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The spectra of fermionic excitations, pairing correlasi@and edge currents confined near the boundary of
a chiral p-wave superfluid are calculated to leading ordédT/ip; £. Results for the energy- and momentum-
resolved spectral functions, including the spectral aurdensity, of a chiral p-wave superfluid near a confining
boundary are reported. The spectral functions reveal thiéestole of the chiral edge states in relation to the
edge current and the angular momentum of a chiral p-wavefiuigeincluding the rapid suppression lof(T)
for 0 < T <« Te in the fully gapped 2D chiral superfluid. The edge current graind-state angular momentum
are shown to be sensitive to boundary conditions, and as seqaence the topology and geometry of the
confining boundaries. For perfect specular boundariesdje eurrent accounts for the ground-state angular
momentum,L; = (N/2)h, of a cylindrical disk of chiral superfluid witiN/2 fermion pairs. Non-specular
scattering can dramatically suppress the edge currertteltiniit of perfect retro-reflection the edge states form
a flat band of zero modes that are non-chiral and generategeocedrent. For a chiral superfluid film confined
in a cylindrical toroidal geometry the ground-state angaf@mentum is, in general, non-extensive, and can
have a value ranging froiy, > (N/2)htoL; < —(N/2)h depending on the ratio of the inner and outer radii and
the degree of back scattering on the inner and outer surfd@s-extensive scaling df;, and the reversal of
the ground-state angular momentum for a toroidal geomwtiyld provide a signature of broken time-reversal
symmetry of the ground state of superfldide-A, as well as direct observation of chiral edge currents.

PACS numbers:

fermionic spectrum and ground state currents in the vigifit
boundaries confining a chiral p-wave superfluid. Results for
A. Introduction the spectral current density highlight the fermionic spett
i i that is responsible for the edge current and the ground state
Among the remarkable phases of Ilqﬁble is the A-phase.  gngular momentum. The theory is extended to finite temper-
In addition to being a superfluid which supports persistentyres. non-specular boundaries and multiply connected ge

currents, this fluid is believed to possess a spontaneous Magmetries. The results reported here are discussed in dontex
current in its ground state. Ground state currents are BSSOGyith the results of Kitd, and Stone and RdY.

ated with the chirality of Cooper pairs that condense to form

the A-phase and conspire to produce a macroscopic angul&tarting from Bogoliubov’s equations in Sec. B, | introduce
momentum. Chirality is encoded in the p-wave orbital orderEileberger’s quasiclassical equation for the Nambu prafuag
parameterA(p) = Ap- (M +if) /ps = AsinB, €%, wherep  thatis the basis for investigating the pairing correlaicapec-

is the relative momentum of a Cooper pdif), ﬁj} isanor- trum of surface states and edge currents for chiral p-wave su
thonormal triad of unit vectors that define the orbital céord perfluids. The bound-state spectrum and results for the spec
nates of the Cooper pair wave function, ahd- kgT is the  tral current density are discussed in Secs. C and D. Analy-
pairing energy. This order parameter is an eigenfunction of Sis of the continuum spectrum, edge current and the spectral
the orbital angular momentum a|0|ﬁg: m x A with eigen-  analysis of the ground state angular momentum are reported
value+h. Such broken symmetries in bulk condensed matin Sec. E, which is followed by results and a discussion of
ter systems have implications for the spectrum of excitstio the temperature dependence of the edge current and angular
bound to surfaces and topological defecthis phase breaks momentum in Sec. F. In Sec. G | discuss the sensitivity
time-reversal symmetry as well as parity, and is realizedlat Of the edge current and ground-state angular momentum to
pressures below melting in thin superflidtle-A films. In  boundary scattering and geometry, and in Sec. H discuss the
the 2D limit the Fermi surface is fully gapped, and belongshon-extensive behavior of the ground-state angular momen-
to the topological class of integer quantum Hall systémis. tum that develops for multiply connected geometries in Whic
The 2D A-phase is also representative of layered p-wave suhere is an asymmetry in the specularity on different seac
perconductors with broken time-reversal symmetry, e.@ th! start with some background on the ground state current and
proposed order parameter for superconducting66s. angular momentum of superfluftie-A.

The macroscopic manifestation of chiral ordefiite-Aisthe =~ The magnitude of the ground-state angular momentum,
ground-state angular momentuin= f, dVr x g(r), where has been the subject of considerable theoretical investiga
g is the mass current density. For 2D chiral p-wave superflution. Predictions forL; of ®He-A in a cylindrically sym-

ids in the BCS limit, where the size of Cooper pairs is largemetric vessel vary over many orders of magnittdé,from
compared to Fermi wavelengt®,> R/ ps, the ground state Lz~ (N/2)R(A/Ef)? to L, = (N/2)h, whereN/2 is the to-
currents are predominantly confined to boundaries. | discustal number of fermion pairs in the volumé. This latter
effects of surface scattering on the pairing correlatidghs, result is what one intuitively expects for Bose-Einsteim-co



densate (BEC) of tightly bound molecules, each carrying one
unit of angular momentum, and whose molecular sjzés
small compared to the mean distance between molecules,
a= JY2V/N > &. However, this result is also obtained in
the opposite limité >> a, appropriate to BCS condensation
of Cooper pairs, each with angular momentbhand radial
size & = Rv¢ /A, where one expects almost exact cancellaFIG. 1: A thin film of px +ipy superfluid (‘2D°He-A") confined in
tion of the internal currents from overlapping Cooper p&frs @ cylindrical geometry with thickneds< ¢, radiusR - ¢ bounded
In particular, McClure and Takalfishowed that an N-particle PY SPecular surfaces which reflect excitatiqns p.

ground state of the form,

[ AR+iR,

P @/ e

% N/2 The A-phase also bel he class of | spin pairi
- , N t phase also belongs to the class of equal spin pairing
IN) = {// drdréap(r,r )%(r)wﬁ(r )|Ivac), (1) (ESP) states with spin structure of the order parametengive

