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ABSTRACT 

A theoretical model of the coherent precession of magnetization excited by a picosecond 

acoustic pulse in a ferromagnetic semiconductor layer of (Ga,Mn)As is developed. The short 

strain pulse injected into the ferromagnetic layer modifies the magnetocrystalline anisotropy 

resulting in a tilt of the equilibrium orientation of magnetization and subsequent magnetization 

precession. We derive a quantitative model of this effect using the Landau-Lifshitz equation for 

the magnetization that is precessing in the time-dependent effective magnetic field. After 

developing the general formalism, we then provide a numerical analysis for a certain structure 

and two typical experimental geometries in which an external magnetic field is applied either 

along the hard or the easy magnetization axis. As a result we identify three main factors, which 

determine the precession amplitude: the magnetocrystalline anisotropy of the ferromagnetic 

layer, its thickness, and the strain pulse parameters. 
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1. INTRODUCTION 

Ultrafast control of magnetic order is one of the key problems of modern magnetism. This 

problem arises due to the huge gap between the exponentially increasing over the last decade 

capacities of magnetic storage devices and their performance, which progresses much slower. 

During the last decade various concepts to manipulate magnetization on a short time scale 

utilizing picosecond magnetic field pulses [1,2] or femtosecond optical excitation [3] have been 

explored for magnetic materials. In materials with strong magnetocrystalline anisotropy (MCA) 

acoustic pulses may be also an effective tool to manipulate magnetization on ultrashort time 

scales [4,5]. The methods of picosecond laser ultrasonics allow the generation of ultrashort strain 

pulses in solids [6]. These strain pulses have picosecond duration and amplitude up to 10-3. They 

have a fast and local impact, which may lead to a considerable response of the material’s 

magnetization, whose magnetic properties are sensitive to strain. 

 Ferromagnetic semiconductors (FMSs), like (Ga,Mn)As, belong to the class of 

ferromagnets with strong MCA due to the hole-mediated origin of ferromagnetism [7,8]. The 

low Curie temperature of 190 K [9] limits the perspectives of FMSs for real applications, but 

they are still under active studies as a unique model material combining semiconductor and 

ferromagnetic properties [10]. In FMS epitaxial layers mainly strain determines the directions of 

the easy magnetization axes. The compressive (tensile) epitaxial strain from lattice mismatch 

between buffer and FMS layers results in in-plane (out-of-plane) orientation of the easy axes of 

magnetization for a wide range of FMS parameters [11,12,13]. Several ways to control the 

magnetization in FMS by strain have been developed recently: (i) the desired direction of the 

easy magnetization axis may be achieved by adjusting the composition of a buffer layer during 

growth [11]; (ii) after-growth patterning allows directing the in-plane magnetization [14]; and 

(iii) in layered multiferroic structures with the FMS layer grown on piezoelectric material an 
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electric field applied to the piezoelectric layer governs the in-plane unidirectional strain and 

allows manipulation of the magnetization direction [15-17]. 

 Until very recently the strain-control of magnetization in FMSs has remained static. First 

time-resolved experiments with strain pulses in FMS epitaxial layers were reported by 

Thevenard et al. [18] and Scherbakov et al. [5] in 2010. The studies in Ref. [18] focused on 

elasto-optical effects induced by a strain pulse propagating in a magnetized FMS layer, while the 

effect of the strain pulse on the magnetization and the strain-induced temporal evolution of 

magnetization were studied in Ref. [5]. It was demonstrated that at external magnetic field 

applied normal to the ferromagnetic layer the strain pulse induces a pronounced tilt of 

magnetization out of its equilibrium orientation and subsequently coherent magnetization 

precession. In Ref. [5], for describing the experimental results the authors considered the 

simplest model of magnetocrystalline anisotropy of a FMS layer. The proposed model cannot 

explain a number of effects observed in the later experiments, such as strain pulse induced 

magnetization precession also for in-plane magnetic fields and even without external field [19]. 

This observation has stimulated the present theoretical studies, which are aimed at carrying out a 

comprehensive analysis of the effect of strain pulses on the magnetization in ferromagnetic 

(Ga,Mn)As. The main goal is to examine how the amplitude of the strain-pulse-induced 

precession depends on the parameters of the FMS structure, the magnetic field strength and 

direction and the parameters of the strain pulse. We examine the cases of magnetic field 

direction normal to the ferromagnetic layer as in Ref. [5] and also parallel to it as well as without 

magnetic field. The underlying anisotropy parameters of the FMS structure have been obtained 

using the microscopic model for hole-mediated ferromagnetism proposed by Dietl et al. [20]. 

 The paper is organized as follows. In Section 2 we briefly describe the considered 

experiments with picosecond strain pulses hitting FMS layers, introduce the parameters of the 

strain pulse and qualitatively discuss the effect of the strain pulse on the magnetization. Section 3 
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describes the formalism, which is used later to calculate quantitatively the effect of the strain 

pulse. In Section 4 we present the results of numerical calculations for a particular FMS structure 

subject to two different orientations of external magnetic field. Finally, we summarize and 

conclude the obtained results and discuss the perspectives for controlling magnetization by 

picosecond acoustics. 

