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Stability of topological defects in chiral superconductors: London theory.

Victor Vakaryuk∗

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

This paper examines thermodynamic stability of chiral domain walls and vortices – topological
defects which can exist in chiral superconductors. Using London theory it is demonstrated that at
sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample
is not favored and the sample’s configuration is a single domain. The particular chirality of the
single-domain configuration is neither favored nor disfavored by the applied field. Increasing the
field leads to an entry of a domain wall loop or a vortex into the sample. Formation of a straight
domain wall is never preferred in equilibrium. Values of the entry (critical) fields for both types of
defects, as well as the equilibrium size of the domain wall loop, are calculated. We also consider
a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility and a change
in the magnetic moment due to a vortex or a domain wall entry. We show that in a case of a soft
domain wall whose energetics is dominated by the chiral current (and not by the surface tension)
its behavior in mesoscopic samples is substantially different from that in the bulk case and can be
used for a controllable transfer of edge excitations. The applicability of these results to Sr2RuO4 –
a tentative chiral superconductor – is discussed.

PACS numbers:

I. INTRODUCTION

Chiral superconductors belong to an exotic class of
physical systems whose many-body ground state carries
non-zero current and hence breaks time-reversal symme-
try. Since the current can assume two time-reversal con-
nected directions the ground state of a chiral supercon-
ductor is doubly degenerate (chiral). This degeneracy
opens a possibility for the existence of extended topo-
logical defects – domain walls – which connect regions
of opposite chirality and exist along with conventional
defects such as vortex lines.

It has recently been suggested that graphene at spe-
cific doping can support chiral superconductivity.1,2 An-
other tentative candidate for a chiral superconductor is
Sr2RuO4 below 1.5 K (see Refs. 3,4 for review) which is
corroborated by µSR5,6, Kerr effect7 and phase-sensitive
measurements8,9. The candidacy of Sr2RuO4 is how-
ever undermined by the fact that several attempts to
detect surface magnetic field generated by the chiral
currents10–13 or the magnetic moment associated with
them14 have not yielded a positive result.

One of the possible explanations aimed to cut this Gor-
dian knot of seemingly contradicting observations is to
assume the presence, on a mesoscopic scale, of an alter-
nating chiral domain structure which leads to the sub-
stantial field cancellation. Previous studies reported in
the literature have focused either on the calculation of
the domain wall properties such as surface tension and
accompanying chiral current (see e.g. Refs. 15,16) or on
finding the distribution of magnetic fields assuming a par-
ticular domain structure without attempts to justify the
latter10–12,17,18.

In this work we use London theory to address the
question of the thermodynamic stability of several do-
main configurations for a simple sample’s geometry (such
as cylindrical) where demagnetizing effects can be easily

taken into account. We show in particular that in small
applied fields the equilibrium domain configuration cor-
responds to a single-domain sample and that the specific
chirality of this domain is neither favored nor disfavored
by the applied field. Upon increasing the applied field
either a domain wall loop or a vortex enters the sam-
ple; the configuration in which a domain wall forms a
straight line which terminates at the edges of the sample
is never favored in equilibrium. Values of the entry (crit-
ical) fields as well as of domain wall loop size are given
in terms of the model parameters such as the magnitude
of the chiral current and a domain wall surface tension.

Motivated by recent cantilever magnetometry mea-
surements in Sr2RuO4

14 we also consider a mesoscopic
chiral sample with a hole for which we calculate zero-
field magnetic moment, susceptibility and a magnetic
moment change due to a vortex or domain wall entry.
We demonstrate that in the mesoscopic limit the size of a
loop formed by a very soft domain wall can be controlled
with the applied field and speculate that such effect can
give rise a controllable transfer of edge excitations such
as Majorana modes.

The paper is organized in the following way. In Section
II we give a phenomenological description of a chiral do-
main wall used throughout the paper. In Section III we
derive an expression for the Gibbs energy of a chiral su-
perconductor with topological defects in the strong type-
II limit. In Section IV we apply results of the previous
section to several domain configurations in macroscopic
samples. This is the core section of the paper. In Sec-
tion V we focus on a mesoscopic geometry. Section VI is
devoted to overall conclusions. Appendix A contains so-
lution of the London equation for a two-domain circular
cylinder of arbitrary dimensions with a hole. Appendix
B contains some useful results involving modified Bessel
functions.
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II. DOMAIN WALL DESCRIPTION

Even in the simplest case of an isotropic chiral super-
conductor the domain wall structure can be quite com-
plicated and is in general determined by the interplay
between the material – Ginzburg-Landau – parameters
and the domain wall geometry. To describe chiral do-
main walls we will use a simplified model in which it
is modeled by a sheet-like object with surface tension σ
which carries chiral current with linear density 2i and is
characterized by a winding number `dw.

The presence of the current along a domain wall is ne-
cessitated by the chiral nature of the state in which the
internal orbital motion of Cooper pairs, while compen-
sated in the bulk, produces a non-zero charge current i
on a boundary with vacuum and 2i on a boundary with
another domain. The presence of such current leads to
a discontinuity of magnetic field (or, rather, magnetic
induction) across the domain wall.

A general description of a domain wall requires several
winding numbers which reflects the multicomponent na-
ture of the underlying chiral state.19 The winding number
relevant to our model, `dw, has a physical meaning of a
net flux (in units of flux quantum, cf. below) generated
by the domain wall’s chiral and screening currents in an
infinite superconducting medium.29 Defined in this way
the winding number `dw depends on the geometry of the
domain wall and, in general, need not be integer.

Domain wall surface tension σ complements our treat-
ment of topological defects by specifying its intrinsic en-
ergy per unit area. Although existing calculations seem
to indicated that for a chiral p+ ip superconductor σ > 0
the author is not aware of a general proof which would
exclude the opposite.

We will consider a model in which both the sample
and the domain wall are translationally invariant along
the direction of the applied field and focus only on two
domain wall configurations – straight line and a circle –
which, due to their high symmetry, admit straightforward
analytical treatment. The main difference between the

two configurations is that while a circular domain wall
creates a non-zero net flux (`dw 6= 0) the net flux created
by a straight domain wall vanishes (`dw = 0). It should
also be pointed out that both σ and i will in general be
different for the two configurations; we will not indicate
such difference explicitly, unless otherwise stated.