_ ) ) ) . ) by a linear combination of the symmetric Pauli matrices,
with an equal-spin, odd-parity chiral pairing amplitutle,

(N = 2¢a (1 +x/2)wa(r —x/2)|N) Dap(p) =d-(i00y)apA(P), (4)

= J@‘(|r|)a-(i60y)aﬁ (m(r)+in(r))-x, (2) wherea,B label the projections of fermion spins of the

N . Cooper pair andl is the direction in spin space along which
of the AM form that preserves cylindrical symmetry is an Cooper pairs have zero spin projection. Thus,dor 2 the

eigenstate of the total angular momentum wiigh= (N /2)h.32 : RS :
Thus, the ground-state angular momentum of a chiral condenSpln state of the Cooper pairs is givenibioy - d = g, which

sate is the same fdi /2 Bose molecules d¥/2 Cooper pairs. :Osetf;e itr:lplglta?sé%v;:g]nec}(ugi a_r)Ar:PlI(tjUdE fithe Coopersptr
However, the magnitude and spatial distribution of the mass . pin p ) & ' ,| )= ,\/2(| =)+ E)).
currents that give rise to the total angular momentum differ>Pin textures described by spatial variations of dheector

in the BEC and BCS limits. This somewhat non-intuitive re- 2'€ POssible; however, in what follows | assume the spargstat
sult is intimately connected with the symmetry of the ground'S fixed by the nuclear dipolar energy which locks dhel.
state and its implications for the surface fermionic spentr | "€ bulk A-phase ofHe in 3D has gapless excitations for
and associated currerit$® Numerous authors have addressed

Fap

momenta along the nodal directioms] + . Here I consider

3 ) A ) :
the question of the current distribution responsible fa th 2P “He-A with a cylindrical Fermi surface, (or a set of cylin-
ground state angular momentdfnt216.17%33 Starting from the drical Fermi surfaces generated by dimensional quantizgti

N-particle BCS wavefunction in Eq. 1, Ishikaléeand Mer- ~@nd an orbital order parameter given by
min and Muzikat® calculated the current density in the long AD) — A . 5
wavelength limit,Z > ¢, for the AM state afl = 0. For (p) =A(px+ipy)/pr, ®)

spatially uniforml and no center of mass supercurrent, which generates a bulk excitation spectrum that is fully

g=0x (% nﬁT). 3) gapped on the Fermi surface.
_ . . ) ) Near a boundary, or domain wall, the orbital order parameter
In the BCS limit the densitya(r), is spatially uniformexcept ¢4 deviate from the pure A-phase form. Thus, a more general

near the boundary,= R, Whererf(R) =0. Thecurrentisthen  orm of the orbital p-wave order parameter is parametrized b
confined at the boundarg = 7h(—dn/dr) @, from which 4 real amplitudes

one recovers the result for the ground-state angular momen-
tumL = [, dVr xg= (N/2)hl. This highlights a limitation

of the gradient expansion and hydrodynamic limit. The order
parameter is assumed to be the local equilibrium the AM state
and spatial variations are assumed to be long wavelength oMith A12(r) — A far from a boundary. Inhomogeneous states
the scale off > a. However, the density varies on atomic are described by the Bogoliubov's equatibs®®

length scales near the surface, whereas the order parameter F2

in general, strongly deformed on on length scales of oéder s _

near a boundary. Thus, Eq. 3, and the gradient expansion in < 2m* . “) Ua () +Bap(1,P) Vg (1) = €a(r), (7)
particular, do not accurately describe the current demsity R2
the boundary, nor do they account for the source of the sairfac — (—EDZ — u) Vg (1) —i—A;a(r, p)ug(r) =€eva(r). (8)
current. This requires a theory valid for spatial variasiarf

the condensate on length scales comparable to or smalter th
the correlation lengt.

A(r.p) = (Ba(r) petidalr) py) /pr. ()

for the particle @4 (r)) and hole ¥4(r)) wavefunctions. For
d = z the Bogoliubov equations reduce toc2 equations for
Bogoliubov spinors|¢ ) = (u,v)", in Nambu (particle-hole)
space,

For a thin film of®He-A, as shown in Fig. 1, the orbital quan- -

tization axis is locked normal to the surface of the filf{. Ha|ld)=¢€|d), 9)

B. Bogoliubov-Andreev-Eilenberger
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where#; is the Bogoliubov Hamiltonian expressed in termswheref (¢) = 1/(¢!/T + 1) is the Fermi distribution. The pair

of Nambu matricesty, T2, T3, propagator is one component of the Nambu matrix
Mg = E(p)Ta+Da(r,p) T+ Da(r,P)Ta, (10) a(r.pie) = Guv | You ) Fpv |, (20)
v

with p = h/i[], and the off-diagonal pair potentials interpreted

as symmetrized operators, which satisfies Eilenberger’s transport equafidn,

h
A1o(r,p) = 5 (D12(r) Oy + Oybaa(r)) . (11) A, ﬁ(r,p;s)} +ifvp- Og(r,p;€) = 0. (1)

The large difference between the Fermi wavelengifps, ) ) . . ,
and the size of Cooper pai, is the basis for Andreev’s qua- Physical solutions to Eq. 21 must also satisfy Eilenbesger

