without the need of 

identical copies.   

 

II. MATRIX RANK ANALYSIS OF ANKYLOGRAPHY 

We provide a matrix rank analysis to explain why ankylography under certain 

circumstances can be used to determine the 3D structure from a single view. Let us assume 

that a coherent wave illuminates a 3D real object, ),,( zyxρ . The far-field diffracted wave, 

),,( zyx kkkF , is oversampled on a spherical shell. We separate ),,( zyx kkkF into cosines 

and sines, 
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where (2M+1)3 is the size of the 3D object (i.e. support size), (2N+1)3 is the size of the 

Fourier-space array in which the two hemi-spherical shells are located, 
zyx kkkA ,, and 

zyx kkk ,,φ  

are the magnitudes and phases of  ),,( zyx kkkF , and the diffraction angle is assumed to be 

90°. In Eq. (1), we chose the spherical shell to be one voxel thick, which is a reasonable 

assumption as the thickness of the spherical shell is determined by the experimental 

parameters such as the energy resolution, divergence and convergence angle of the incident 

beam. Note that Eq. (1) is not the discrete Fourier transform relation as the reciprocal-

space vectors on the spherical shell (kx, ky, kz) are not independent, but related via 

( ) ( )22222 2/1)(2/1 +<+++≤− NNkkkN zyx . We rewrite Eq. (1) into a matrix form, 
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where B, X and A are (2L+1)×(2M+1)3, (2M+1)3×1 and (2L+1)×1 matrices, respectively, 

(L+1) is the number of non-centro-symmetrical grid points on the spherical shell, and the 

row of (1 … 1) in matrix B and A0 in matrix A correspond to the centro-voxel. To facilitate 

our quantitative analysis, we generate two new matrices B′ and X′ by expanding B and 

padding zeros to X, 
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where B′ is defined as the sampling matrix, B′ and X′ are (2L+1)×(2L+1) and (2L+1)×1 

matrices, respectively. Mathematically, Eq. (3) is equivalent to Eq. (2).  

To give some specific examples on the matrix rank analysis, we first calculated the 

rank of B′ by using a 7×7×7 array (i.e. M = 3). The spherical shell is embedded inside a 

17×17×17 array (i.e. N = 8). The number of non-centro-symmetrical grid points on the 

spherical shell of 1 voxel thick is 393 (i.e. L = 392) with the oversampling degree (Od = 

1.14), defined as [32]: 

portsupthewithinvoxelsofNumber
shellsphericaltheofonewithinvoxelsofNumberOd = .   (4) 

The rank of B′ is determined to be 785 (i.e. matrix B′ has full rank) with tolerance of 10-3. 

In this case, the number of unknown variables of the 3D object is 343 (i.e. 73), and the 

number of unknown variables for the phases in Eq. (3) is 392. Therefore the total number 

of unknown variables is smaller than the rank of B′ , suggesting that the 3D object can in 

principle be obtained by solving Eq. (3). We also calculate the rank of B′ for a 14×14×14 

voxel object with Od = 2.06. In this case, the rank of B′ is larger than the number of 
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unknown variables with tolerance of 10-6, but smaller with tolerance of 10-3. When Od is 

increased to be ~4.0, the rank of B′ (with tolerance of 10-3) is larger than the number of 

unknown variables. The matrix rank analysis suggests that when the object array is larger, 

the tolerance becomes smaller in order to maintain full rank of the sampling matrix, and 

the ankylographic reconstruction becomes more challenging without additional constraints 

and information, which is consistent with the numerical simulation results [32]. To 

facilitate interested readers who might wish to conduct ankylographic reconstructions, 

several Matlab source codes have been posted on a public website and can be freely 

downloaded to test this method [37]. 