We note in passing that domain structure in chiral su-
perconductors need not be similar to that in ferromag-
netic materials since the latter do not exhibit field screen-
ing.

III. SURFACE REPRESENTATION OF THE
GIBBS POTENTIAL FOR A CHIRAL

SUPERCONDUCTOR

Let us start by considering a superconducting sample
placed in a uniform external magnetic field. Distribution
of currents and fields in the sample is a function of the
applied field and, in thermal equilibrium, can be found
through minimization of the corresponding Gibbs poten-
tial, defined as30

G = Fs +
1

8π

∫
d3r (B2 − 2B ·H), (1)

where H and B are magnetic field and induction respec-
tively; the volume integration extends over the space oc-
cupied by the superconductor and over any cavities con-
tained in it. The free energy Fs of the sample, which by
our definition excludes the field energy given by the B2

term in eqn. (1), may contain terms describing kinetic
energies of charge and spin currents20, spin-orbit inter-
action energy21, effects of kinematic spin polarization22

etc.
In London theory the free energy of a superconductor is

approximated by the kinetic energy of supercurrents de-
scribed by superfluid velocity vs. The sum of the kinetic
energy of supercurrents and the magnetic field energy can
be written in the following form:23

∫
sc

d3r

(
1

2
ρsv

2
s(r)+

1

8π
B2

)
=− |Φ0|

16π2

∮
d2s · (B×∇θ)− 1

8π

∮
d2s ·

(
B×A

)
, (2)

where Φ0 ≡ hc/2e (< 0), A is the vector potential, ρs
is the superfluid density and θ is the phase of the order
parameter. The volume integration extends over the re-
gion of space occupied by the superconductor and

∮
d2s

denotes the integration over its surface. The above re-
sult, derived under the main assumption of the London
approximation – uniform superfluid density31 – is valid
for a superconductor of an arbitrary geometry and relies
only on the use of Maxwell’s equations and Gauss’s the-

orem. The convenience of such representation relates to
the fact that for relevant geometries the surface integra-
tion is usually more straightforward to perform than the
volume one. Moreover, using eqn. (2) one can avoid di-
rect calculation of the magnetic field contribution which
is usually quite cumbersome.

Eqn. (2) can also be used in the presence of topologi-
cal defects if they are treated in the following way: The
volume integrals should exclude regions of non-uniform
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superfluid density associated with the defects, while the
surface integrals should be complemented by an integra-
tion over the surface which encloses the excluded vol-
ume. The “missing” contribution to the free energy can
be accounted for by introducing defects’ surface energy
Fσ which can be computed from a more general descrip-
tion e.g. Ginzburg-Landau theory. Such approach leads
to the following representation of the free energy32

Fs = Fσ +

∫
sc−d
d3r

1

2
ρsv

2
s(r), (3)

where the integral now excludes regions with non-uniform
superfluid density associated with the defects. In the ex-
treme type-II limit λ/ξ � 1 this approach should give
a quantitatively good approximation for the Ginzburg-
Landau energy of a superconductor with topological de-
fects while in the marginal case λ & ξ one might hope to
get a qualitatively reasonable description.

A. Gibbs potential of a two-domain cylinder

For a general sample’s geometry evaluation of the sur-
face integrals in the representation (2) is complicated by
the spatial dependence of the magnetic field. One excep-
tion is a geometry which has a translational symmetry
along the direction of the applied field i.e. a cylinder with
an arbitrary cross-section. In this geometry the value of
the field on the sample’s surface is constant which can
be seen from the application of the Ampère’s law to a
rectangular contour with a side parallel to the field.

Motivated by recent cantilever magnetometry mea-
surements on mesoscopic annular Sr2RuO4 samples14 we
consider a circular hollow cylinder with an onion-like do-
main structure shown on Fig. 1. The hole which is char-
acterized by an integer winding number `s provides, for
small applied fields, the only place where vortices can
reside33, and the two-domain configuration is the sim-
plest one in which a reduction of the total magnetic mo-
ment can be achieved (as observed in Ref. 14).

Results of this section can also be used for cylindrical
samples with an arbitrarily shaped cross-section provided
the distance between the defects and the boundaris is
much larger than λ. In this limit, as will be shown in Sec-
tion IV, a circular domain wall configuration is favored
energetically over a configuration in which a straight do-
main wall runs across the sample and terminates on the
sample’s boundaries.

For a cylindrical geometry with the axis parallel to the
applied field Ha we have B = H and the expression (1)
simplifies to

G = Fs +
1

8π

∫
d3r (H2 − 2H ·Ha), (4)

To make use of eqn. (4) we notice that the onion-like
geometry shown on Fig. 1 consists of three surfaces: 1
– the inner surface of the sample, 2 – the domain wall

+

-
1

2
3

+ -

FIG. 1: Onion-like two-domain configuration of a chiral sam-
ple used in the calculation of the Gibbs potential (6). Arrows
indicate direction of the chiral currents.

surface, and 3 – the outer surface of the sample. The
surfaces are characterized by their respective radii Rj .
For the domain chirality shown on Fig. 1 surfaces 1 and 3
carry counterclockwise chiral current i while the domain
wall 2 carries a clockwise current 2i.

Due to the presence of the chiral current magnetic field
across each surface is discontinuous. Let us denote the
field values on the inner (−) and outer (+) sides of the
surface j as Hj±. In this notation H3+ and H1− are
equivalent to the applied field Ha and to the field in
the hole Hh respectively and the field discontinuities are
given by

H3−−Ha = ĩ, H2+−H2− = 2̃i, Hh−H1+ = ĩ, (5)

where we introduced the field jump ĩ ≡ 4πi/c which is
analogous to a domain wall magnetization used for ex-
ample in Refs. 16,17.