) i h . A A . . g 2
siclassical approximation to the Bogoliubov equati8hshe ~ nermalization conditiors;
expansion is achieved by factoring the fast- and slow dpatia

a2 o
variations of the Bogoliubov spinor, (a(r,p;e))* = —m°1. (22)
— dpsr/h
9)=€ [ oy ) (12) An advantage of Eilenberger’s formulation is that the saéct
and retaining leading order termsfirip; & < 1, which yields ~ functions for both quasiparticle and pair excitations abe o
Andreev’s equation, tained as components of the quasiclassical propagatora For
. fixed spin quantization axigl = z, the off-diagonal compo-
A | W) +iRvp- O] g ) =0. (13)  nents of the propagator describe pure equal-spin pairing co
. ] relations. As a result the Nambu propagator can be expressed
with operators7, defined by in the form,
s =€t —Arp), (14) = 3T +iok (B —fiTa) (23)

and the Nambu matrix order parameter given is b _ A
P g y The superscript refers to the causal (retarded in time)grop

A(r,p) =iy (T1a(r,p) + Tl (r,p)) (15)  gator, obtained from Eq. 21 with the shift— £+ i0™. The
diagonal propagator in Nambu spaggls, determines the
wherep = pr pis the Fermi momentunv, = v¢ pis the Fermi  spectral function, or local density of states, for the femii
velocity. The latter defines classical straight-line tcéggies  excitations with momentum = ps p,
for the propagation of wavepackets of Bogoliubov excitagio

which are coherent superpositions of particles and holds wi ] 1 ) )
amplitudes given by the Andreev-Nambu spinor, N1, pi€) = ——Jm g3(r, p;€), (24)
) = <Up> (16) while the off-diagonal propagator§7, andf37;, determine
the spectral function for the correlated pairs,

Andreev’s equation expressed in terms of a row spindr is 1
- P12(r,p;€) = —=TJm {1 ,(r,p;€). (25)
(p| A5~ PV O (| =0, (17) &
These functions determine the mean pair potenti®isand

ith the normalization of the Andreev-Nambu spinor given ) .
Y zal v U sp! av A,, through the BCS self-consistency condition,

by ($p | Yp) = 1. There are two solutions (branches) to An-
dreev’s equation for a single trajectory defined oy For Lo
|| > A, the two branches are propagating solutions; a particle- A1 5(r,p) = (v(p,p) / dgtanh(i) Pro(r,p; £))p , (26)
like solution, | g+ ), with group velocityv(e)||p and hole- —Qc 2T

like solution,| g, — ), with reversed group velocity(&)|| —p.
For energies within the bulk gap the solutions are explodin
and decaying amplitudes along the trajectory, and thus rel
vant only in the vicinity of boundaries, domain walls, etc.

hereQ. <« Ef is the bandwidth of attraction for the spin-
riplet, p-wave pairing interactior(p, p’), which is integrated
over the occupied states defining the pair spectrum and aver-
aged over the Fermi surfacg, .)y = [ dQy /47m(...).
The product of the particle- and hole amplitudes in Eq. 16,
C. Chiral Edge State

fap(r,p;€) = Ua(r,p;€)vg(r.p;e), (18)

is thepair propagator which determines the spectral compo-
sition of the Cooper pair amplitude,

For a boundary far from other boundaries only single reflec-
tions,p — p, couple the propagators for the incomimg and
outgoing f) trajectories. In particular, for the pair of spec-
_ ularly reflected trajectories on the boundary shown in Fig.
Fap(r,p) = /de f(&) fap(r.p;e), (19) 1, with radius of curvature large compared to the correfatio
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length,R > &, the solutions for the components of the propa-bound-state poldge — &,| < |A|, the quasiparticle propagator

gator are (see Appendix I) reduces to
Ay —2A(e)x/ R o AP oaw
R Lo _ £)%/Vx X,p;€) = ———¢€ , 31
fl(xa p! 8) A (S) (1 € ) ? (27) ng( p ) &+ |V— t(':bs(p) ( )

Bxpie) = My T A% — (E%)? —2) (£)X/Vx (28) where | include the line-widthy < A, of the surface state due
2V Ale)  A(e) AER—DNi ’ to weak disorder. Foy — 0" the states are sharp and the
MER A ERA + AN, 2 spectral function consists of delta functiongatp),

_ X/ Vi
NCRRICRGIAT -39

g3(x,p;e) =
(%, pi€) = A (p) € XV B(e — £x(p)) . (32)
wherevy = v¢ coga) for —m/2 < a < /2 andx > 0 is the

coordinate normal to the boundary as shown in Fig. 1. The spectral weight is maximum for trajectories at normal in

cidence and vanishes for grazing incidence. Note that every
Note that the propagator corresponding to Cooper pairs wit§dge state is confined to the surface on the length scale
relative momentum normal to the boundary vanishes at the
boundary,3(x = 0,p; &) = 0. De-pairing of the normal am- &=hvi /24, (33)
plitude is p_artially Compensated by an increase in the pair|'ndependent of momentupy, and of order the Cooper pair
ing correlations for pairs with relative momenta paralteitte size, &, — Fve /20~ 1.6
boundary. The origin of this enhancement is the fermionic’ ~"* f T
state, bound to the surface, which appears as a pole in the D. Spectral Current Density
propagators of EQs. 28 and 29 at the energies,

The spectral current density is defined as the local density o

&s(p) = —D2(p) = —Cpy. (30)  current carrying states in the energy inter¢ale + de) for

. . . states with momentuip,
The surface state disperses with momenfyre pt sina par-

allel to the surfaces-ps < p| < +p¢, andc=A/ps < vs. I (x,p;€) = 2N;vp [%(X’p;g) — (X, p/;g)] . (34)

where 4;,(x,p; €) is the spectral function calculated for the
15 incident trajectory with momentum, N; is the normal-state
density of states at the Fermi level for one spin, prahdp’
10 define the pair of time-reversed incident trajectories shiow
Fig. 3a, for whichvy = —vy.

