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The temperature-driven fcc to bcc phase transition in calcium is examined by a fully ab initio
based integrated technique including all relevant finite temperature excitation mechanisms. The
approach is based on density-functional-theory calculations with a controlled numerical stability
of below 0.5 meV/atom for the electronic, quasiharmonic, and structural excitations, and better
than 1 meV/atom for the explicitly anharmonic contribution. The latter is achieved by successfully
utilizing the recently developed hierarchical upsampled thermodynamic integration using Langevin
dynamics method. This approach gives direct access to a numerically highly precise volume and
temperature dependent free energy surface and derived properties. It enables us to assign the remain-
ing deviations from experiment to inherent errors of the presently available exchange-correlation-
functionals. Performing the full analysis with both of the conventional functionals, LDA and GGA,
we demonstrate that – when considered on an absolute scale – thermodynamic properties are dic-
tated by a strikingly similar free energy vs. volume curve. Further we show that, despite an error
in the T=0K energy difference between the two phases (≈ 6 meV in the present case), an excellent
agreement of the temperature dependence of the Gibbs energy difference with experimentally derived
data is possible. This allows, for instance, to unveil unreliable and possibly erroneous experimental
input used in popular thermodynamic databases as we explicitly demonstrate for the isobaric heat
capacity of calcium.

PACS numbers:

I. MOTIVATION

For roughly two decades, ab initio based methods
for pressure-driven phase transitions have been success-
fully applied to various materials. Prominent examples
include calcium,1 iron,2 and even much more complex
materials such as actinides.3 In contrast, an accurate
and complete ab initio description of temperature-driven
transitions is still in its infancy even for simple elemen-
tary metals. Corresponding studies are rare4,5 and a reli-
able extension to complex materials will only be feasible
upon major advances in the field.

The main reason for the difficulty of dealing with
temperature-induced phenomena is twofold: 1) The rel-
evant energy scales differ typically by at least one order
of magnitude. While pressure dictated transitions are
often determined by energy differences of a few dozen
meV/atom, a temperature description generally relies on
(free) energy differences of a few meV/atom. Obtain-
ing such accuracy and stability is a demanding and chal-
lenging ab initio task. 2) While pressure-induced transi-
tions can usually be reasonably resolved by considering
solely the T=0K contribution, the situation completely
changes for temperature-induced transitions. The reason
is that various excitations become available and these will
be eventually the driving force for the transition. An ac-
curate ab initio description of such finite temperature ex-
citations is, however, a challenging task due to the large
phase space which needs to be sampled.

Calcium is in this respect a prototypical example.
Its temperature-pressure phase diagram contains inter-
esting and technologically important phases. Much in-
terest in calcium is due to its remarkable supercon-
ducting properties.6 As a consequence pressure-induced
transitions have been intensively studied with ab initio

methods. Moreover, calcium shows also a temperature-
induced transition from fcc to bcc. This issue has been
addressed using ab initio methods,4 albeit including only
non-interacting phonon excitations (quasiharmonic ap-
proximation) to the free energy. This contribution dom-
inates the free energy at finite temperatures in absolute
terms. However, small energy differences can be cru-
cial for temperature-driven transitions and a detailed bal-
ance of higher order contributions, such as anharmonic-
ity, must be explored.

A major goal of the present study is to shed light on
the role of all relevant finite temperature contributions
to the fcc to bcc phase transition in calcium (Sec. IVB).
The study is performed utilizing a fully self consistent
and integrated ab initio approach (Sec. II) firmly founded
on density-functional-theory7 (DFT). We consider elec-
tronic, quasiharmonic, anharmonic, and vacancy excita-
tions (Secs. III A to III E) with a special focus on extreme
numerical precision. For the standard contributions we
guarantee a convergency of better than 0.5 meV/atom,
while anharmonicity is captured below 1 meV/atom.
This accuracy allows to correlate remaining discrepancies
between our calculation and experiment to DFT errors
related to the unavoidable approximation in the exchange
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correlation (xc) functional. In particular we are able to
reveal a free energy vs. volume curve that is – to a good
approximation – independent of the used xc functional if
considered on an absolute scale (Secs. IVC and IVD).
Besides a detailed investigation of the phase transition,

we provide a comparison with experiment for various de-
rived thermodynamic properties (Secs. IVD and IVE).
For that purpose, we compile a large set of available ex-
perimental data. On the theoretical side, we compute
the full volume and temperature dependent Helmholtz
free energy surface allowing us to extract properties at
constant pressure and thus providing a sound basis for
an unbiased comparison. Based on this approach we are
able to resolve a systematic discrepancy between two sets
of experimental data for the isobaric heat capacity of cal-
cium (Sec. IVE).