Let Φj denote the total flux through the area limited
by the surface j and Φij ≡ Φi − Φj . Then, using the
definition of the Gibbs potential (4) and the surface rep-
resentation of the free energy (3) given by the eqn. (2),
the Gibbs potential of this configuration is given by

8πg = 8πfσ − |Φ0|`s(Hh −Ha) (6)

− |Φ0|`dw(H2− −Ha + ĩ)− ĩ(Φ21 − Φ32)−HaΦ3,

where lower case g and f indicate that energies are taken
per unit length in the direction of the applied field. As
discussed in Section II, `dw is a measure of the flux carried
by a domain wall in a infinitely large sample and fσ is a
surface energy of the domain wall per unit length.

In the absence of chiral currents and domain walls,
i.e. when both ĩ and `dw are set to zero, expression (6)
coincides, up to an additive constant34, with that ob-
tained in Ref. 24 for a hollow non-chiral cylinder. Notice
that one should not expect G to be of a simple form
G ∝ M ·Ha where M is the magnetic moment of the
cylinder since, in general, in the absence of the applied
field M 6= 0.

The application of eqn. (6) requires knowledge of fields
and fluxes in the system in terms of the applied field and
parameters `s, `dw, ĩ and Rj . Such knowledge can be
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obtained from a solution of the London equation. The
general solution of the London equation for an onion-like
geometry is given in Appendix A. We now proceed to the
analysis of the “macroscopic” limit of this solution where
our results have simple analytical form. In Section V
we relax the “macroscopic” constraint and consider this
geometry for a sample with arbitrary dimensions.

IV. STABILITY OF TOPOLOGICAL DEFECTS
IN MACROSCOPIC LIMIT

In this section we calculate the Gibbs potential in the
macroscopic limit when all relevant distances such as the
size of the sample, distance between defects and sample’s
boundary etc. are larger than λ. In this limit the precise
shape of the boundary and defect’s location relative to it
are irrelevant. We consider the four defect configurations
shown on the Fig. 2a: Meissner state (no defects), state
with a vortex, state with a domain wall shaped as a loop
or as a straight line. First three configurations can be
obtained as limiting cases of the onion-like geometry of
Fig. 1 and hence are described by eqn. (6). In the macro-
scopic limit Gibbs potentials of more complicated defect
configurations such as combinations of those mentioned
above can be written in a similar way.

A. Meissner state

The Meissner state of a cylinder corresponds to a
single-domain configuration with no trapped defects,
Fig. 2a. Its Gibbs potential is obtained from eqn. (6)
by setting fσ, `s, `dw, R2 and R1 to zero and is given by
the following expression

8πgM = (̃i−Ha)ΦM, (7)

where ΦM ≡ Φ3 is the net flux through the sample gener-
ated by both chiral and screening currents. In the macro-
scopic, limit for a sample of circumference P , the Meiss-
ner flux ΦM is given by a plausible expression:

ΦM = λP (Ha + ĩ), (8)

which is a direct consequence of the fact that both the
applied field and the field created by the chiral current
are screened over a region of thickness λ around the outer
edge of the sample.35 Given expression (8), the Gibbs
potential of a solid macroscopic cylinder in the Meissner
state takes the following form

8πgM = λP (̃i2 −H2
a). (9)

This, at first sight counterintuitive result, implies that a
chirality of a single-domain Meissner state specified by
the sign of ĩ is neither favored nor disfavored by an ex-
ternal field. Although proven in the macroscopic limit,
this statement is in fact independent on the size of the

cylinder and can be shown to hold even when the screen-
ing is geometrically limited as in the mesoscopic settings
considered in Section V.

While it is natural to expect the invariance under the
full time reversal operation which in the case of the Meiss-
ner state involves the reversal of both chiral current ĩ and
the applied field Ha, the invariance under the reversal of
either ĩ or Ha alone (partial time reversal operation) as
demonstrated by (9) might be considered as a surprising
feature.36 An intriguing question is whether this feature
is just a peculiarity of the cylindrical geometry which
possesses translational invariance along the direction of
the applied field or has a broader validity. While the au-
thor does not have a proof of the latter, a plausibility
argument can be given that suggests that the invariance
under the partial time reversal operation can be expected
if the sample has a mirror symmetry in the plane perpen-
dicular to the field.

We also note that, as evident from eqn. (9), chiral cur-
rents give a positive contribution to the electromagnetic
energy of the system. This statement should also hold for
samples with dimensions of the order of or smaller than
λ. For such mesoscopic samples positive chiral contribu-
tion to the electromagnetic energy may become compa-
rable with the negative condensation energy whose scale
is set by the thermodynamic critical field. This mecha-
nism may hinder formation of the chiral superconducting
state and has to be born in mind when considering the
possibility of a chiral pairing in very small samples.25

B. Vortex state

A vortex state corresponds to a single-domain configu-
ration with a hole with non-zero phase winding `s around
it. Such configuration is obtained from an onion-like ge-
ometry by setting `dw = 0, R1 = ξ � λ and then taking
the limit R2 → R1. Using eqn. (6) the Gibbs potential
of the vortex state relative to that of the Meissner state
is given by the following expression

8π(gv − gM) = −|Φ0|`s(Hv − 2Ha), (10)

where Hv is the value of the magnetic field on the outer
side of the surface which defines the normal vortex core;
in the notation used in eqn. (6) Hv corresponds to H2+

after taking the limit R2 → R1. In deriving eqn. (10) we
have neglected vortex core energy and flux carried by it –
a step which is well justified in the extreme type-II limit
used here.

For large applied fields energy difference (10) is neg-
ative which means that the Meissner state is thermody-
namically unstable. The critical field for the vortex entry
is determined by the following equation:

Hc1,v = Hv/2. (11)

Field Hv can be found by either solving the London equa-
tion in the macroscopic limit or by taking appropriate
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FIG. 2: (a) Configurations of the defects considered in Section IV. The positive direction of the applied field is out of the
page towards the reader. (b) Values of winding numbers and chiral currents for vortex, loop and straight domain wall (DW)
configurations. The size of the vortex core is exaggerated for visual purposes.

limits in the results for the onion-like geometry given in
the Appendix A. In doing so one obtains

Hc1,v = −|Φ0|`s
4πλ2

log(2λ/ξ). (12)

Thus the value of the first critical field for a vortex en-
try in a chiral superconductor is independent of both
the magnitude and the sign on the chiral current ĩ and,
within logarithmic precision, coincides with Hc1 for non-
chiral superconductors37 (see, e.g. Ref. 27). Alterna-
tively, for a fixed chirality eqn. (12) demonstrates the
absence of the field-reversal splitting of Hc1,v. It should
be noted however that inclusion of the vortex core energy
in (10) which tend to be chirality-dependent26 will result
in non-zero field-reversal splitting of Hc1,v.