 

2. EXPERIMENTS WITH PICOSECOND STRAIN PULSES 

IN EPITAXIAL (Ga,Mn)As LAYERS 

Figure 1(a) shows the schematic of experiments with picosecond strain pulses applied to a FMS 

layer. The sample consists of a single AsMnGa
MnMn1 xx−  FMS layer grown on a semi-insulating 

GaAs substrate [5]. The typical content of Mn atoms in the FMS layer is 1.001.0Mn ÷=x . A thin 

metal film deposited on the back side of the GaAs substrates serves as optoelastic transducer, 

which rapidly expands due to the heating under femtosecond laser excitation [6]. Figure 1(b) 

demonstrates the bipolar strain pulse δεzz(t) injected into the substrate as result of the thermal 

expansion of the metal film [21,22]. Pulse duration τ and amplitude max
zzε depend on the 

transducer material and the parameters of optical excitation, and have typical values of ~10 ps 

and ~10-4÷10-3, respectively. It is important to note, that in high symmetry GaAs substrates 

(typically (001) oriented) the strain pulse contains only longitudinal components for lattice 

distortions along the propagation direction perpendicular to the substrate interface. At liquid 

helium temperatures such a strain pulse propagates through GaAs over millimeter distances 

without scattering [23]. 

In order to describe the response of the magnetization M of the FMS layer on the strain 

pulse we use the standard Landau-Lifshitz approach in which the magnetization is precessing 

about the time-dependent effective magnetic field Beff [24]. This effective field is the sum of the 
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external magnetic field B and the intrinsic magnetic anisotropy field, which is determined by the 

parameters of the FMS layer. In equilibrium the magnetization M is parallel to Beff. As an 

example, Fig. 2(a) shows the experimental geometry reported in Ref. [5] when B is applied 

normal to the (Ga,Mn)As layer with in-plane easy axes. In such a layer the anisotropy field holds 

M in the layer plane, while the external magnetic field turns M out of the layer, so that the 

resulting field Beff has a tilted orientation between in-plane and normal-to-it. When reaching the 

FMS layer, the strain pulse changes the layer properties, namely the zzε  static strain component, 

modifies the magnetic anisotropy field, and tilts Beff, which is then no more parallel to M. As a 

result M starts to precess around Beff. After the strain pulse has left the FMS layer, Beff returns to 

its equilibrium orientation, while M remains at some angle relative to Beff. Thus, the precession 

continues until relaxation drives M back to equilibrium [Fig. 2(b)]. In the Landau-Lifshitz 

approach value and direction of Beff are determined by the free energy density [25]. The free 

energy density includes magneto-elastic terms, which provide the direct relation between the 

strain components and the orientation of Beff. Thus, one can model the response of Beff and the 

magnetization on the strain pulse, as shown in the next Section. 

 

3. MAGNETIZATION PRECESSION INDUCED BY A STRAIN PULSE 

In our theoretical analysis we consider a thin FMS (Ga,Mn)As layer with a typical Mn ion 

content that is epitaxially strained, at liquid helium temperatures. Figure 2(a) shows the assumed 

coordinate system, in which the x and y axes lie in the layer plane along the [100] and [010] 

crystallographic directions, respectively, and the z-axis is perpendicular to the layer growth 

direction, which is the [001] crystallographic direction. Far below the Curie temperature the 

magnetization of the FMS layer is close to the saturation value max0 SNgM MnBμ= , where g=2 is 

the Mn Lande factor [26], Bμ  is the Bohr magneton, 2/5max =S  is the maximal total spin of the 
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Mn atom and 3
0Mn /4 axNMn =  is the concentration of Mn atoms ( 0a is the lattice constant). 

Assuming that the perturbation induced by the strain pulse is weak and does not affect the 

absolute value of M , and neglecting also damping we may use the Landau-Lifshitz equation to 

describe the dynamics of magnetization in the time-dependent effective field Beff(t) [24]:  

),(),(),,( tFtt
dt

d
M mmBmBmm

meffeff −∇=×⋅−= γ ,    (1) 

where 0/ MMm =  is the normalized magnetization and /Bgμγ =  is the gyromagnetic ratio. 

The effective field Beff acting on m is determined by the gradient of the normalized free energy 

density of the FMS layer 0/ MFFM = . 

 Generally, the free energy density FM consists of isotropic and anisotropic parts. The 

isotropic part does not depend on the direction of m and does not contribute to the vector product 

in Eq. (1). Therefore, we have to consider only the anisotropic part of FM, which includes the 

Zeeman term, the demagnetization energy, and the MCA terms related to the crystal symmetry. 

In a thin (Ga,Mn)As layer grown by low-temperature molecular beam epitaxy the cubic 

symmetry is tetragonally distorted by the epitaxial strain originating from the lattice mismatch 

between the buffer and the (Ga,Mn)As layers. Most of experiments also indicate the presence of 

an in-plane uniaxial anisotropy in the (Ga,Mn)As films [12,13,27]. The origin of this anisotropy 

is still under discussion, but phenomenologically it can be modeled by a weak shear 

strain xyε [27]. Thus, we write the general expression for the anisotropic part of the free energy 

density of a thin cubic FMS layer distorted by strain [25,28,29] in the form:  
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where mx, my and mz are the projections of m onto the coordinate axes and εij (i,j=x,y,z) are the 

strain components. The first term in Eq. (2) is the Zeeman energy of m in the external magnetic 
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field B, the second term is the demagnetization energy of the thin ferromagnetic film with 

2/0MB od μ=  [30,31], and the five following terms describe the MCA of the strained cubic 

FMS layer. The cubic anisotropy field Bc and the magnetoelastic coefficients 

xyAAAA 2
)2(

4
)1(

42  and , , , εεε are parameters of the FMS film, which depend on lattice temperature, 

hole concentration p  and Mn content Mnx [11-13,20,27,32]. The equilibrium orientation of m is 

given by the minimum of FM and depends on the balance between Zeeman, demagnetization and 

MCA energies. 