II. GENERAL METHODOLOGY

As indicated above the central quantity in this study
is the Helmholtz free energy surface F (V, T ) as a func-
tion of volume V and temperature T . For each of the
considered phases, fcc and bcc, there is one such surface.
The Helmholtz free energy is a theoretically conveniently
accessible thermodynamic potential and provides access
to all experimental thermodynamic properties. Exper-
iments are typically performed at constant pressure P
and we therefore need to perform a Legendre transfor-
mation to the Gibbs energy G(P, T ) = F (V, T ) + PV .
We will focus on the following derived quantities at am-
bient pressure: Gibbs energy difference between bcc and
fcc, volume expansion V (T ), the isothermal bulk modu-
lus BT (T ), and in particular the isobaric heat capacity
CP (T ):

8

V (T ) =
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To allow a convenient comparison with experiment we
convert the volume expansion into a linear expansion
ǫ(T ) and a linear expansion coefficient α(T ) according
to

ǫ(T ) =
L(T )− Lref

Lref
, α(T ) =

1

L(T )

∂L(T )

∂T
, (4)

where L(T ) = [V (T )]1/3 and Lref = [V fcc
0K ]1/3, with V fcc

0K

the equilibrium volume of the fcc phase at T=0K (and
given pressure P ). Note that V (T ) is here assumed to be
given per atom in order to guarantee consistency between
fcc and bcc and that the reference volume corresponds
always to the fcc phase. The latter is in particular true

even when we consider the linear expansion of the high
temperature bcc phase.
The surface F (V, T ) for each phase is completely ob-

tained within DFT methodology. While in principle ex-
act, a practical DFT implementation relies on an approx-
imation of the electron exchange and correlation. The
two most commonly used assumptions are the local den-
sity approximation (LDA) and the generalized gradient
approximation (GGA). Our philosophy is to calculate all
properties using both approximations, an approach found
to be very useful for estimating intrinsic error bars.9

Focussing first on the perfect crystal [vacancies are
added in Eq. (6)], we separate the free energy into the
following terms

F = E0K + F̃ el + F qh + F ah, (5)

with E0K being volume dependent and the other terms
both volume and temperature dependent. In Eq. (5),

E0K is the zero-temperature total electronic energy, F̃ el

the electronic free energy (the tilde reminding us that
E0K is not included), F qh the quasiharmonic free energy,
and F ah the explicitly anharmonic free energy.
The total electronic energy E0K is calculated within

the framework of ”standard” DFT,7 while F̃ el requires
the finite temperature extension of DFT by Mermin.10

The quasiharmonic approximation used to obtain F qh is
a general (not necessarily requiring DFT) and well es-
tablished approach (see, e.g., Ref. [11]) based on non-
interacting but volume dependent phonons. It has been
applied in the context of DFT since the late 1980’s (e.g.,
Ref. [12]). The biggest challenge is related to the compu-
tation of the explicitly anharmonic part F ah, which in-
volves the interaction of phonons with themselves. Due
to demanding computations, DFT based investigations of
anharmonicity have been put forward only recently with
Ref. [13] being one of the pioneering studies.
In the present work, we utilize the recently developed

upsampled thermodynamic integration using Langevin dy-

namics (UP-TILD) method14 to efficiently calculate F ah.
The UP-TILD method is a multi-step approach with a
Langevin dynamics based thermodynamic integration at
its core. It provides a high accuracy in F ah within only a
few 100 molecular dynamics steps at the highest conver-
gence level. The approach relies on the observation that
certain convergence parameters such as k-point sampling
and energy cutoff are mainly needed to converge the ki-
netic electronic energy, while the charge density is well
described already at significantly reduced parameters.
Thus, increasing convergence gives rise to a substantial
volume dependent shift in the energies, but affects the
forces and thus the shape of the potential energy surface
only little. With this knowledge, one can design a hi-
erarchical scheme with varying convergence parameters
optimized for highest efficiency.14