One might wonder what happens if the magnitude
of the chiral current ĩ is such that the magnetic field
created in its immediate neighborhood is larger than
Hc1,v. While this question cannot be answered within the
macroscopic approximation used in this section, eqn. (12)
suggests that for applied fields smaller than Hc1,v vor-
tices generated by the chiral current’s magnetic field will
tend to stay away from the bulk “decorating” edges of
the sample and domain boundaries (if present).

Another conclusion which can be drawn from the re-
sults of this section is that in thermal equilibrium in the
absence of the applied field the total flux trapped by a
chiral cavity, located at distance much larger than λ away
from the sample’s boundary, is zero. This follows from
setting Ha = 0 in the expression (10) and then minimiz-
ing it with respect to `s.

C. State with a domain wall loop

We now proceed to the configuration in which a do-
main wall forms a circular loop i.e. terminates in the
sample forming an “island” of opposite chirality. The
Gibbs potential gdw◦ of such configuration is obtained
from eqn. (6) by setting `s = 0 and taking the limit
R1 → 0. This leads to the following expression

8πgdw◦ = 8πfσ − |Φ0|`dw(H2− −Ha + ĩ)

− 2̃iΦ2 + Φ3(̃i−Ha), (13)

where fσ is the surface energy defined after eqn. (6). H2−
is the field on the inner side of the domain’s boundary,
Φ2 is the flux through the area limited by it and Φ3 is the
total flux through the sample which includes the screen-
ing contribution and the flux created by the domain. In
the macroscopic limit these quantities can be found by
taking the appropriate limit in the general solution for
the field distribution which is given in Appendix A. In
this way we obtain

H2− = −|Φ0|`dw
4πRλ

− ĩ,

Φ2 = −1

2
|Φ0|`dw − ĩ2πRλ,

Φ3 = ΦM − `dw|Φ0|,

(14)

where R is the radius of the domain island (≡ R2 in the
notation of eqn. (6)). Flux Φ3 consists of the flux ΦM

generated by the boundary of the sample (cf. eqn. (8))
and of the flux carried by a domain wall loop, `dwΦ0.
Plugging these results into eqn. (13) yields the following
expression for the Gibbs potential of the circular domain
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wall configuration:

8π(gdw◦ − gM) =
|Φ0|2`2dw

4πRλ
+ (̃i2 + 4πσ/λ) 4πRλ

+ 2|Φ0|`dwHa, (15)

where gM is the Gibbs potential of the Meissner state
and σ is the surface tension of the domain wall, such
that fσ = 2πRσ. We first minimize the above expression
with respect to R which yields the equilibrium size of the
domain island:

R◦ =
|Φ0||`dw|

4πλ
√
ĩ2 + 4πσ/λ

. (16)

Evaluated at R◦ the difference (15) is positive for small
applied fields; upon increasing the field the difference (15)
becomes negative at some value of Ha which defines the
critical field for the creation of a domain wall loop. In
other words, circular domains such as that shown on the
Fig. 2a will be thermodynamically stable only if the ap-
plied field Ha exceeds a critical value Hc1,dw, defined by

Hc1,dw =

√
ĩ2 + 4πσ/λ. (17)

Notice that unlike Hc1,v for a vortex entry, eqn. (12),
the critical field for the domain wall loop entry depends
on the chiral current ĩ but is independent on the flux
carried the defect. The reason for the latter is the `dw-
dependence of the equilibrium domain size as specified
by eqn. (16).

Let +−+ denote the chirality arrangement of a domain
wall loop state shown on Fig. 2a. Unlike the Meissner
state discussed in Section IV A, the energy of this state,
eqn. (15), is not invariant under reversal of the applied
field. Equivalently, for a fixed applied field the energies of
+ − + arrangement and of its time-reversal counterpart
− + − (obtained by changing the direction of the chiral
currents and the sign of `dw) are different. In particular,
for a positive applied field the energy of −+− arrange-
ment is larger than that of +−+. Although the energy
of the former state can be lowered by adding vortices, it
will still be lager than either + − + arrangement or a
pure vortex state and hence cannot correspond to a true
equilibrium.

Putting together eqns. (12, 16, 17) leads to the follow-
ing expression for the size of the domain island:

R◦/λ ∝ Hc1,v/Hc1,dw, (18)

i.e. R◦ scales as the ratio of critical fields of the vortex
and domain entries. Strictly speaking, the formulation
which lead to this scaling is valid only if R◦/λ� 1. How-
ever, because of the exponential falloff of the screening
currents one might expect that it is qualitatively correct
even in the limiting case of relatively small domains when
R◦/λ & 1.

To estimate the actual value of Hc1,dw for a given ma-

terial a knowledge of chiral current ĩ and domain wall

surface tension σ is required. These can be calculated
using Ginzburg-Landau theory and turn out to depend
on various material and geometrical parameters such as
Ginzburg-Landau expansion coefficients and the orien-
tation of the domain wall relative to the crystal axes
(see e.g. Refs. 15,16). Ignoring for simpllicity material
anisotropy one can conclude that

4πσ/λ = ε1
|Φ0|2

4π2λ3ξ
, ĩ2 = ε2

|Φ0|2

4π2λ4
, (19)

where ε1,2 are dimensionless parameters which in a weak-
coupling BCS limit are of the order of 115,16. We now
define the following parameter:

κd ≡ 4πσ/(̃i2λ) = ε1λ/(ε2ξ). (20)

As can be seen from eqns. (16) and (17) this parame-
ter determines whether the energetics of the domain wall
is dominated by the chiral current (“soft” domain wall,
κd � 1) or by the surface tension (“hard” domain wall,
κd � 1). In the weak-coupling limit when ε1,2 ∼ 1 one
generally expects that κd ≈ λ/ξ. Provided the weak-
coupling limit is applicable for Sr2RuO4 (λ/ξ ∼ 1 and
hence κd ∼ 1) one would expect that Hc1,v ∼ Hc1,dw

and the domain size R◦ ∼ λ. However, given the uncon-
ventional nature of superconductivity in Sr2RuO4, the
applicability of the weak-coupling results to this mate-
rial remains an open question.