 In the unstrained FMS layer the MCA part of FM in Eq. (2) consists of the cubic term 

proportional to Bc only. For the experimentally relevant ranges of p and Mnx  at low temperatures 

the value of Bc may be both negative or positive [20,32]. We consider the case Bc<0 when the six 

equivalent easy magnetization axes lie along the [100], [010] and [001] crystallographic 

directions. This equivalence is destroyed by the static epitaxial strain with components:  

11120 /2,/)( CCaaa xxzzyyxx ⋅−=−== εεεε ,          (3) 

where 0a  and a are the non-distorted lattice constants of the (Ga,Mn)As and GaAs layers, 

respectively. C11 and C12 are the elastic modules of (Ga,Mn)As. As a result the in-plane [100] 

and [010] and the out of plane [001] orientations of m become nonequivalent. At low 

temperatures, for sufficiently high hole concentrations in-plane compressive strain 0<= yyxx εε  

is found in (Ga,Mn)As layers grown on GaAs, leading to in-plane orientation of the easy axes 

[12,13,20,32]. Further, the in-plane uniaxial anisotropy determined by the last term of Eq. (2) 

leads to a tilt of the easy magnetization axis from the [100]/[010] crystallographic directions 

toward [110]/ [110] for positive xyε . This means that the coefficients A2xy and A2ε must be 

positive. The cubic magnetoelastic coefficients )2(
4

)1(
4  and  εε AA  are one order of magnitude smaller 
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than A2ε and, consequently, do not affect the orientation of the easy magnetization axis. Finally, 

the demagnetization energy supports the in-plane orientation of m.  

 In the microscopic model used for the calculating the anisotropy coefficients the relation 

)2(
4

)1(
4   εε AA =  is fulfilled (see Appendix A) so that we will apply this approximation throughout the 

rest of the paper using the notation εε 4
)1(

4   AA ≡ . Since also εxx=εyy  for epitaxial strain we may 

simplify Eq. (2) and rewrite it in spherical coordinates: 

[ ]
[ ] [ ]
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4
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  (4) 

This expression provides a direct relation between the magnetic anisotropy fields, which are 

typically used to describe MCA in most publications on FMS (Ga,Mn)As, and the strain 

components. The values ))(2( 42 xxzzAA εεεε −− , )(2 4 xxzzc AB εεε −+ , )(4 xxzzc AB εεε −−  and 

xyxyA ε2 are usually defined as perpendicular uniaxial, perpendicular cubic, in-plane cubic and in-

plane uniaxial anisotropy fields, respectively. 

 In the frame of the single-domain model with constant magnetization it is convenient to 

rewrite also Eq.(1) in spherical coordinates [33]: 

   .
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Assuming that the changes δϕ and δθ of the angles ϕ and θ induced by the strain-pulse δεzz are 

small, we can write in linear approximation: 
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where the 
ji

FF M
ij ∂∂

∂=
2

 (i,j=ϕ,θ,εzz) are calculated at equilibrium orientation )(),( 00 BB ϕθ , 

corresponding to the static orientation of m at a given B . 

 Here we introduce the effective rates of strain-induced precession: 

.4sinsin
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The values of fθ and fϕ determine the amplitude and the direction of the tilt of Beff induced by 

),( ztzzδε  for a specific static orientation of m. If both rates are zero, the strain pulse does not tilt 

Beff and, thus, does not induce any magnetization dynamics. One sees that if m lies in the layer 

plane, fϕ =0. In addition, there are specific in-plane directions corresponding to the 

crystallographic directions [100], [010], and the diagonals, where 0=θf , and a tilt of effB  by 

),( ztzzδε  is impossible. This means that in a FMS layer with no shear strain (εxy=0) the strain 

pulse ),( ztzzδε  may induce a magnetization precession only when applying an external magnetic 

field, which rotates m out of the easy magnetization axis. However, the presence of shear strain 

(εxy ≠0) allows launching of a magnetization precession by ),( ztzzδε , even at zero B . So the 

presence of at least one of these factors, either an external magnetic field or an in-plane shear 

strain, is crucially necessary to induce a magnetization precession by ),( ztzzδε . 

The precession frequency ω0 is determined by the standard expression for the 

ferromagnetic resonance frequency and depends on the static orientation of m [33-35]: 

  2

0
0 sin θϕϕϕθθθ

γω FFF −=        (8) 
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 It is worth to note, that Eqs. (5-8) cannot be applied, when the equilibrium m is parallel to 

the [001] axis, where a mathematical singularity appears [33,34]. However, it is easy to see that 

for this orientation of m any perturbation ),( ztzzδε  cannot turn the magnetization out of the 

equilibrium direction. Thus this orientation is not of our interest and we use Eqs (5-8) throughout 

the rest of the paper.  

 The developed formalism is well suited for strain pulses of arbitrary shape but we restrict 

the numerical calculations to spatial and temporal dependencies of δεzz(t,z) typical for ultrafast 

acoustic experiments. In the (Ga,Mn)As film the strain has a complex shape compared to the one 

injected into the substrate, as result of interference of the incident and reflected components of 

the pulse. The spatial-temporal evolution of the strain pulse which propagates with the 

longitudinal sound velocity νl along the z-axis through the FMS layer with thickness d can be 

modeled as [21,22]:  
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zz
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vztvztezt

   ,  (9) 

where e is the base of the natural logarithm. Time t=0 in Eq. (9) corresponds to the moment, 

when the center of the bipolar strain pulse reaches the GaAs/(Ga,Mn)As interface (z=0). The first 

term in Eq. (9) describes the evolution of the strain pulse propagating toward the open surface of 

the FMS layer and the second term describes the strain pulse reflected at the open surface with a 

π -phase shift and subsequently propagating back toward the substrate. The parameters of the 

strain pulse that we use for the further calculations are as follows:  max
zzε =10-4, τ=7ps, and 

skml /5=ν . These values are typical for ultrafast acoustic experiments and correspond to the 

values reported in Ref. [5]. Here we do not take into account nonlinear effects, which modify the 
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shape of the strain pulse during its propagation through the GaAs substrate. These effects are 

insignificant for the chosen strain pulse amplitude.  