A surface according to Eq. (5) is calculated for a per-
fect fcc and bcc crystal as well as for crystals containing a
single point defect. This allows to fully include the effect
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of thermodynamically excited point defects on thermody-
namic properties within the non-interacting regime. We
specifically consider vacancies since other point defects
such as interstitials are thermodynamically irrelevant due
to high formation energies.15 In particular we compute
the complete temperature dependence of the Gibbs en-
ergy of vacancy formation including all of the above men-
tioned excitation mechanisms (electronic, quasiharmonic,
and anharmonic). Inclusion of the anharmonic term has
been found to be important for an accurate determina-
tion of the entropy of formation.16

The final Gibbs energy surface G(P, T ) as a function
of pressure P and temperature T is obtained from:8

G(P, T ) = F p(VP , T ) + PVP − kBT ceq(P, T ). (6)

Here, the Helmholtz free energy of the perfect crystal
F p is calculated according to Eq. (5) and at a volume
VP which is consistently adjusted to correspond to the
given pressure P . The latter is volume and tempera-
ture dependent and related to the free energy surface
by P = −∂F p/∂VP and we stress that we perform the
derivative on the full free energy surface including all ex-
citations. This gives us not only self-consistent access
to the thermal part of the pressure term arising from
ionic vibrations, but also to the contribution of the other
excitations. Further in Eq. (6), kB is the Boltzmann con-
stant and ceq is the equilibrium vacancy concentration
obtained from

ceq(P, T ) = exp[−Gf(P, T )/(kBT )], (7)

with Gf denoting the fully pressure and temperature de-
pendent Gibbs energy of vacancy formation (Sec. III E).

III. METHODOLOGICAL DETAILS

The calculations are performed within the projector
augmented wave (PAW) method17 as implemented in the
vasp software package18,19 in combination with the pro-
vided PAW potentials.20 In particular, we employ a cal-
cium PAW potential treating the 8 highest electrons as
valence electrons (3p64s2) for both LDA and GGA calcu-
lations. Convergence parameters are in general adjusted

to give errors of below 0.5 meV/atom for E0K, F̃
el, and

F qh and below 1 meV/atom for F ah at all temperatures
and volumes. The convergence parameters are explicitly
given in the following subsections.
The accuracy of the PAW potential is carefully eval-

uated for the E0K and F̃ el contributions using two
distinct all-electron approaches: the full-potential (lin-
earized) augmented plane wave (FLAPW) + local orbital
method21 as implemented in wien2k

22 and a full poten-
tial linear muffin-tin orbitals (FPLMTO) method.23 Sec-
tions III A and III B give the details of the all-electron
calculations and Tab. III and Fig. 7c show the results.
As for the xc electron energy and potential function-

als we use the LDA as well as the GGA approximation.

For LDA we apply the scheme of Ceperley-Alder24 as
parametrized by Perdew and Zunger.25 For GGA we use
the Perdew-Burke-Ernzerhof26 (PBE) parametrization.

A. T=0K energy

For our high accuracy purposes, it turns out to be nec-
essary to use a careful procedure for obtaining the T=
0K electronic binding energy E0K [Eq. (5)]. This contri-
bution is practically not directly accessible, since at T=
0K the Fermi distribution corresponds to a step function
resulting in high numerical problems. We find that a sim-
ple extrapolation scheme for E0K based on the ideal en-
tropy can result in an error of several meV/atom if used
in combination with the Fermi broadening. The (first
order) Methfessel-Paxton scheme,27 which introduces ar-
tificial (even negative) occupancies at the expense of an
unphysical electronic free energy, is more suited for the
purpose of giving an accurate extrapolation for E0K. We
ensure, however, that upon a careful (small broadening
with sufficient k-points) extrapolation we arrive at the
same and exact E0K also with the Fermi-Dirac scheme.
To parametrize the T=0K energy-volume dependence

we use the Vinet equation of state28 (volume range
≈ −10% . . . 12% around equilibrium). This equation of
state has been found to describe theoretical and exper-
imental curves of various materials most accurately.29