0.0 Fermi Level

e./A

05 occupied

—1.0

—15
11)1.(] —0.5 0.0 0.5 1.0

P /Pt

FIG. 2: Chiral edge state dispersiam,(p) = —¢ P illustrating the

asymmetry in the occupation of pairs of time-reversed state
FIG. 3: a) Time-reversed trajectory pairs that define thetsakcur-

The important feature of the spectrum of surface fermionsfent density, 7 (x,p; ), for specular reflections. b) Retro-reflections

shown in Fig. 2, is that there iso branch with the oppo- are time-reversed part.n(.ers for anymudenj[ angle. Thalityiof the

site phase velocity. The spectrum describes Weyl or chiral?u”( order parameter is indicated by the direction of the arc

fermions!®3® For each pair of time-reversed fermions the

state with+p| is occupiedwhile its time-reversed partner

with momentum-p| is empty As a result the pairs of surface .

states generate a net mass or charge current. This asymmelfytories,

in the occupation of the surface spectrum is a reflection of dQ, [+

the chirality of the ground state order parameter and specul j(X) = / 4—p/ def(e) 7 (x,p;€), (35)

reflection at the boundary which preserves translation sym- n AT e

metry Ic_)cally qlong the boundary. The a_bsence of a brancﬂlheref(s) = 1/(¢/T + 1) is the Fermi distribution.

of fermions with energy, (p|) = +A2(p) is demonstrated

by evaluating the residue @f(x,p;€) at the apparent pole, The spectral current density for the bound-state spectism o

£ Resgi(x,p;€)le, = 0. For energies in the vicinity of the tained from Egs. 31 and 34 is shown in Fig. 4 for the full range

The resulting local current density is obtained by therynall
occupying the spectrum and integrating over all incomiag tr
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Jy(p B €) /2Nfo

35. Thus, the bound-state contributiorlLtoat T = 0 obtained
from Egs. 38 and 36, witli; — ps becomes,

R
L% — Npprd x 2nh/ r2dre R0/& — NR, (39)
0

which is a factor oftwo larger than that predicted by
Ishikawa? and McClure and Takatft based on the real-space
N-particle wave function of Eq. 1. Finite size corrections
from Eq. 39 are negligible - of orde},/R << 1. As Stone
and Roy pointed out the discrepancy is resolved by including
the contribution td_, from the states comprising the contin-
uum spectruni.Below | analyze the continuum contributions
to the edge current and ground state angular momentum. In
_ particular, | show that there are two contributions to the-co
/A tinuum spectral current density: (i) an isolated scattgraso-
nance that exactly cancels the bound-state contributidimeto
FIG. 4: Spectral current density’y for x = 0 as a function Ob% edge current for each value pfand (ii) a non-resonant re-

ps sina for linewidthy = 0.02%A. States withtp; are slightly offset  sponse of the bound continuum that accounts exactly for the
to show the contributions to the current from time-reversaids. MT result ofL, = (N/2)R.

L . . ) o The energy range < —A constitutes the bound continuum,
of incident trajectories. Note that time-reversed stait®gs:  \yhile the range > A represents excitations above the gap.
dent anglesr and—a, add coherently to the spectral current at finite temperatures sub-gap surface excited states & A
density. Thus, the net current density parallel to the bamd  zjso play an important role. The spectral weight associated
carried by the surface bound states is giveffby with the continuum spectrum is modified near the boundary.
For [e] > A, A(e) = isgne)ve? — A2 and the spectral func-

J=(x) = 1(8/T) x NyvsAe ¥4, (36)  tion becomes,
where the integration over the spectrum reduces to le]
HXPiE) = —=— (40)
+1 wawan - {1, IO €2 — I
| = duutanhAu/2T) =< AT . (37 A2
1 1(_2Tc) T—=Te S - 1('32) cog2\/ €2 — A2x/vy)
Vel-—Nle _Az(p)
Note that near the transition the magnitude of the current de A1(p)Da(p)
creases agy ~ A%(T)/Te ~ (1—T/Tc), but also penetrates — sgne) <m) sin(2v/ €2 — AZx/vy) .
deeper into the bulk a& = hv; /2A(T) ~ (1—T/TC)*%. . . 2 .
The first term is the bulk continuum spectrum, while the cor-
E. Edge Currents and Angular Momentum rections to the continuum spectrum are given by second and

i third lines in Eq. 40. The third term isdd under either
Mass currents confined near the boundary (‘edge currents’y _, _¢ of p — —p, and thus gives a non-vanishing contri-
generate macroscopic angular momentum. For a Galilean insytion to the spectral current density

variant system such as liquitHe the mass current density is

obtained from the spectral current density in Eq. 34 by the J.(xp;E) = —2Ngvpsgn(e) A1 (p)22(p)

replacement, — m*v, = p, wherem* is the quasiparticle ef- o e €2 —N3(p)

fective massp = p;p is the Fermi momentum. In addition, » sin(me/v ) (41)
- X

v, ps and the normal-state density of statbl, determine
the particle number density, which for a 2D Fermi surfaceNote that for fixed energy and momenturp the effect of sur-
givesn=N/V = Nt p Vs. face scattering on the continuum spectrum is large@ng-
agatesinto the bulk. Thus, it is not a priori clear that the
current is confined to the surface. However, the wavelength

cal vessel of radiuR and heighhin the 2D limit,h< &, < R, . L
. - . of the disturbance is given by the Tomasch wavelength for a
the angular momentum relative to th@xis is determined by specific trajectory,

the radial moment of the azimuthal component of the mass
current densitygy (r),

For a chiral p-wave superfluid confined within a thin cylindri

vy Py

. /\T(pag) = 2 _ A2 : (42)
L= '/vd rrge(r)] . (38) The net current parallel to the boundary is given by the sum
_over all incident trajectories,
For R > &, we can neglect the curvature of the surface, in )
which case the azimuthal mass currentis given by the tangen- .. . +11/2 d_a .
tial component of the boundary current calculated from Eq. Jy(¥) = 2Nivs /41/2 T PyBa(p)B2(p) x I(p),  (43)