 Figure 3(a) shows the time evolutions δεzz(t,z) for three different positions inside the 200-

nm-thick magnetic layer: z=0, 100 nm and 190 nm, which correspond to the GaAs/(Ga,Mn)As 

interface, the centre of the FMS layer, and the coordinate 10 nm before the open surface, 

respectively. It is clearly seen that the δεzz(t,z) are not the same for the different coordinates. 

Thus, the strain-induced perturbation of FM is spatially nonuniform and Eq. (6) must be solved at 

each coordinate z inside the FMS layer. Because of this nonuniformity of the perturbation, one 

also should add the exchange term to the expression for Beff in Eq. (1) [24,28]. Basically 

exchange would lead to two effects. First, it gives rise to a frequency splitting of the magnon 

modes in a finite-width film [36]. This splitting can manifest itself by a beating due to 

interference of the split modes contributing to the strain-induced magnetization precession. For 

realistic (Ga,Mn)As parameters, however, the mentioned splitting is relatively small [37,38]. It is 

worth to mention also that since the exchange terms are proportional to the spatial derivatives of 

magnetization, proper boundary conditions must be introduced for the magnetization at the 

ferromagnetic film interfaces. It is known, however, that this affects the magnetization mainly in 

the quite thin regions near the interfaces [36]. Leaving these specific effects for further studies 

we proceed with the analysis of the case without exchange. 

In the actual experiment probing of the magnetization at a certain coordinate z is 

impossible. The experimental signal (i.e. the magneto-optical Kerr rotation) reflects the time 

evolution of the magnetization averaged over the layer thickness. Thus, we introduce the mean 

angles: 

∫=
d

dztz
d

t
0

),(1)( δθδθ ,  ∫=
d

dztz
d

t
0

),(1)( δϕδϕ .   (10) 
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Then, Eq. (6) may be rewritten for relating )(tδϕ  and )(tδθ  with the averaged strain-induced 

temporal perturbation, shown by the thick red line in Fig. 3(a): 

∫=
d

zz dztzt
0

.),()( δεδε       (11) 

In the next section we solve Eq. (6) numerically for both the magnetization and the averaged 

magnetization as function of coordinate z. 

 

4. NUMERICAL ANALYSIS OF STRAIN-INDUCED PRECESSION 

We examine two characteristic orientations of the external magnetic field: perpendicular to the 

layer plane, ),0,0( B=B , and in the layer plane along the [100] crystallographic direction 

)0,0,(B=B . We present the results of a numerical analysis for certain parameters of the FMS 

layer. First, we analyze the static orientation of magnetization as function of the external 

magnetic field, calculate the field dependencies of the effective precession rates )()( Bf θϕ  and the 

precession frequency )(0 Bω , and then model the time evolution of the magnetization induced by 

the strain pulse of chosen shape. We use the following parameters for the structure, which are 

typical for a thin (Ga,Mn)As layer:  d=200 nm, xMn=0.045, p=4×1020 cm-3, and μ0M0=60 mT. 

The corresponding values of Bc= −35 mT, A2ε=25 T, A2xy=152 T and TA 5.04 =ε  were calculated 

in the frame of the Dietl model, for details see Appendix A. The calculations are limited to the 

case of compressive epitaxial strain: εxx=εyy<0; εzz>0 and, thus, in-plane orientation of the easy 

magnetization axes. The factor 2C12/C11=0.89 in Eq. (3) is taken from Ref. [39]. The calculations 

are carried out for several values of the static strain components: εzz=(1÷3)×10-3 and 

εxy=(0÷2)×10-4. In the frame of the single domain model we assume that at zero external 
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magnetic field m lies along the [100] direction if εxy=0 and along the easy magnetization axis 

that is closest to the [100] direction if εxy>0. 

 

A. Perpendicular magnetic field 

An external magnetic field applied perpendicular to the FMS layer rotates the magnetization out 

of the layer plane toward the z-axis. In this case the strain pulse induces a magnetization 

precession even at 0=xyε . Since also xyε  is typically at least one order of magnitude smaller 

then the epitaxial strain we first restrict our consideration to the case of zero shear strain, and 

thereafter numerically analyze the effect of nonzero xyε .  

 For zero shear strain ( 0=xyε ) the orientation of m  is characterized by 00 =ϕ  for any 

value of B  and we may simplify the expression (4) for FM to: 

[ ]
[ ] [ ] .sin)(cos)(2

cos))(2(cos)(
4

4
4

4

2
42

θεεθεε

θεεθθ

εε

εε

xxzzcxxzzc

xxzzdM

ABAB

AABBF

−−+−++

+−−++−=
   (12) 

Figure 4(a) shows the angle dependence FM(θ) calculated for 3102 −×=zzε  at different B. With B 

increasing from zero the minimum of the free energy density shifts from θ0 =π/2 toward smaller 

values, and m gradually turns toward the field direction as Fig. 4(b) shows. At some magnetic 

field a second minimum at θ =0 appears, so that FM has two minima separated by a barrier. With 

further increasing B the first minimum close to π/2 becomes shallower, while the second 

minimum becomes deeper. Finally, at B=B* the first minimum disappears and the magnetization 

rapidly changes its direction, becoming parallel to B  [see Fig. 4(b)]. In realistic structures the 

switching between the two minima occurs at lower B values smaller than B* due to the finite 

temperature and the presence of fluctuations [40], but in the present analysis we consider that the 
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orientation of m corresponds to the first minimum of FM until B=B*. This corresponds to an 

experiment at zero temperature with a gradual magnetic field increase starting from zero. 