 

III. ANKYLOGRAPHY EXPERIMENT AND RECONSTRUCTION 

Next, we present an ankylographic experiment on a phase object using an optical 

laser. Figure 1 shows the schematic layout of the experimental setup. An optical laser with 

λ = 543 nm was collimated by a compound lens system, consisting of two converging 

lenses and producing a parallel beam with a diameter of ~200 μm. An aperture was placed 

15 mm upstream of the sample to block the unwanted scattering from the lenses. The 

object to be imaged in 3D is a dielectric phase pattern made up of non-absorbing SU-8 

epoxy photoresist that had been cross linked by using an Ultratech XLS stepper. Figure 

2(a) shows a differential-interference-contrast (DIC) microscope image of the phase object, 

which consists of a dense raft-like arrangement of four alphabet letters (WWWA) in close 

proximity; as fabricated, each plate-like letter is about 4 µm wide x 7 µm tall x 1 µm thick 

with ≈ 1 µm effective pen width [38,39]. As the sample is a weak phase object, the phase 

shift within a 3D resolution volume can be approximately represented as  
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),,(1),,( zyxie zyxi ϕϕ += .    (5) 

The Fourier transform of the term “1” in Eq. (5) is concentrated at the center voxel in 

reciprocal space (i.e. the direct wave) and is blocked by a beamstop, while the Fourier 

modulus of ),,( zyxiϕ  is centro-symmetrical. Compared to a conventional 2D exit wave, 

where the phase shift ),( yxϕ  may not be small after propagating through a whole object, 

),,( zyxφ  represents the phase shift within 1 voxel in ankylography and is thus small for a 

weak phase object. The sample was supported on a silicon nitride membrane of 100 nm 

thickness. To increase the depth of the sample along the Z (beam) axis, the silicon nitride 

membrane was tilted about 45° relative to the incident beam. Coherent diffraction patterns 

were recorded by a liquid-nitrogen-cooled CCD camera with 1340×1300 pixels and a pixel 

size of 20 μm × 20 μm, positioned at a distance of 31.5 mm from the sample. The distance 

between the sample and the detector could not be further reduced due to the geometry of 

the CCD camera. A beamstop was positioned in front of the CCD camera to block the 

direct beam. 

To obtain coherent diffraction patterns at highest possible resolution, we moved the 

CCD camera both horizontally and vertically, and measured a diffraction pattern at each of 

the four quadrants. The four diffraction patterns were tiled together to form a high spatial 

resolution (HSR) pattern. To ensure the missing center confined within the centro-speckle 

[40], we took an additional low spatial resolution (LSR) diffraction pattern by moving the 

CCD camera further downstream at a distance of 108 mm to the sample. To remove the 

background scattering and readout noise of the CCD, we measured two sets of diffraction 

patterns at each position with the sample in and out of the laser beam. Table 1 shows the 

experimental parameters used to measure the diffraction patterns. The HSR and LSR 
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diffraction patterns after background subtraction are shown in Figs. 2(b) and (c), which 

were combined to assemble a diffraction pattern of 2001×2001 pixels with a small missing 

center.  

Because the CCD is a 2D planar detector, the assembled diffraction pattern has to 

be projected onto a spherical surface. As the solid angle subtended by each CCD pixel 

varies with the diffraction angle, the diffraction intensity was normalized by 
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where R is the distance from the sample to the CCD camera and δ is the CCD pixel size. 

  The normalized diffraction intensity was then projected onto the spherical surface 

on a Cartesian grid. To perform more accurate interpolation, we first located the Cartesian 

grid points, ( c
z

c
y

c
x kkk ,, ), within a spherical shell of 1 voxel thick and then projected the grid 

points onto the planar CCD by  

c
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= '' ,  (8) 
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where )','( d
y

d
x kk  are the X and Y coordinates on the detector plane and are not necessarily 

an integer number of pixels. We calculated )','( d
y

d
xN kkI  using spline interpolation with the 

neighboring pixels, and then assigned )','( d
y

d
xN kkI  to the Cartesian grid point, 

),,( c
z

c
y

c
xN kkkI . Figure 2(d) shows the diffraction intensity distributed within two spherical 

shells on a 3D Cartesian grid. The centro-symmetry of the diffraction intensity is because 

the sample is a weak phase object (Eq. (5)). The array size of the 3D Cartesian grid is 

1691×1691×491 voxels with a diffraction angle of 32.3°.   