D. State with a straight domain wall which
terminates at the edges.

A straight domain wall configuration which terminates
at the edges of the sample is qualitatively different from a
closed configuration discussed earlier. Unlike the latter,
the total flux carried by a straight domain wall is zero (see
e.g. Ref. 19) which substantially changes its energetics.
Let Φ± denote the total flux carried by ± domains shown
on Fig. 2a. The Gibbs potential of such state can be
found along the lines which led to eqn. (6) and is given
by

8πgdw| = 8πfσ + ĩ(Φ+ − Φ−)−Ha(Φ+ + Φ−). (21)

In the macroscopic limit fluxes Φ± can be easily com-
puted which leads to the following expression for gdw|:

8π(gdw| − gM) = 2Rλ (̃i2 + 4πσ/λ), (22)

where gM is the Gibbs potential of the Meissner state and
R is the length of the domain wall segment. Provided
that the surface energy σ > 0, the field-independent
expression (22) is always positive which implies that a
straight domain wall configuration is thermodynamically
unstable relative either to the Meissner state or to the
state with a domain wall loop.
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FIG. 3: (a) The spatial profile of the Gibbs potential of a mesoscopic chiral cylinder with a domain wall loop as a function
of its size for several applied fields. The potential is given relative to that of the Meissner state. Two metastable equilibria
are clearly visible at zero applied field. (b,c) Critical field Hc1,dw and the equilibrium size Req

2 of the domain wall loop at
Ha = Hc1,dw as functions of the parameter κd, defined by eqn. (20). It is assumed that the variation of κd is entirely due to
the variation of either ε1 or ε2. Surprisingly, even for a mesoscopic sample values of Hc1,dw and Req

2 shown on figs. b and c
agree quantitatively well with the analytical results (17) and (16) obtained for a macroscopic sample.

E. Summary of Section IV

To summarize, in this Section we have obtained criti-
cal fields for a domain wall Hc1,dw, eqn. (17), and a vor-
tex Hc1,v, eqn. (12), entries into a chiral superconductor
in the macroscopic limit (all relevant dimensions much
larger than λ). It was shown that the preferred domain
wall configuration is that of a loop whose equilibrium size
is given by eqn. (16). These results imply, in particular,
that, at fields above Hc1,dw, a cross-section of the do-
main structure of a macroscopic sample in the direction
perpendicular to the field is that of a plum pudding –
single domain populated by domain islands of opposite
chirality.

It was also pointed out that a statement, often encoun-
tered in the literature, that cooling in the field should re-
duce domains by biasing the system to one chirality (field
training) does not refer to the thermodynamic equilib-
rium. This can be seen from the eqn. (9) for the Gibbs
potential of a single-domain sample which does not con-
tain terms linear in the chiral current and hence can-
not differentiate between domains of opposite chirality.
Upon increasing the field a topological defect which corre-
sponds to the minimal of the two fields Hc1,v and Hc1,dw

enters the sample and for large fields both vortices and
domain wall loops will be present.

However, even in thermal equilibrium, direction of the
applied field can affect relative chiralities e.g. for a posi-
tive field +−+ domain wall loop configuration of Fig. 2a
is favored over its time reversal −+−.

V. MAGNETIC RESPONSE OF A
MESOSCOPIC CHIRAL SAMPLE

In this section we consider thermodynamic stability of
domain walls and vortices in mesoscopic chiral samples
whose relevant dimensions are comparable to λ.38 This
problem is motivated by recent cantilever magnetometry
measurements done on small Sr2RuO4 particles.14 Al-
though the main aim of Ref. 14 was to probe the ex-
istence of half-quantum vortices, it is interesting to ex-
amine whether the observations reported there shed any
light on the question of chiral nature of Sr2RuO4.

As in Section IV we will make use of expression (6)
to evaluate the Gibbs potential for the onion-like geome-
try shown on Fig. 1. It is assumed that vortices present
in the system reside only in the cylinder’s hole which
guarantees a contour-independent definition of the vor-
tex winding number `s. This assumption excludes the
possibility of wall vortices and limits our consideration
to relatively small applied fields and moderate chiral cur-
rents (cf. discussion at the end of Section IV B). Notice
however that, as demonstrated in Ref. 14, in a confined
geometry with geometrically reduced screening the field
required for the wall vortex entry can be substantially
larger than the bulk Hc1,v (given by eqn. (12)).

It is convenient to introducing the following notation

ajk = K0(j)I0(k)− I0(j)K0(k),

bjk ≡ K2(j)I0(k)− I2(j)K0(k),
(23)

where In and Kn are modified Bessel functions of the
n-th order and K0(j) ≡ K0(Rj/λ) etc. R1, R3 and R2

stand for the radii of the inner and outer surfaces and for
the radius of the circular domain wall loop respectively
(see Fig. 1).
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Magnetic moment of the cylinder is given by the fol-
lowing expression:

M = L(Φ3 − πR2
3Ha)/4π, (24)

where L is the height of the cylinder and Φ3 is the total
flux through the area limited by the outer boundary 3.
Unlike the macroscopic limit, values of fields and fluxes
required to evaluate quantities of interest are no longer
given by simple analytical expressions and are relegated
to Appendix A where the general solution of the London
equation for this geometry is presented.

In the zero applied field the ground state of the system
is obtained through minimization of (6) and corresponds
to `dw = 0, `s = 0 i.e. to a single-domain defect-free state.
The zero-field magnetic moment M0 of a single-domain
chiral cylinder is then equal to

M0 = (̃iL/4π)
(
πR2

3 − 2πλ2/b13
)

+ ĩχm, (25)

where χm is the magnetic susceptibility χm = ∂M/∂Ha.
The magnetic susceptibility is determined by the sys-
tem’s dimensions R1 and R3 and does not depend on
the chiral current ĩ:

4πL−1χm =
πR2

3

a13

(
b31 −

4λ4

R2
1R

2
3

1

b13

)
. (26)

It is interesting to note that the result (26) also holds for
non-zero `s and `dw i.e. in the presence of either (hole)
vortices or a domain wall loop as long as the radius of
the latter is field-independent. In mesoscopic settings the
independence of equilibrium R2 on Ha can be expected
for a “hard” domain wall whose energetics is dominated
by the surface tension σ. In the opposite limit of a “soft”
domain wall whose behavior is dominated by the chiral
current ĩ and not by the surface tension σ one can expect
significant variations of R2 with Ha, as demonstrated
below. Such variations lead to deviation of the response
from the simple linear form described by (26).