 The equilibrium orientation of magnetization determines the response of effB  on the 

strain pulse. As one sees from Eq. (7), at zero shear strain when 00 =ϕ  the rate 0=θf  and the 

tilt of effB  is determined by the value of ϕf . Figure 5(a) shows the field dependence of the 

absolute value |fϕ(Β)| for εzz= 3101 −× , 
3102 −×  and 3103 −× . Since εε 24 AA <<  the following 

approximation can be made: 02 cos2|)(| θγ εϕ ABf ≈ , which follows from the field dependence of 

)(Bmz . Therefore |fϕ(Β)| almost linearly increases with B until the jump at B=B*, as clearly seen 

from the comparison of Figs. 4(b) and 5(a). The switching field B* is an increasing function of εzz 

and equals to 117 mT, 180 mT and 243 mT (shown by the vertical dashed lines) for εzz= 3101 −× , 

3102 −×  and 3103 −× , respectively. Thus, the stronger the magnetization is turned away from the 

in-plane easy axis by the external magnetic field, the larger is |fϕ| and the stronger is the response 

of effB  on the perturbation induced by the strain pulse zzδε . 

 While fϕ determines the tilt of Beff, the subsequent time evolution of m depends 

significantly on the precession frequency. Fig. 5(b) shows the field dependence of ω0(B) for 

several values of static strain components zzε . The value of ω0 decreases with increasing B until 

it becomes zero at B=B*. The stronger the static epitaxial strain zzε  is, the larger is ω0. 

 The precession rate fϕ   and the precession frequency  ω0 at a certain external magnetic 

field are the parameters of the FMS layer, which do not depend on the shape of the strain pulse. 

However the spatial-temporal evolution of the magnetization is induced by ),( tzzzδε . We 

calculate the magnetization evolution at three coordinates in the FMS layer: z=0, 100 nm and 

190 nm. Fig. 3(b) shows the corresponding numerical solution for the component 

δmz(t)= δθ(t)sinθ0. We see that the precession starts upon arrival of the strain pulse at the 



 

 

15

corresponding coordinate in the FMS layer. While the strain pulse propagates forwards and 

backwards the precession trajectory is complicated. When the reflected strain pulse completely 

has left the layer (t=110 ps shown by the vertical line) the magnetization continues to precess 

without decay as long as damping does not occur. 

 In the considered case of zero shear strain the simple analytical solutions of Eq.(6) for the 

after-pulse, free magnetization precession can be written as harmonic oscillations with frequency 

0ω  which are shifted in phase by 2/π  relative to each other:  

( )

( ).sin
2

sin2),(

,cos
2

sin2),(

0
0

0
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d
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tttSfatz

tttSftz
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⎜
⎝
⎛ Δ−=
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⎞

⎜
⎝
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=

⊥ ωωδθ
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,     (13) 

where Δt=2(d-z)/vl is the travel time of the strain pulse from the coordinate z toward the surface, 

and back; ld vdt /=  is the travel time of the strain pulse through the magnetic layer and 

   )2/exp(2 22
0

2
0

max τωπτωεω −= eS zz      (14) 

is the absolute value of the spectral density of the incident strain pulse at frequency 0ω . For the 

chosen parameters of the strain pulse Sω is an increasing function of frequency in the considered 

range around 0ω . The parameter 0
3

4
0

sin))((4 θεε
ω
γ

ε xxzzc ABa −−−=⊥  depends on magnetic 

field and has values between 0.5 and 1, increasing with increasing magnetic field. The presence 

of this parameter shows that the precession trajectory of m is elliptical with one main axis 

parallel to the layer plane. 

To summarize this part of analysis, the amplitude of precession is determined by three 

main factors. The first one is the precession rate ϕf , which describes how sensitive the tilt of 

effective magnetic field Beff to the strain-pulse induced modulation is. The second one is the 



 

 

16

spectral density of the incident strain pulse at the precession frequency 0ω . The third one is the 

oscillating factor sin(ω0Δt/2), which describes the efficiency of interference between incident 

and reflected parts of the strain pulse at a given coordinate z . The maximum amplitude is 

obtained at a coordinate, where tΔ  is equal to half of the precession period. For mTB 40=  and 

3102 −×=zzε  shown in Fig. 3(b), GHz2.62/0 =πω , and maximum amplitude is reached at 

pst 80=Δ  corresponding to z=0. The dependence of the components 0cosθδϕδ =ym , which is 

almost twice larger than zmδ , and 0cosθδθδ =xm , are very similar to zmδ , and therefore, we do 

not plot them separately. 

We also solve the dynamical equations for the averaged values )(tδϕ  and )(tδθ , which 

are as well harmonic oscillations shifted by 2/π  relative to each other: 

( )
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d
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tt
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⊥ ω
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ω
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   (15) 

The precession amplitude of the averaged magnetization is also proportional to ϕf  and ωS , but 

depends on the layer thickness through the oscillating factor ( ) dd τωτω 00
2 /2/sin  with the first 

maximum at GHz102/0 ≈πω . The thick red line in Figs. 3(a) and 3(b) shows the evolution of 

the averaged functions )(tδε  and )(tmzδ . 