The current density is then given by

o '+7T/2 da R
[0 = 2Ngy /7 L B18p)IB2(p)
A [ e nEEN
— . 0 &2+ [02(p)I? -
1[4y

which is confined to the edge, but in contrast to the bound-
= state and resonance terms, there is not a single confinement

length, but rather a weighted average of exponential confine

ment on length scaleshvs cosa /A. For this reason an ana-
FIG. 5: Integration in the comple& plane. Integration along the lytic expression for the net current density analogous to Eq
real axis ¢z) is transformed into the sum of an integral around the 36 does not appear possible. However, the total edge current
isolated pole ajA; | and the branch cut along the imagindraxis.  and ground state angular momentum can be computed by first
carrying out the integration over the region of the edge cur-
rent. In the limitR > &, the resulting ground-state angular
momentum reduces to the following integration over the con-

whereJ(p) is given by

o0 tinuum spectrum,
I(p) = / dew X SiN2V/E2— D2x/vy). (44)
s eh) L% N x 2 +n/zd A1(p)A 50
by _ & o
The integration over the spectral current density leadb&se z x 7'[/—7'(/2 PepyLa(P)Bz(p)  (50)
cancellation away from the boundary, andet current that /w de
. . | o % :
is confined to the edge. Although the integration is over the 0 (24 |Ba(p)[2)VeER + 12

continuum spectrum, the chiral edge state nevertheless mod
ifies the current carried by the continuum states. Trajezfor which evaluates to (see Appendix I1)
near grazing incidence give a large enhancement to thelkerne

J(p) coming from the off-resonant bound state. The kernel is LG — ﬂﬁ (51)
weighted by the produgiy A1 (p)A2(p), which is peaked near z 2
o ~ £55°,

Thus, Ishikaw#’, McClure and Takadf and Stone and
At zero temperature the kernel is evaluated by transformindgroy’s® results are recovered from the continuum response to
to an integration over the radial momentyoyor equivalently  the formation of the chiral edge state.
& =vi(p— pr) with £2 = €2 — A\?,
F. Temperature Dependence ok,

1 3 i
J(p)=359m | d& s < . (45)  EorT # 0 thermal excitations out of the ground state lead to
2 G (E24A0)VER 407 a reduction of the order paramet¥(T ), the edge current and
The singularities shown in the upper half of the compfex ~angular momentum. The latter can be expressed as
plane determine the continuum current response. In partic- N
ular, the integral along the real axis is transformed to an in Lo(T)=zhx#,(T), (52)
tegral around the pole &fA;| and the branch cut frond\ to 2
i Jg, = Jg, + Jg,- The pole a =i|A| is an isolated res-  here#,(T) — 1 for T — 0, vanishes fo — T, and can
onance that gives a contribution to the continuum curreatt th pe calculated from the edge current at finite temperature.
is confined to the boundary on the length scle
- Calculations of the temperature dependence of the angular
I, = e X (46)  momentum foPHe-A were carried out by T. Kita on the basis
2|8o(p)| of numerical solutions to the Bogoliubov equations for meso

The current generated by this resonance exactly cancels t§€°Pic cylindrical (3D) geometries with dimensidRs- 4h ~
bound-state edge current and bound-state contributiometo t 2¢- Kita showed that”,(T) decreases rapidly foF 2 0, in-

angular momentum, dicating that there are low-lying excitations that are thaity
populated even at low temperatures which reduce the ground-
L;é’l _ /dzr [rggl(r)} — _NF. (47) state angular momentum. Based on his numerical results (Fig
Jv 2a of Ref. 7), Kita conjectured that the temperature depen-

Thus, the ground-state current and angular momentum Comdﬁence of?,(T) resulted from the excitations responsible for
t

. . . 3
entirely from the non-resonant contribution to the contimu ' g osrl:gggiiﬂﬁ%?; ;huepzl;fﬁ):vrjgjllgn%i?lzﬁl (Igi)rgctt?;rlll‘(orTr?é
t defined by the b h &jtwhich luates t
spectrum defined by the branch efitwhich evaluates to 3D chiral p-wave superfluid. For 3D bulk superfliide-A

B o de _2\/E24 02 x vy (48) the stiffness fops| |T is strongly suppressed at finite tempera-
Yo, = — /o g2+ |A(p))? : ture compared to the stiffness for superflow perpendicolar t



the nodal direction, i.os | > ps . However, as | discuss be- Lo
low, the softness of the angular momentum response functiol 0.9
%,,(T) that Kita found numerically, including its near equal- 08
ity with ps|(T) for the 3D A-phase, is also present in the 2D 07
limit in which the chiral p-wave superfluid is fully gapped. 06

For T # 0 the edge current is determined by the continuum

contribution to the spectrum defined in Eq. 43 with, o )LD(T;/ %MQ)
03 — - bs
- /T2 A2 , 1 — amyao
J(p) = Lom [ qg LBV ERHAYRT) | it (53) Pl — a0 g
2 J (82402)\/&E2+ 12 O 3D (1)

Mo o1 oz 03 04 Oif/y; 06 07 08 00 10
As is the case fol = 0, the resonant contribution to the
continuum current density coming from the isolated pole afIG. 6: Temperature dependence of the angular momerity(¥),
& = +i|A1] exactly cancels the bound state contribution. How-for the 2D chiral p-wave superfluieH(. Also shown is the superfluid
ever, the total edge current and angular momentum, which atiffness €) and the bulk gap-{ for the fully gapped 2D chiral p-
T = 0is calculated from the branch cut in Fig. 5, now resultswave state. Shown for comparison are the two componentseof th
from the sum of contributions from a discrete set of poles aguperfluid stiffness for the 3D chiral, p-wave superfluidgghéiHe-
the complex momenta defined by A) - ps| for pslil () andps | forps L1 ().