Upon increasing the applied field the system undergoes
a transition into a state in which either `s or `dw is non-
zero. The ordering of these events can be determined
from the comparison of the critical fields required for the
entry of the defects. The critical field for a hole vortex
entry is given by

Hc1,v =
|Φ0|

2πR2
1

a13
b13 − 2λ2/R2

1

. (27)

Setting R1 → ξ and R3 →∞ in the expression above one
recovers the bulk limit given by eqn. (12).

To find the critical field for a circular domain wall en-
try one first needs to know its equilibrium size which
can be found through the minimization of the Gibbs po-
tential (6) with respect to R2. Unlike the macroscopic
limit (Section IV C), the spatial profile of the Gibbs po-
tential in geometries with constrained screening can be
quite complicated and may include several metastable
equilibria (see Fig. 3a), which obstructs transparent an-
alytical treatment. Numerical results for Hc1,dw and Req

2

are given on Fig. 3b and c where they are plotted as a
function of the parameter κd which characterizes the in-
terplay between chiral currents and the surface tension,
eqn. (20). It has also been checked that the dependen-
cies shown on Fig. 3b and c also describe a cylinder with
a hole, provided that Req

2 is constrained to lie between
R1 and R3 and Hc1,dw is constrained by the values of κd
which correspond to Req

2 = R1 and Req
2 = R3.

It is important to emphasize that both Hc1,v and
Hc1,dw discussed above are computed for a defect-free
sample. Only one of these fields have a physical meaning
e.g. if it turns out that Hc1,v < Hc1,dw then the value of
the latter needs to be recalculated in the presence of a
vortex.

The entry of a defect into the sample leads to a jump
in the magnetic moment. Such jump can be evaluated
using results of Appendix A and is given by

∆Mv =
|Φ0|L

4π
∆`s

(
1− 2λ2

R2
1b13

)
(28)

for a hole vortex entry, and

∆Mdw =
|Φ0|L

4π
∆`dw

(
1− b12

b13

)
(29)

for a circular domain wall entry. While ∆Mv is inde-
pendent of chiral current, ∆Mdw depends on the domain
wall size R2 which is determined through the energy min-
imization and hence implicitly depends on ĩ. In the limit
R2 → R1 we have ∆Mv/∆Mdw = ∆`s/∆`dw and if
R2 → R3 then ∆Mdw → 0.

We now come back to the case of an extremely soft
domain wall mentioned earlier. Fig. 4 shows the radius
of a circular domain wall with σ → 0 as a function of
the applied field. As the applied field is increased the
domain wall moves continuously from the outer to the
inner surface of the cylinder.39 Given the possibility that
chiral boundaries can carry topologically nontrivial exci-
tations such as Majorana modes (see, e.g. Ref. 28) one
may speculate that such process can be used to perform
a controllable transfer of excitations between the edges
of the sample.

A. Application to Sr2RuO4

We now turn to the question of the interpretation of
the results of Jang et al.14 in terms of possible chiral su-
perconductivity. Jang et al. reported cantilever magne-
tometry measurements of a mesoscopic Sr2RuO4 particle
with approximate dimensions R1 = 390 nm, R3 = 850 nm
and L = 350 nm; the magnetic moment sensitivity was
of the order of 10−15 e.m.u.40 The range of fields used in
the measurements was such as to cover the first expected
entry for a hole vortex, eqn. (27).

Quantities χm, ∆Mv and Hc1,v computed earlier are
independent of chiral current and the only quantity which
can be used to estimate ĩ independently of σ is M0.
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FIG. 4: Radius of a soft domain wall loop as a function of
the applied field. The demonstrated dependence of R2 on Ha
might be useful for performing controllable transfer of edge
excitations.

Within the noise resolution, measurements reported in
Ref. 14 did not observe zero-field moment which sets the
limit M0 < 10−15 e.m.u. Using expressions (25, 26) and
the dimensions of the sample quoted above we obtain the
following upper bound for the magnitude of the chiral
current:

i < 10−3 × iwc (30)

where the weak-coupling value iwc for Sr2RuO4 is ob-
tained from eqns. (19) by setting ε2 = 1, λ = 200 nm
and is approximately equal to 1.9 × 1011 in CGS units.
Limit (30) is consistent with scanning SQUID microscopy
measurements12 where, assuming the domain size of the
order of 1µ, measured i was estimated to be less than
0.1% of the weak-coupling value.

VI. CONCLUSIONS

Let us review the quantitative results of this paper. We
have considered thermodynamic stability of two types of
topological defects – vortices and domain walls – which
can exist in chiral superconductor. Using the London
theory it was shown that in the zero applied field a macro-
scopic chiral sample is either defect-free or has defects
which are expelled toward the edges. The first situation
is realized if the chiral currents are small and the second
requires them to be sufficiently large such that the magni-
tude of the field created in the immediate neighborhood
of the edge chiral current is larger than a critical field
required for a defect entry.

It was shown that a preferred configuration of the
domain wall is that of a loop; straight domain wall is
never favored in thermodynamic equilibrium. Domain
wall loops can exist in the superconducting bulk only if
the applied field is larger thanHc1,dw which depends both
on the magnitude of the chiral current and the surface
tension of the domain wall. The critical field required for
a bulk vortex entry is not affected by the presence of the
chiral currents.

We have also considered magnetic response and de-
fect stability in mesoscopic chiral samples. It was shown
that for a very soft domain wall its size can be controlled
by the applied field. This phenomenon can potentially
provide a mechanism for a controlled transfer of edge ex-
citations such as Majorana modes.