 Figure 5(c) shows the field dependence of )(max Bmzδ , the amplitude of the after-pulse 

oscillations )(tmzδ . max
zmδ  was calculated for several values of epitaxial strain =zzε 3101 −× , 

3102 −×  and 3103 −× . These dependences reflect the competition between the sensitivity of Beff to 

the strain pulse that increases with magnetic field and the response of m that decreases with B 

due to the decrease of ω0. As a result )(max Bmzδ  has a pronounced maximum 3max 10−≈zmδ  at an 
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optimal intermediate magnetic field. A stronger static epitaxial strain at a given B  leads to an 

increase of both )(Bfϕ  and )(0 Bω  and, thus, the maximum of )(max Bmzδ  also shifts to higher 

magnetic fields. In general, the field dependence of the precession amplitude, as well as its 

maximum value of 10-3, is in good agreement with the experimental results [5].  

We also numerically analyze the influence of nonzero positive shear strain εxy. At finite 

εxy the precession rate fθ is nonzero even at B=0, but it rapidly decreases and becomes negligible 

with increasing B , see Eq. (7). As a result, for almost the whole range of B the response of Beff 

on the strain-induced perturbation is determined mainly by fϕ and is not affected substantially by 

the presence of shear strain. In Figs. 5(b) and 5(c) we see the decrease of the precession 

frequency and the precession amplitude over the whole range of B in presence of shear strain. 

The calculated field dependencies )(max Bmzδ  for 4102 −×=xyε  are shown in Fig. 5(c) by the 

dash-dotted lines. 

 

B. In-plane magnetic field 

If an external magnetic field is applied along the [100] crystallographic direction and the shear 

strain is zero, m is oriented along the [100] axis for any value of B and strain-pulse-induced 

magnetization precession is impossible. Therefore, the presence of shear strain is a key 

requirement for this geometry. Below we examine the case of nonzero, but small positive xyε , 

for which m is slightly turned in the film plane toward the ]011[  direction. In this case the free 

energy density depends only on ϕ  and we may simplify expression (4) for MF  to: 

[ ] .cos2sin
2
1)4cos3()(

4
1)( 24 ϕϕεϕεεϕ ε BAABF xyxyxxzzcM −++−−=

  

 (16) 
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Figure 6(a) shows the dependence )(ϕMF  for 4102 −×=xyε  for different B. At zero magnetic 

field MF  has the minimum at finite 00 <ϕ . With increasing B the minimum gradually shifts 

toward the [100] axis. Figure 6(b) shows the field dependence of the projection mx=cosϕ0 for 

two values of εxy. In contrast to the case of perpendicular magnetic field, where we observe a 

rapid step-like turn of m toward the field direction at some threshold, here m  continuously is 

rotated with increasing magnetic field.  

 For this geometry the tilt of Beff is determined only by θf , since 0=ϕf . So the strain 

pulse ),( ztzzδε  tilts Beff maintaining, however, its in-plane orientation. Figure 7(a) shows the 

field dependence of |fθ| for two values of =xyε 4101 −× and 4102 −× . The value 

of 04 4sin|| ϕγ εθ Af −=  decreases with increasing B since m is tilted closer to the [100] 

crystallographic direction. The larger xyε  is the stronger is the response of Beff on zzδε , while the 

static epitaxial strain zzε does not influence the value of fθ substantially. One sees that fθ is two 

orders of magnitude smaller than fϕ due to the significant difference in the values of the 

magnetoelastic coefficients A4ε and A2ε. Obviously, the strain pulse ),( ztzzδε  affects the in-plane 

orientation of Beff much weaker. 

 Figure 7(b) shows the field dependencies of the precession frequency )(0 Bω  for several 

values of zzε  and xyε . Contrary to the case of a perpendicular magnetic field, here 0ω  

continuously increases with increasing B. However, the dependence of 0ω  on the static strain 

components is the same: 0ω  is larger for stronger epitaxial strain zzε  and becomes smaller with 

increasing xyε . 

We also give simple analytical expressions for the after-pulse free precession of m:  
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and for the corresponding averaged values 
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where [ ]00204
0

|| cos2sin24cos))((4 ϕϕεϕεε
ω
γ

ε BAABa xyxyxxzzc −+−−−=  has a value between 

0.5 and 1 and increases with external magnetic field. 

 Figure 7(c) demonstrates the field dependence of )(max Bmzδ , which looks similar to the 

preceding geometry. The main differences are: (i) the smaller value of )(max Bmzδ  due to the 

significantly smaller value of θf  and (ii) a different dependence of the precession amplitude on 

the static strain component zzε . For this magnetic field direction the shear strain affects the 

precession rate θf  significantly, which increases with increasing xyε , but changes only slightly 

the precession frequency. As a result max
zmδ is much larger for stronger shear strain. In contrast, 

the static epitaxial strain zzε  does not change the precession rate θf  substantially, but 0ω  is still 

higher for larger zzε . As a result, at low magnetic fields this leads to an increase of max
zmδ  and to 

a shift of the maximum to lower B  with increasing zzε . At high magnetic fields, however, max
zmδ  

is reduced for stronger epitaxial strain zzε . The crossing occurs at a magnetic field [shown by the 

dashed line in Fig. 7(c)] at which GHz122/0 =πω , corresponding to the maximum of the 
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function ( ) ddS τωτωω 00
2 2sin . Thus, at stronger magnetic fields the increase of the precession 

frequency leads to a decrease of the precession amplitude as seen in Fig. 7(c).  