=1/ €3+ 12, (54)

whereg, = (2n+ )T, n=0,+£1,+2,..., are the fermion _ 5
Matsubara frequencié€.The resulting edge current density The result of Ishikawa? and McClure and Takadf, for the

G. Robustness of the Edge Currents

is given by ground-state angular momentum is based a geometry with
/2 cylindrical symmetry, a chiral p-wave order parameter and
7z da many-body wave function that is an eigenfunction of the angu
200 = 2Neve [ Sy (p)lBalp) y-body : e ang
w2 T lar momentum operator and two-particle wave functions that

vanish at the boundary. The analysis presented above relies
on the formation of edge states by boundary scattering in the
presence of a chiral order parameter. The resulting chiige e
Multiple confinement scales are manifest in Eq. 55. The tostates, and their dispersion relation shown in Fig. 2, play a
tal surface current obtained by integrating over the bonnda key role in generating the edge current carried by the con-
region determines the equilibrium angular momentum genetinuum states and the resulting ground-state angular memen
ated by these edge currents, tum of (N/2)h. One can ask “how robust are these results to
2242 1 boundary conditions, geometry and topology?”

+A2%2 VEE+A? ’
wherex = Py = sina. Figure 6 shows the temperature depen-
dence of the equilibrium angular momentuf#,(T), calcu-

lated from Eq. 56. Also shown for comparison is the bulk ex-
citation gap and superfluid stiffness for both 2D and 3D ¢hira
p-wave states. Note that the temperature dependence of the
angular momentum is much softer than the bulk superfluid
stiffness for the gapless 2D phase.

1 EWY
TS —— @ 2VEathox/ v (55)
ezn €5+ [02(p)[?

8 1 2 1
%(T)_I_T/O dx(1—x?) rrngngr% (56)

Just as Kita found for his 3D mesoscopic geometry, the tem-

perature dependence bi(T) for the fully gapped 2D phase £ 7. A thin film (< &) of py +ipy superfiuid (“2D°He-A") con-
is nearly identical to the superfluid stiffness for superffw- ¢4 a non-cylindrical geometry with ared s £2 bounded in

allel to the nodal direction for the 3D phase. However, theyey _y plane by specular surfaces. Double reflections are imgortan

reasons for the rapid suppressionlofT) and ps)|(T) are  in determining the surface spectrum and edge current nezmarc
of different physical origin. For the bulk 3D phagg(T)

is strongly reduced comparedpg (T) due to the backflow
current carried by the nodal excitations whgfi 1.23 By con-
trast, for the fully gapped 2D chiral phase there are lowgye

For example, consider the spectrum, edge currents and
ground-state angular momentum for a geometry such as that

shown in Fig. 7. There are two classes of trajectories that
backflow surface currents ford ¢ < A that reduce the edge determine the local spectral current density. Far from a cor

currentwhen thermally populatedf(Fig. 4). The presence of ner (= 5&) trajectories with asingle reflectiordetermine the

low-energy sulrface excitations is also evident in the spict local surface spectrum, and for specular reflections weirmbta
sums that define the edge current and angular momentum In

Egs. 55-56.
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the chiral edge states and the local edge currents of Egs. 36 place of the chiral branch of edge states for perfect specu
and 49. However, near a corner the sharp change in curvéar reflection (Fig. 2), perfect retro-reflection leads toeaige
ture leads tadouble reflectionss shown in Fig. 7. These state at the Fermi levek,(p) =0, i.e. azero-modédor ev-
double reflections dramatically alter the local excitapec- ery incident trajectoryp. These modes do not carry current,
trum. They are also essential for enforcing current coraserv nor do they generate continuum currents. Indeed the spec-
tion near the corner, and they provide the mechanism for th&al current density (Eq. 34) vanishes identically, andsthu
edge currents to “turn the corner” and maintain continufty o the ground-state angular momentum resulting from the edge
the current circulating near the boundary. Furthermoreesi  states vanishes as well.

the double reflections are relevant only for incident trigec ) )

ries within a few coherence lengths of a corner the ground] N spectrum of zero-modes is also inferred from the obser-
state angular momentum measured from the center of ma¥&tion thatA(p,x) = —A(p,x) for any parr f.p) of retro--

of the film is given by(N/2)R for a finite number of corners, reflected trajectories. Thus, Andreev’'s equation for a phir

with corrections that are of ordér/R << 1, whereR is the retro-reflected trajectories is equivalent to D|r§1c fennsian
minimum linear dimension of the film. 1D coupled to a scalar fieldl(z) = Asgn(z) (z being the co-
ordinate measured along the classical trajectory), whah h
the well-known Jackiw-Rebbi zero-mode bound to the domain

wall atz= 025

However, the zero modes generated by retro-reflection and
a chiral p-wave order parameter are fragile and unprotected
from small perturbations. For amperfectretro-reflecting
surface some incident trajectories will be reflectedvard

and generate edge currents and a ground-state angular mo-
mentum with a magnitude in proportion to the probability
for forward reflection. Thus, depending on the distribution
of trajectories with forward vs. retro-reflection the resul
ing ground-state angular momentum will generally be less
than(N/2)h, and may take on any value in the rangg; <

L, < (N/2)h, with the lower limit set by théntrinsic angular
momentum-%11.17

FIG. 8: Mesoscopic facets of dimensibjip; < .2 « & are retro- 1 5
reflectors of quasiparticles. Lo = (N/2)h x 7 (A/Ef)"In(Es /D). (59)