There are several possible extensions to this work
which can be treated in the general framework outlined
in Section III. An obvious one is to generalize the results
presented here for sample geometries which are not trans-
lationally invariant along the applied field. In particular,
it is interesting to inquire whether the conclusion that
the chirality of a single-domain sample is not favored by
the applied field holds for other types of geometries. One
geometry which seems to be analytically tractable is that
of the Pearl limit in which the thickness of the sample is
smaller than the penetration depth. This might be par-
ticular relevant in connections with recent speculations
about chiral superconductivity in graphene1,2.

One can also consider domain structures which are not
translationally invariant along the direction of the field.
Such possibility which was suggested in Ref. 12 is very
attractive since it has a potential to reconcile the absence
the chiral field in Sr2RuO4 as observed by scanning mea-
surements with non-zero Kerr and µSR signals.41

Another possible extension would deal with the inter-
action between domain wall loops and domain wall loops
and vortices. The interaction between such defects may
have measurable signatures in the magnetization curves
of macroscopic chiral samples.
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Appendix A: Solution of the London equation for an
onion-like geometry

In this appendix we consider solution of the London
equation for the onion-like circular two-domain configu-
ration shown on Fig. 1; a single domain configuration can
be obtained as a limiting case by moving the domain wall
to the inner or outer boundary of the sample.

As mentioned earlier, in the extreme type-II limit mag-
netic properties of a chiral domain wall can be modeled
by replacing it with a sheet current i if the domain wall
is on the surface and 2i if it is in the bulk. The current
carried by e.g. a surface domain wall is iL where L is
the length of the domain wall across the direction of the
current. In a cylindrical geometry with an external field
parallel to the cylinder’s axis a sheet current i is equiva-
lent to a boundary condition for the magnetic field

H ·↑ −H↑· =
4π

c
i ≡ ĩ, (A1)

where the arrow in the subscripts indicates the direction
of the current and a dot indicates a side at which the field
is taken. In the London limit the calculation of the mag-
netic response of a sample with a given domain structure
is thus reduced to solving the London equation in each
domain and then matching solutions using appropriate
boundary conditions. Let R2 denote the radius of the
domain wall and R1 and R3 be the inner and outer radii
of the cylinder. Using eqn. (A1) the boundary conditions
for the field can be written in terms of the fields on the
domain boundaries:

H3− = Ha+ĩ, H2+−H2− = 2̃i, H1+ = Hh−ĩ, (A2)

where H3− ≡ H(R3 − 0), H1+ ≡ H(R1 + 0), H2± ≡
H(R2±0) and Ha and Hh is the applied field and the field
in the hole respectively. In the cylindrical coordinates
solution of the London equation can be written in terms
of Bessel functions I0 and K0:

r ∈ (R1, R2) : H(r) = c12I0(r/λ) + c′12K0(r/λ),

r ∈ (R2, R3) : H(r) = c23I0(r/λ) + c′23K0(r/λ),

(A3)

where the constants cjk and c′jk are determined by fields
on the domain boundaries:

c12 = a−112 (H2−K0(1)−H1+K0(2)),

c′12 = a−112 (H1+I0(2)−H2−I0(1)),

c23 = a−123 (H3−K0(2)−H2+K0(3)),

c′23 = a−123 (H2+I0(3)−H3−I0(2)),

(A4)

with ajk defined as

ajk = K0(j)I0(k)− I0(j)K0(k), (A5)

where K0(j) ≡ K0(Rj) etc.

The equations above determine the field distribution
through yet unknown values of the fields on the bound-
aries. To find the latter one can use additional constrains
such as those provided by Feynman-Onsager (FO) quan-
tization condition which is obtain from the London form
of the Ginzburg-Landau equation for the current:

js = − c|Φ0|
8π2λ2

(
∇θ +

2π

|Φ0|
A
)
, (A6)

where θ is a phase of the superconducting order param-
eter and A is a vector potential of total magnetic field.
Using the symmetry of the problem and integrating the
expression above along a circular contour R one obtains

− c

4π

∂H

∂r

∣∣∣∣
R

= − c|Φ0|
8π2Rλ2

(
`+ 1/|Φ0|

∮
R

A · dl
)
, (A7)

where the current density has been expressed in terms of
the field derivative with the help of the Maxwell’s equa-
tion. The constant ` characterizes the order parameter
phase winding around the integration contour.

In applying FO relation (A7) one needs to bear in mind
that the domain wall, being a phase defect, may posses
a non-zero vorticity and hence, along with vortices, con-
tributes to the winding number ` for appropriate inte-
gration contours. For a circular contour the domain wall
vorticity will be denoted as `dw. For a non-zero `dw not
only the magnetic field but also the screening current ex-
perience a jump across the domain wall. This follows
from writing down (A7) for inner and outer boundary
of the domain wall. Taking into account that the flux
is a continuous function of the integration contour one
obtains:

(∂H/∂r)|2+ − (∂H/∂r)|2− =
|Φ0|

2πR2λ2
`dw, (A8)

where R2 the radius of the circular domain wall.
Recalling that due to the presence of the chiral cur-

rent the magnetic field itself experiences a jump across
the domain wall and using (A8) and (A3) we obtain an
expression which relates field values on the boundaries
1,2 and 3:

H2−a13 = H1+a23 +H3−a12 − ĩ R̃2
2a12(b23 − a23)

+
|Φ0|
2πλ2

`dw a12a23, (A9)

where R̃ ≡ R/λ and b23 is defined by42

bjk ≡ K2(j)I0(k)− I2(j)K0(k). (A10)

As a useful check of various identities one can consider
limiting cases of the domain wall 2 moving to either the
inner or the outer surface of the cylinder: 2→ 1 or 2→ 3.
For example in the limit 2 → 1 relation (A9) becomes
H2− = H1+ which implies that in a very thin domain
the field is uniform. In the limit 2 → 3 we have H2− =
H3− − 2̃i or using eqns. (A2) H2+ = H3−, thus reaching
the same conclusion.43
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Another equation which relates H1+ and H2− can be
found by writing the FO quantization condition (A7)
for the boundary 1. Taking into account that the flux
through the hole is determined by the field Hh, which is
related to H1+ as H1+ = Hh − ĩ, one obtains

H1+ = −a12
b12

|Φ0|
πR2

1

`s +
2

R̃2
1b12

H2− − ĩ
a12
b12

, (A11)

where `s is the number of vortices trapped in the hole.
Taking the 2 → 1 limit in the above equation yields
H1+ = H2− confirming the expectation that in a van-
ishingly thin domain the field is uniform.