We work with >1650 k-points in the irreducible Bril-
louin zone and with a plane wave cutoff of 300 eV when
calculating E0K for both functionals and both phases.
These values guarantee an energy convergency of well
below 0.1 meV/atom in the bcc-fcc energy difference in
the full volume range giving an excellent and unbiased
starting point for the free energy calculations.
For the FLAPW calculations we use constant muffin-

tin sphere radii of RMT = 2.8 Bohr radius for both GGA
and LDA. The product of the muffin-tin sphere radius
and the maximum reciprocal space vector, RMTkmax, is
set to 12. The k-point sampling is equivalent to that
in the PAW calculations. The maximum l value for the
waves inside the muffin-tin spheres and the largest recip-

rocal vector ~G in the charge Fourier expansion are set
to lmax = 12 and Gmax = 18 (Bohr radius)−1, respec-
tively. Relativistic effects are fully included within the
muffin-tin spheres and using the scalar relativistic ap-
proximation in the valence region.
The details of the FPLMTO calculations are similar to

the ones for the FLAPWmethod. Instead of using a fixed
muffin-tin sphere radius, RMT, the latter is scaled with
the atomic sphere radius, RAS, so that RMT/RAS = 0.86.
The results are, however, insensitive to the scaling factor.
The basis functions include 3s and 3p semi-core states
in addition to the spdf valence states. Each function
has three energy tails for a total of 18 basis functions
in this triple-basis set up. The calculations are carefully
checked for convergence with respect to k-points and the
expansion of the basis functions (in the interstitial) in



4

Fourier series. The effect of spin-orbit coupling is found
to be negligible.

B. Electronic excitations

The exact approach to obtain the T dependent part of

the electronic free energy F̃ el reads

F̃ el(V, T ) = F el(V, T )− E0K(V ), (8)

where F el is the total electronic free energy including
the T=0K binding energy E0K. Within finite temper-
ature DFT, F el(T ) is the fundamental quantity derived
directly from a corresponding calculation with T deter-
mining the Fermi broadening, while E0K needs to be sep-
arately obtained by careful extrapolation as discussed in
the preceding section.
We evaluate the performance of the following common

approximation to Eq. (8)

F̃ el(T ) ≈ −
1

2
TSel(T ), (9)

where Sel is the (ideal) electronic entropy obtained from
Fermi occupation numbers f(ǫ) and the electronic density
of states N el(ǫ) by (spin unpolarized):30

Sel(T ) = −2kB

∫
dǫ N el(ǫ) [f ln f + (1− f) ln(1− f)].

(10)
Both N el and f are explicitly temperature dependent

N el = N el(ǫ, T ) and f = f(ǫ, T ) =
1

exp[ ǫ
kBT ] + 1

,

(11)
with the temperature dependence of N el being fully cap-
tured by a self consistent finite temperature DFT calcu-
lation. Note that Eq. (9) is directly related to the simple
extrapolation scheme for E0K referred to in the previous
section, since from Eqs. (8) and (9) we directly obtain

E0K = F el − F̃ el.
Approximation Eq. (9) turns out to be insufficient for

our high accuracy purposes, since it can introduce an
error of a few meV/atom at higher temperatures. An ex-
ample for the performance of this approximation is given

in Fig. 7d. To achieve full accuracy in F̃ el we therefore
base all our calculations on the exact formula Eq. (8).

Despite the fact that a calculation of the F̃ el(V, T ) sur-
face is nowadays a computationally straightforward task,
the determination of derivative quantities such as heat
capacities or expansion coefficients requires a well de-

fined parametrization of F̃ el(V, T ). The reason is that a
numerical differentiation – even on a dense grid – would
result in significant noise in these quantities, since they
are sensitive to extremely small free energy differences.

The parametrization of the volume dependence of F̃ el

is typically simple, since the T=0K binding energy E0K

(which carries a stronger dependence) has been separated

out. A polynomial ansatz is therefore well motivated and
indeed we find a 2nd order polynomial sufficient to fit

F̃ el(V ) with an error of ≈ 0.1 meV/atom.
For the temperature dependence a direct polynomial

fit, i.e., F̃ el(T ) =
∑

i ciT
i, turns out to be reasonable. We

are, however, able to devise a more physical and accurate
fit, particularly for the low temperature regime. For that
purpose, we utilize Eqs. (9) and (10) as given but with
the electronic density of states N el as the fitting quantity.
In particular, at each considered volume we take N el to
be energy independent while expanding its temperature
dependence into a polynomial

N el(V, T ) =
∑

i

ci(V )T i, (12)

where the ci are used as fitting parameters. With i =
0 . . . 3 we are able to achieve fits with an error well below
0.1 meV/atom at all temperatures and volumes. Note
that with this fitting procedure we are not falling back to
the accuracy of approximation Eq. (9). We are just utiliz-
ing its physical temperature dependence, while – due to
the fitting procedure – being consistent with information
stored in the exact formula Eq. (8).
The input to the fit is a mesh of at least 10 equidis-

tantly spaced volumes and 10 temperatures of explicitly

calculated F̃ el points in the relevant range for each sur-
face. The relevant range is determined by zero Kelvin,
the experimental melting temperature31 of 1115 K, and
the respective equilibrium volumes at these tempera-
tures. Further, we use >1650 k-points in the irreducible
Brillouin zone and a cutoff of 150 eV leading to an error
well below 0.1 meV/atom.