This example also indicates how non-specular scattering Caor
dramatically alter the surface spectrum, reduce or evem-eli
inate the edge currents. To illustrate the effect non-dpecu
;ﬁ?:;?r'snu%f;ggz'?ﬁ;taasrzrfgfe that is facetted with MEFOSCO tinn £ of forward reflections by the boundary, i.e. 4gy) =
ge compared to the Fermi wavez

len sgn(p, ),

gth, but small compared to the coherence lerag, . <« y
&, and oriented at right angles to one another as shown in _
Fig. 8. Such a surface is a retro-reflector analogous to op- Lz =1 (N/2)h, (60)
tical retro-reflectors constructed from dense packing @f co with f™ < f < 1. The sensitivity of the ground-state angu-
ner reflector$* Note that a retro-reflecting surface does notlar momentum to retro-reflection is at first sight in conflict
break time-inversion symmetry or reflection symmetry in awith the result of McClure and Takagi (MT). However, the
plane containing the normal to the surface, but translation MT boundary condition does not account for retro-reflection
invariance is broken on short-wavelength scalgs< . As  on mesoscopic scales because it assumes perfect cylindrica
aresult, retro-reflection can dramatically modify the $pgn symmetry on the atomic scale. This result highlights the fac
of edge state®® In the limit of perfect retro-reflection i.e. that spectrum of edge states, currents and the groundastate
retro-reflection of all incident trajectories - the speairof  gular momentum is sensitive to surface scattering on alésca
edge states is obtained by an analogous calculation to th@fom several coherence lengths down to the atomic scale.
of perfect specular reflection since every incident trajgct
is paired with a single reflected trajectory. In particutae H. Toroidal Geometry
guasiparticle propagator, and the corresponding bouaté-st
spectral function, are given by (see Appendix I)

3He-A confined by the walls of an experimental cell a re-
alistic estimate fot; is likely below (N/2)h, but much larger
than the intrinsic limit, and determined by the mean frac-

The combination of geometry and surface boundary condi-
tions can lead to dramatically different results for theugrd-
ER A2 state angular momentum of a chiral p-wave superfluid. Con-
0BXPE) = —v st o e A EX %  (57)  sider the toroidal geometry shown in Fig. 9 in which the su-
Ale) Ale)E perfluid is confined between inner and outer baoundaries with
M(x,p;€) = mAle X% 5(g). (58) radii R, andRy, respectively. | assume both radii are large
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R For perfect specular reflection on the outer boundfry 1,
, and perfect retro-reflection on the inner boundésy- 0, the
ﬁi ﬂI[[”I[”ﬂ H;I'"TmmRz AR resulting ground-state angular momentum
>
T N
A - C N 1
L,==hx|-— 65
=5 (1), 5)

FIG. 9: A thin film of chiral p-wave superfluid (“2BHe-A") with can be much larger than the MT res(M/2)hfor 1 —r <« 1.

h < &, inner and outer radiR,, R; and areas/ = m(R? — R3) ) )

bounded by specular surfaces which reflect quasipartciesp — Equally dramatic would be to engineer the outer boundary to

p—2%X(X-p). ForRy, Ry, Ry — Ry > & only single reflections arerel- be retrO'reﬂeCtingtl =0, and the inner boundary to be Specu-

evant to determining the surface spectrum and edgecuroentse  lar reflecting,f, = 1. In this limit only the counter-circulating

inner and outer boundaries. current on the inner boundary survives, which leads to a
ground-state angular momentum that is oppositéhe chi-

) . rality of the Cooper pairs,
compared to the confinement scale of the chiral edge currents

and that the edge states on the inner and outer boundaries are N K —r
L;=—=hx ( ) .
2

=T (66)

well separated; i.eR;,Ry, Ry — Ry > &,. The ground state
angular momentum is given the radial moment of the mass
current density in Eq. 38, which in these limits is deterrdine

by the massheet currenbn the inner and outer boundaries, This reversal of the ground-state angular momentum for a

K> andKj, respectively, toroidal geometry would provide both be a signature of the
broken time-reversal symmetry of the ground state of super-
L, = 2rth (Ky R + K2 Rj) . (61)  fluid 3He-A, and also establish its origin as the edge current

from the inner boundary.

At T = 0 the magnitude of the mass sheet current (with units
of “action/volume”) for a specular boundary is obtainedfiro Acknowledgements

EQ. 49 withvy — pr, and evaluates to This research is supported by the National Science Fowndati

® 1 1 (Grant DMR-0805277). | also acknowledge the hospitality
K :/0 dx gy (x) = 4 Nf v prh= Znﬁ' (62)  and support of the Aspen Center for Physics where part of

this work was carried out.

For perfect specular reflection on both boundaries we obtain

edge currents of equal magnitude flowing in opposite direc- . APPENDIX: BOUNDARY SOLUTIONS

tions, Ky = —K; = K, as indicated in Fig. 9, and thus once

again the MT result for the ground-state angular momentum Using the representation fgF in Eq. 23, Eilenberger’s equa-
tion can be expressed as coupled equations for the quasipart

L, = 2rth (Rf _ R%) %nﬁ: gﬁ‘ (63) cle and pair propagators in a three-dimensional vectorespac
Note that the counter-propagating edge currents conspire t %vp -0|g) = M|g>, (67)
give a ground-state angular momentum, in unithd2, that
is extensive and proportional to the volume, or total numbeyith
of particles. If the boundary is not perfectly specular then
the corresponding sheet current is reduced by the suppressi 1 R 0 R N
of the edge currents by retro-reflectiof; = f x 2nh, with lg)=(], M=|-8 0 -4 (68)
suppression factor@ f < 1. 95 A, —A; O
For the toroidal geometry the inner and outer boundaries may
have different degrees of specularity, ig. = f; K andK, = For a uniform order parameter defined by trajeciorye ex-
— K with f1 # f,. The generalization of Eq. 63 is press|g) in terms of the eigenvectors &, M| ) = u|u).
The eigenvector withu = 0,
N f]_ —r f2
L,=—=hx < ) , (64)