 

5. SUMMARY 

To summarize the developed analysis, we have elaborated three important factors that 

determine the efficiency of the strain pulse-induced magnetization precession. The first one is 

how strong the distraction of the magnetization direction from equilibrium by the dynamical 

strain is for a given orientation and strength of the external magnetic field. The distraction is 

determined by the magneto-crystalline anisotropy of the FMS layer, which depends on a number 

of parameters, including the holes and magnetic spins concentrations, the lattice temperature, the 

growth direction, as well as the presence of a shear static deformation. The MCA characterizes 

the sensitivity of the magnetic system to the strain pulse but does not vary with the specific shape 

of the pulse. 

 The second factor arises from the spectral properties of the strain pulse. The cumulative 

effect of the pulse is the excitation of precession at the frequency of the ferromagnetic resonance. 

Naturally, the amplitude of precession is proportional to the spectral density of the strain pulse 

components at this frequency. For the assumed pulse shape, it is determined by the value of Sω. It 

is worth to mention here that for typical strain pulses the spectrum is quite broad, being extended 

up to a few hundred GHz.  

 Finally, the third factor appears because of the interference of the incident and reflected 

parts of the strain pulse. As a result, the precession amplitude averaged over the layer thickness 

is given by the oscillating function of the ratio of the travel time of the strain pulse through the 

film and the period of the magnetization precession. Thus for a given ferromagnetic resonance 



 

 

21

frequency it is possible to predict at which film thickness the excitation of precession is most 

efficient. 

 The maximal amplitude achieved for perpendicular orientation of the external magnetic 

field is 10-3 and depends on the three factors summarized above. Experimentally strain pulses 

with 10 times larger amplitudes may be injected into the FMS layer. If in addition the pulse 

duration, the layer thickness and the precession frequency are perfectly adjusted to each other, 

the maximal estimated amplitude of precession is 5×10-2. For in-plane orientation of the 

magnetic field the effect of the strain pulse is much weaker due to the much smaller anisotropy 

coefficients. However, in recent experiments on a variety of (Ga,Mn)As layers the precession 

amplitude was just twice less for this experimental geometry compared to the case of a 

perpendicular magnetic field [19]. The difference between the experimental observation and the 

results of our analysis may arise from the uncertainty of the value of A4ε, which is hard to obtain 

by steady-state measurements or to calculate accurately in the frame of a microscopic model. For 

a larger value of the cubic magnetoelastic coefficient A4ε  than assumed here we estimate 

comparable maximal precession amplitudes for the in-plane field geometry and most importantly 

for the case of zero magnetic field.  

 Nevertheless, this value is not enough for strain-induced switching of magnetization 

between the in-plane easy axes. A much stronger effect may be achieved for a shear strain pulse 

due to the much larger value of the in-plane uniaxial magnetoelastic coefficient A2xy. A strain 

pulse δεxy of amplitude 4×10-4 may rotate Beff completely toward the ]011[  direction for the 

chosen FMS layer parameters. In this case the magnetization will precess between the [100] and 

[010] directions and if the strain pulse is properly shaped precessional switching of the 

magnetization in analogy to the experiments with pulsed magnetic fields [2] becomes possible. 

The idea of precessional switching by modulating the MCA of a (Ga,Mn)As layer has been 
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discussed recently [41] and has also been demonstrated [4], although in another material and at 

lower frequencies. The analysis of the strain-pulse induced magnetization precession for a shear 

strain pulse may be done in the same way.  

    To conclude we have carried out a comprehensive analysis of the magnetization 

precession induced by a strain pulse in a thin FMS layer. We have chosen a strain pulse shape 

that is typical for ultrafast acoustic experiments, and modeled numerically the strain-pulse-

induced spatial-temporal evolution of magnetization. Solution of the Landau-Lifshitz equation in 

linear approximation has lead to simple analytical expressions for the amplitude of the strain-

pulse-induced precession both for any point in the FMS layer as well as averaged over the whole 

layer. We have found that strain-pulse-induced precession becomes possible when in equilibrium 

the magnetization is not parallel to the main crystallographic axes and in-plane diagonals. This 

condition is fulfilled in presence of shear strain in-plane anisotropy or in an external magnetic 

field, which turns the magnetization out of the easy axis. We have numerically examined two 

alternative directions of the magnetic field and analyzed the dependence of the precession 

amplitude on the field strength and the static strain components. The value of epitaxial strain 

mainly influences the precession frequency and in that way slightly affects the precession 

amplitude. The shear strain becomes crucially important for in-plane magnetic fields and mainly 

determines the precession amplitude in this geometry.  
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APPENDIX A: ANISOTROPY COEFFICIENTS CALCULATION 

The anisotropy coefficients )2(
4

)1(
42 ,,, εεε AAABc  and xyA2  for a particular structure, which determine 

the response of the MCA to the strain pulse, can be obtained experimentally, e.g., from 

ferromagnetic resonance or magneto-transport measurements, or calculated using a microscopic 

theory. A thorough comparison of experimental and theoretical data may be found in Ref. [32]. 