Combining eqns. (A9) and (A11) allows one to deter-
mine the field values in the hole Hh and on the domain
wall, H2−, in terms of the applied field Ha. The field in
the hole is given by the following expression:

Hh = −a13
b13

|Φ0|
πR2

1

`s −
a23
b13

|Φ0|
πR2

1

`dw +
2

R̃2
1b13

Ha + ĩ X1,

X1 ≡ 1− R̃2
2a12 −

a13
b13

(1− R̃2
2b12) +

2

R̃2
1b13

(1− R̃2
2b23),

(A12)

and the limiting values of the field-independent constant
X1 are equal to

2→ 3 : X1 = 1− 1

b12
(a12 +

2

R̃2
1

),

2→ 1 : X1 = −1 +
1

b13
(a13 +

2

R̃2
1

).

(A13)

Since in the limits given above the domain structure de-
generates to a single domain with positive (2 → 1) or
negative (2 → 3) chirality the constant X1 changes sign
as expected.

The field on the inner side of the domain wall is given
by

H2− = −a23
b13

|Φ0|
πR2

1

`s −
b12a23
b13

|Φ0|
2πλ2

`dw +
b12
b13

Ha + ĩX2,

X2 ≡ −
a23
b13

(1− R̃2
2b12) +

b12
b13

(1− R̃2
2b23).

(A14)

In the limiting cases the field-independent constant X2

reduces to

2→ 3 : X2 = −1

2→ 1 : X2 = −2 +
1

b13
(a13 +

2

R̃2
1

).
(A15)

The first of these equations implies, in particular, that
for a zero applied field Ha = 0 and zero winding num-
ber `s = 0 the field at the inner side of the external
boundary in the limit 2 → 3 is equal to −ĩ, as ex-
pected in this single-domain zero-field limit. The limit
2 → 1, however, deserves a more careful consideration.

In this limit H2− should be related to the field in the
hole as H2− = Hh− ĩ and for the zero-applied field zero-
winding number case the field in the hole can be read
from eqn. (A13). Comparing the second of eqns. (A13)
to the second of eqns. (A15) one indeed recovers such a
result.

Having expressed values of the field on all domain
boundaries in terms of the applied field, chiral current
and the winding numbers (eqns. (A12) and (A14)) we
thus found the field distribution in the entire system
(eqns. (A3), (A4) and (A5)).

To write down the Gibbs potential of the system re-
quires knowledge of fluxes through areas limited by the
domain boundaries. Although they can be found by the
direct integration of (A3) it is convenient to find fluxes
surrounded by domain boundaries using the FO quanti-
zation condition. Doing so for the second domain bound-
ary at r = R2 + 0 we get

a23|Φ0|
2πλ2

(`s+`dw+Φ2/|Φ0|) = H3−−H2+
R2

2

2λ2
(b23−a23).

(A16)
which can be used to find Φ2. Alternatively, flux Φ2

can also be expressed in terms of fields H2− and H1+

which corresponds to writing FO for the inner part of
the domain wall 2 i.e. for r = R2 − 0.

Similarly, for Φ3 we obtain:

a23|Φ0|
2πλ2

(`s+`dw+Φ3/|Φ0|) = −H2++H3−
R2

3

2λ2
(b32+a23).

(A17)
Notice that flux Φ3, i.e. the total flux through the area
limited by the outer boundary of the cylinder, determines
its magnetic moment M .

Finally, flux Φ1 through the opening is determined by
the field in the hole:

Φ1 = πR2
1Hh. (A18)

1. Single domain limit

Results for a two-domain cylinder given earlier can be
used to find the field values in a single-domain limit. This
is achieved by moving the domain wall located at R2

either to the outer R2 → R3 or to the inner R2 → R1

boundary of the sample. Doing the former one recovers
a single domain sample with a negative chirality while in
the latter case a positive chirality sample with `dw extra
flux quanta trapped in the hole is obtained.

Taking the limit R2 → R3 the Gibbs potential of a
single-domain chiral cylinder with a hole is given by the
following expression

8πgs-d = −|Φ0|`s(Hh−Ha)−HaΦ3 + ĩ(Φ3−Φ1), (A19)

where to confront with the previous notation the total
flux through the cylinder is denoted as Φ3 and Φ1 is the
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flux through the hole. The field in the hole is given by

Hh = −a13
b13

|Φ0|
πR2

1

`s +
2λ2

R2
1b13

Ha

+ ĩ
(
− 1 + (a13 + 2λ2/R2

1)/b13
)
. (A20)

and for the flux through the area limited by the outer
boundary we obtain

a13|Φ0|
2πλ2

(`s+Φ3/|Φ0|) = −(Hh+ĩ)+(Ha+ĩ)
R2

3

2λ2
(b31+a13)

(A21)
Notice that it is possible to obtain the single-domain

results quoted above directly from the results of Ref. 24
for a non-chiral cylinder using the following replacements:
`s → `s − πR2

1 ĩ/|Φ0|, Ha → Ha + ĩ and Hh → Hh + ĩ.

Appendix B: Some useful expressions involving
modified Bessel functions

In this appendix we collect some useful results which
involve modified Bessel functions. The unit of length is
set to λ.

Given definitions (23) of aij and bij one can show that

K0(R1)I1(R2) + I0(R1)K1(R2) =
R2

2
(b21 + a12) (B1)

and

aij =
R2
k

2
(bkiakj − bkjaki) (B2)

Below we give limiting values of several parameters
required to obtain the results of Section V from general
formulas given in Appendix A.

For R3 � 1 the following holds

a13 → K0(1)
eR3

√
2πR3

(
1 +

1

8R3
+O(R−23 )

)
(B3)

b13 → K2(1)
eR3

√
2πR3

(
1 +

1

8R3
+O(R−23 )

)
(B4)

b31 → −K0(1)
eR3

√
2πR3

(
1− 15

8R3
+O(R−23 )

)
(B5)
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