2 1-r —Dq(p)

where 1< r < 0 is the ratio of the radii, = R,/R;. The asym- 0p) =5 (p,€) —ﬁzg(Rp) : (69)

metry in the counter-propagating edge currents now leads to
a ground-state angular momentum that no longer scales wit I

the volume. Two cases highlight the non-extensive propert enerates the bulk equilibrium propagator,
of L, and its sensitivity to the asymmetry in the edge currents

. M ~
on different boundaries. 9=y (5 T3 —A(p)) , (70)
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whereA = /]A(p)[2 — (€%)? and|A(p)|? = A2(p) + A3(p) =  Similarly for the specularly reflected trajector@;(p, &) =

A?. This solution satisfies Eilenberger's normalization con-C*(p,£). The resulting propagator from Eqgs. 76 and 77
dition in Eq. 22. There is also a pair of eigenvectors withgives the results for the pair propagatdfs,, and quasipar-

eigenvaluegt = +A ticle propagatoys in Egs. 27-29.
1 FAER - N1 B. Retro-Reflection
[ +p) = —5— Af : (71 . _—
VM grpgFAny For retro-reflection we have = (—py, —py), and in this case

the eigenvectors are obtained from Egs. 69 and 71 by the re-
placements); — —A; andA; — —A,. This boundary condi-

ith Ay = /A%(p) — (E7)2. Th [ t te “ex- I : .
Wi A 1(P) — (£7) ese eigenvectors generate ‘ex tion dramatically alters the propagator near the bounddtty w

ploding solutions” to Eq. 67 for energies within the gap @& th
bulk qua;iparticle ;pectruﬁﬂ < |A(p)|, and thus are physi- . V202)(p, €)
cal solutions only in the vicinity of a boundary, or near a lo- Ce(p) = (0 (6)ba(p) — Ea(p))
calized defect such as a vortex or domain Wakor the same 1P 2(P

val.ue O_f momentéjgmp, the eigenvectors are orthonormal, \yhich gives the propagator for retro-reflection in Eq. 5&hwi
(u;p|vip) = Qv The Nambu propagators corresponding 5 spectrum of zero-modes replacing the branch of chiral edge

(78)

to the eigenvectorst, p) are states for specular reflection.
A'l(p,s) = \/i/\;/\ ( (?:RA2$AA1) T3 1. APPENDIX: ANGULAR MOMENTUM INTEGRATION
1
F iok(AE FLA10) T2 The second integral in Eq. 50, derived from the branch cut in
. . Fig. 5, evaluates to
+ ioxA? Tl) . (72)

S de 1 1 (|A1|)
. . . . = al — ] .
These matrices are non-normalizable and anti-commute with // (€2 + |Da(p)2)VEZ+ A2 D] |D A
the bulk propagator, (79)

o n2 e~ Setting|Ay| = At, |A1| = Av/1—t2 reduces Eq. 50 to
@)?=0, [@.5.],=0. (73) 1Ba] =48 &4

. 4 1 1-t2
For a boundary far from other boundaries or defects we must L7z =NA x e /o dtttan* ( n ) . (80)
exclude solutions that explode into the bulk of the supeatflui
In particular, for a pair of specular or retro-reflecteddcgj
tories the solutions for the incident and reflected trajeeto
are

Integration by parts reduces to a Beta functién,

1 /1 _t2
/ dtttan1< ! t) = }%(i}):i (81)
0 2’2’ " 8

1G0(p,X)) = |O;p) +Ci(p)e A PE N ip) - (74)
|Gou(P.X)) = |0;p) +Coul(p) & PR —1p) (75)

wherevy = v¢ coga) for —m/2 < a < /2 andx > 0 is the
coordinate normal to the boundary as shown in Fig. 3. The
corresponding Nambu propagator for the incident trajgctor
in the vicinity of the boundary is constructed from thesaisol
tions with Egs. 22 and 73 to fix the normalization,

i = —n1(3(p.e)+Cu(p. )T (p.)e 2 %) . (76)

t

which yields the MT result,.; = (N/2)h, given in Eq. 51.

A. Specular Reflection

For an incident trajectony = (px, py), the specularly reflected
trajectory isp = (—px, py). Thus, the eigenvectors for the
specularly reflected trajectoyy are obtained from Egs. 69
and 71 by the replacement — —A;. The specular boundary
condition requires continuity of the incoming and outgoing
propagators at = 0, which fixes the amplitude€,,(p, €) and
C.«(p, €). For the incident trajectory,

spec _ 1- <O’E|O’p> . \/_ZAl(p))\l(pvg)
)= o) AeE - mpba() )
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I will refer to this order parameter as the ‘AM state’, theiteth
p-wave state’ or the ‘A-phase order parameter’.

This result is also applicable to spatially varying “texasit of the
AM state in whichl(R) varies slowly on the scale &, such as
the Anderson-Brinkma and Mermin-H@&? textures forPHe-A

in a long cylinder.

See Volovik and Mineev’s review of this subject in R&f.and
also for a clear discussion of differences between chiradeBo
molecules and Cooper pairsihle-A.

The row spinors are not simply the adjoint spinor of Eq. 1&&in
ffz is not Hermitian.

There is a two-fold spin degeneracy for eqgh

By contrast the component of the currémio the boundary,j&,
vanishes identically, as required by particle conservatio

The transformation is based on the Matsubara represemtatio
tanh(\/E2+A2/2T)/2\/E2+ D2 = T5, (E2+ €2+ A2) 2.
Retro-reflective boundary scattering is not to be confuséd w
Andreev reflection - which is retro-reflection of tgmup velocity
associated witlbranch conversiometween particle-like to hole-
like excitations. Retro-reflective boundary scatteringerees the
momentum of the excitations. Andreev processes are alsorimp
tant in the superfluid phase, and accounted for in the boyndar
condition for the Nambu propagator as described in Appehdix
The eigenvectorsy; p| are obtained from the adjoint ¢fs;p)
and the replaceme@t — —&® sinceMT (&R) = M(—&R).