To perform the ankylographic reconstruction, we first roughly estimated a loose 

support for the phase object. The algorithm was then iterated back and forth between real 

and reciprocal space with a random phase set as an initial input. In real space, the voxel 

value outside the support and the negative voxel value inside the support were slowly 

pushed close to zero [6]. In reciprocal space, the Fourier magnitudes within the spherical 

shell were updated with the measure ones while other Fourier magnitudes remained 

unchanged in each iteration. The convergence of the algorithm was monitored by an Rsphere 

defined as, 

|)(|

|)(||)(|

kF

kFkF
R M

sphere

C
sphere

M
sphere

sphere

−
=   (9) 

where |)(| kF M
sphere  and |)(| kF C

sphere  are the measured and calculated Fourier modulus within 

a spherical shell. Compared to phase retrieval in coherent diffraction imaging, the 

convergence speed in ankylographic reconstruction is slower and more iterations are 

required. To make ankylographic reconstructions more efficient, we performed ~10 

independent reconstructions each with a random phase seed. After 5000 iteration, we chose 
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the best 3D reconstruction with the smallest Rsphere. By convolving the reconstruction with 

a Gaussian filter and choosing a cutoff value, we determined an updated support. After 

running another 5000 iterations, we reconstructed a 3D object from which a final tight 

support was determined. Figure 3 shows the supports used from loose to tight during 

ankylographic reconstructions. The oversampling degree (Od) for the final support is 2062 

[32]. Such a large oversampling degree in the reconstruction occurs because the final 

support that we used is very tight. After another 5000 iterations, a final 3D reconstruction 

was obtained, corresponding to Rsphere = 0.36. According to our experience, enforcing a 

correct, tight support is important in ankylographic reconstruction. In addition, a larger 

oversampling degree (Od) also improves reconstruction of experimental data. 

 

IV. RESULTS 

 The resolution in ankylography is determined by )2sin(/ θλ=td  and 

)sin2/( 2 θλ=ld , where td and ld represent the transverse and longitudinal resolution (i.e. 

perpendicular and parallel to the incident beam), λ is the wavelength and 2θ is the 

diffraction angle. In this experiment, the transverse and longitudinal resolution was 

estimated to be ~1.0 μm and ~3.5 μm, respectively. Figures 4(a-f) show 3 projections and 

3 central slices of the final reconstruction along the X, Y, and Z (beam) axes. Based on the 

achieved resolution of ~1.0 μm along the X and Y axes and ~3.5 μm along the Z axis, we 

determined the projection length of the object in the X, Y and Z axes to be ~19 μm, ~23 

μm and ~23 μm, respectively. Figure 5(a) shows an iso-surface rendering of the 

ankylographic reconstruction, and the orientation of the phase object relative to the 

incident beam. To verify the reconstruction, we tilted the reconstruction to the same 
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orientation (Fig. 5b) as shown in the differential interference contrast (DIC) image (Fig. 

2a). The 3 letters “WWW” are clearly visible and consistent with the DIC image, while the 

letter “A” is a bit too small to be resolved in the reconstruction. To further quantify the 

ankylographic reconstruction, we performed a line scan across the reconstruction (Fig. 5b). 

The blue curve in Fig. 5(c) shows the reconstructed density of the phase object, which is in 

reasonably good agreement with the DIC curve (in red). Differences in the appearance of 

the two images are expected because ankylography, when applied in an optical context to a 

structured, non-absorbing, dielectric material, produces a quantitative reconstruction of the 

density of dielectric polarizability of a phase object, not a DIC image that incorporates 

interference effects. 

 

V. CONCLUSION 

          In this article, we have presented a matrix rank analysis to explain why 

ankylography, under certain circumstances, enables reconstruction of a 3D object from a 

single spherical diffraction pattern. We have demonstrated this approach by performing an 

ankylography experiment on a dielectric phase object using an optical laser. Coherent 

diffraction patterns were measured from the phase object, projected onto a spherical 

surface, and directly phased to obtain the 3D structure of the object. Transverse and 

longitudinal resolutions of 1.0 μm and 3.5 μm, respectively, were achieved in the 

experiment. While the resolution is currently limited by the experimental set-up (i.e. the 

distance between the sample and the CCD could not be set smaller than 31.5 mm due to 

the geometry of the CCD camera), the ultimate resolution is set by the wavelength of the 
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incident beam. Thus, we anticipated that even better resolution can be achieved in future 

experiments. 

 Compared to conventional coherent diffraction imaging [8-31], the ankylographic 

reconstruction not only requires a tight support with a large oversampling degree, but also 

becomes more challenging for larger objects. In order to apply ankylography to large 

objects, three different approaches are envisioned. First, our numerical simulations suggest 

that increasing the thickness of the spherical shell can distinctly improve the ankylographic 

reconstruction of large objects. Experimentally, this may be realized by using an incident 

wave with an energy bandwidth, coupled with an energy-resolved detector [41]. Second, 

more real-space constraints can facilitate the ankylographic reconstruction of large objects. 