Theoretical approaches to the ferromagnetism of (Ga,Mn)As are largely based on the Zener 

mechanism originally proposed for metals [42,43] and assume that the ferromagnetic coupling 

between the Mn spins is mediated by free holes [7,8,20]. The free energy density can be 

calculated using the effective mass Hamiltonian which, in addition to the six-band pk ⋅  

Luttinger-Kohn and the strain terms, includes the p-d exchange interaction of the holes and the 

Mn spins in the molecular-field approximation [20]. According to this model the mechanism of 

the strain-pulse induced precession is that the pulse changes the hole spectrum, giving rise to a 

hole redistribution among the energy bands. This, in turn, results in a change of the 

magnetization orientation according to the minimum of the free energy. Using this model we 

calculate the intrinsic anisotropy parameters. The hole spectrum calculations are done in the 

limits of 0=T  and 0=B , in accordance to Refs. [11,20,32]. The parameters of the Hamiltonian 

are chosen like in Ref [20] with the only difference that the shear deformation component is 

taken into account according to Refs. [44,45]. Since the hydrostatic strain )( zzyyxx εεε ==  does 

not affect the magnetic anisotropy in this model the additional relation )2(
4

)1(
4 εε AA = between the 

magnetoelastic constants is fulfilled. 

The p-d exchange interaction is described in Ref. [20] by the parameter which is 

proportional to the number of Mn spins MnN . Since the presence of Mn interstitial defects 

reduces the number of active Mn spins the real number of Mn spins interacting with the holes is 
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smaller than the one introduced by the nominal doping 05.0=Mnx  [7,8]. To account for that, we 

calculate the anisotropy parameters as function of saturation magnetization 00Mμ  for a range of 

Mn ion concentrations 05.003.0 ÷=Mnx  and for a range of hole concentrations 

32010)51( −×÷= cmp . The best agreement with the experiment reported in Ref. [5] has been 

obtained for the following parameters: xMn=0.045; p=4×1020 cm-3 and μ0M0=60 mT. The cubic 

anisotropy field and magnetoelastic coefficients obtained for these parameters are: Bc= −35 mT, 

A2ε=25 T and A2xy=152 T. It is difficult to determine reliably the coefficient ε4A  because of its 

negligibly small value compared to the other coefficients. For this reason it is usually taken as 

zero [11,20,32]. It follows from the experimental data and the dependence of cB  on the lattice-

mismatch strain zzε  that ε4A  is negative and the value of zzA εε4  is an order of magnitude smaller 

than cB  [11,29,40]. Therefore we take A4ε= −0.5 T for the calculations.  
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FIGURE CAPTIONS 

 

Figure 1. (a) Schematic of experiments with picosecond acoustic pulses in ferromagnetic 

epitaxial layers. (b) Temporal profile of the strain pulse injected into the GaAs substrate from the 

metal film.  

Figure 2. (a) Equilibrium orientation of the effective field Beff and the magnetization M in 

perpendicular external magnetic field B, and coordinate system orientations used in the article.  

(b) Magnetization precession after the strain pulse has left the FMS layer. 

Figure 3. (a) Temporal evolution of the strain pulse ),( ztzzδε  at three positions in the FMS layer 

(black lines) and the relative modulation of the layer thickness )(tδε  (thick red line). 

(b) Strain-pulse-induced temporal evolutions of the magnetization projection ),( ztmzδ  at three 

positions in the FMS layer (thin black lines) and the value averaged across the layer )(tmzδ  

(thick red lines). The evolutions are calculated at B=40 mT applied perpendicular to the layer 

plane under static strain zzε =2×10-3 and xyε =2×10-4. Time 0=t  corresponds to the moment 

when the center of the incident strain pulse crosses the GaAs /(Ga,Mn)As interface. The vertical 

dot-dashed line shows the time moment at which the strain pulse leaves the FMS layer.  

 

Figure 4. (a) Normalized free energy density )()( xMMM mFFF −=Δ m  as function of angle θ  

for different values of the external magnetic field B applied perpendicular to the layer. (b) Field 

dependence of the magnetization projection 0cosθ=zm  onto the direction of magnetic field for 

three values of the static epitaxial strain. The vertical dashed lines show the values of B* when m 

rapidly turns toward the external field direction (see text). The calculations are done for 0=xyε . 

 

Figure 5. Magnetic field dependencies of the absolute value of the effective precession rate || ϕf  

(a), the precession frequency πω 2/0  (b), and the averaged precession amplitude max
zmδ (c) for B 

perpendicular to the layer plane, calculated for different values of the static strain components 

zzε  and xyε . 
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Figure 6. (a) Normalized free energy density )()( xMMM mFFF −=Δ m  as function of the 

equilibrium angle ϕ  for different values of B applied along the [100] direction in presence of 

shear strain. (b) Field dependence of the magnetization projection 0cosϕ=xm  onto the direction 

of the magnetic field for two values of shear strain xyε .  

 

Figure 7. Magnetic field dependencies of the absolute value of the effective precession rate || θf  

(a), the precession frequency πω 2/0  (b) and the averaged precession amplitude max
zmδ (c) for  

B ||[100] calculated for different values of the static strain components zzε  and xyε . The dashed 

lines show the frequency (horizontal) and the corresponding value of magnetic field (vertical) 

demarking the field-frequency range in which a higher precession frequency results in a larger 

precession amplitude.  
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Figure 1. T. L. Linnik et al. “Theory of magnetization precession…” 
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Figure 2. T. L. Linnik et al. “Theory of magnetization precession…”. 
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Figure 3. T. L. Linnik et al. “Theory of magnetization precession…”
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Figure 4. T. L. Linnik et al. “Theory of magnetization precession…” 
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Figure 5. T. L. Linnik et al. “Theory of magnetization precession…” 
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Figure 6. T. L. Linnik et al. “Theory of magnetization precession…” 
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Figure 7. T. L. Linnik et al. “Theory of magnetization precession…” 
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