One way to achieve this is to position a 3D object with a known structure close to an 

unknown one, which is somewhat related to molecular replacement and holography 

[42,43]. Based on our numerical simulations, the combination of the known part and a 

spherical diffraction pattern is more effective in reconstructing a large 3D object. Finally, 

by acquiring several spherical diffraction patterns at different sample orientations with 

each having a large oversampling degree, our numerical simulations indicate that 

ankylography can be extended to larger objects. Compared to conventional tomography, 

the number of projections required in ankylography will likely be smaller due to the 

utilization of spherical diffraction patterns.   

 This work was in part supported by the U.S. Department of Energy, Office of Basic 

Energy Sciences (DE-FG02-06ER46276) and the U.S. National Institute of Health 

(GM081409-01A1). H. J. is supported by NSFC (51002089), and Independent Innovation 

Foundation of Shandong University (2010JQ004). 
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Sample 

(exposure time × 
number of frames) 

Background 
(exposure time × 

number of frames) 

Distance from 
sample to CCD 

 

HSR 

Center 0.17 s × 1000 0.17 s × 500 

3.15 cm 
Lower-Left 0.18 s × 1000 0.18 s × 500 

Lower-Right 0.45 s × 1000 0.45 s × 500 
Upper-Left 0.2 s × 1000 0.2 s × 500 

Upper-Right 0.16 s × 1000 0.16 s × 500 
LSR  0.25 s ×1000 0.25 s × 500 10.80 cm 

 

Tab. 1 Experimental parameters used to measure the high spatial resolution (HSR) and 

low spatial resolution (LSR) diffraction patterns using an optical laser (λ = 543 nm). The 

incident flux on the sample was estimated to be ~1.7×108 photons/μm2⋅s.  

 

Figure Captions 

Figure 1 Schematic layout of the experimental set-up. A compound lens system, 

consisting of two converging lenses, was used to collimate the incident laser beam with a 

wavelength of 543 nm. An aperture was placed 15 mm upstream of the sample to block the 

unwanted scattering from the lenses. A phase object made up of SU-8 epoxy photoresist 

was supported on a silicon nitride membrane of 100 nm thick. To increase the depth of the 

sample along the beam axis, the silicon nitride membrane was tilted about 45° relative to 

the incident beam. Coherent diffraction patterns were recorded by a liquid-nitrogen-cooled 

CCD camera with 1340×1300 pixels and a pixel size of 20 μm×20 μm, placed at a distance 

of 31.5 mm from the sample. A beamstop was positioned in front of the CCD camera to 

block the direct beam. 

Figure 2 (a) DIC microscope image of the phase object, consisting of four alphabet letters 

(WWWA). (b), (c) The high and low spatial resolution diffraction patterns acquired by a 
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planar CCD detector. The low spatial resolution pattern was used to reduce the missing 

center. (d) Two spherical diffraction patterns on a 3D Cartesian grid. The centro-symmetry 

of the two spherical patterns is because the sample is a phase object. The size of the 3D 

array is 1691×1691×491 voxels with a diffraction angle of 32.3°.   

Figure 3 Supports from loose (a) to tight (c) used for the ankylographic reconstructions. (a) 

Initial loose support. (b) Updated support, (c) Final tight support. 

Figure 4 . (a-c) Three projections of the final reconstruction along the X, Y, and Z (beam) 

axes. Based on the achieved resolution of ~1.0 μm along the X and Y axes and ~3.5 μm 

along the Z axis, the projection length of the object in the X, Y and Z axes was estimated 

to be ~19 μm, ~23 μm and ~23 μm, respectively. (d-f) Three central slices of the final 

reconstruction along the X, Y and Z axes.  

 Figure 5 (a) Iso-surface rendering of the ankylographic reconstruction of the phase object 

where the relative orientation of the incident beam to the object position is illustrated. (b) 

The reconstruction is tilted to the same orientation as the DIC image (Fig. 2a). Although 

the resolution of the reconstruction is lower than the DIC image, the two images are in 

good agreement. (c) Line scans across the reconstruction and the DIC image. The two 

curves agree reasonably well. The discrepancy is ankylography produces a quantitative 

reconstruction of the phase object, but not the DIC image. 
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