The FLAPW calculations for F̃ el are performed with
wien2k

22 and are based on the same parameters as given
in the preceding section.

C. Quasiharmonic vibrations

1. Effect of electronic temperature

The (quantum mechanical) quasiharmonic free energy
F qh follows from volume dependent, but non-interacting
phonon frequencies ωq = ωq(V ) by means of the standard
expression11

F qh(T ) =
1

m3

3m3∑

q

{
~ωq

2
+ kBT ln

[
1− exp

(
−

~ωq

kBT

)]}
,

(13)
with the reduced Planck constant ~. The ωq are lying
on a dense and converged mesh in Fourier space with
m3 points (here: m=16) and with the index q run-
ning over these points and additionally over the three
branches (unary crystal). In fact, the non-interacting ωq

are not only volume dependent but also explicitly depen-
dent on the electronic temperature/broadening. This is
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a result of the so called free energy Born-Oppenheimer
approximation,32 which is a thermodynamic extension of
the standard Born-Oppenheimer approximation.33

The main result of the free energy Born-Oppenheimer
approximation is that the ionic movement is determined
by the temperature dependent electronic free energy sur-
face F el({RI}, T ), where {RI} denotes the set of atomic
coordinates (see, e.g., Ref. [16] for details). An immedi-
ate consequence is that the dynamical matrix D, which
yields upon Fourier transformation and diagonalization
the frequencies ωq, needs to be obtained from the sec-
ond derivative of F el({RI}, T ), i.e., for a unary crystal
of atomic mass M

Dkl(V, T ) =
1

M

[
∂2F el({RI}, V, T )

∂Rk∂Rl

]

{R0

I
}

, (14)

where k and l run over atoms and spatial directions and
where {R0

I} denotes the set of equilibrium positions. The
dynamical matrix carries therefore an explicit tempera-
ture dependence and this dependence is transfered to the
resulting phonon frequencies

ωq → ωq(V, T
el), (15)

with the superscript making explicit that we refer here
to the electronic Fermi broadening within a finite tem-
perature DFT calculation.
In Ref. [14], the actual influence of T el on phonons and

the resulting quasiharmonic free energy has been inves-
tigated. Ref. [14] shows that it can be safely neglected
in the case of aluminum. In contrast, in Ref. [34] it has
been found that for rhodium, which has a higher density
of states at the Fermi level, F qh can change by a few
meV/atom with varying T el. Since calcium shows also
a non-negligible density of states at the Fermi level (see
Fig. 5c), we carefully investigated the T el influence.
For that purpose, we calculate the dynamical matrix

in Eq. (14) at various electronic temperatures and vol-
umes. We include also the T el=0K calculation by uti-
lizing the Methfessel-Paxton scheme.27 It turns out that
the T el influence is very small in the fcc phase. Even
upon changing the Fermi broadening from 0 to 1160 K
(=̂0.1 eV; close to the melting temperature) the change
in the fcc phonon energies is below 0.3 meV. As a di-
rect consequence, also the effect on the quasiharmonic
free energy is small in fcc (<0.5 meV/atom). For the
bcc phase, we observe the same behavior in all branches
except for the low energetic T1[110] branch, which ex-
periences phonon shifts in the range of 2 meV (Fig. 5a).
Of even greater importance is the fact that the GGA
phonon dispersion shows a dynamical instability in this
branch at T el=0K, which can be lifted upon increasing
T el. Due to the importance of the involved physics, we
postpone the corresponding discussion to Sec. IVA. At
this point, we focus on the numerical consequences for
the quasiharmonic free energy. The latter needs to be
calculated cautiously, since an improper treatment may
lead to divergent terms in Eq. (13).

We use the following procedure to avoid the instability
occurring in the GGA bcc T1[110] branch. First, we fix
the electronic temperature to a value of 1160 K at which
the instability nearly fully disappears. Second, we choose
a frequency mesh that does not resolve the remaining
small instability region (Fig. 5a), but which is fully con-
verged in any other region of the Brillouin zone. We use
this choice in Eq. (13) to calculate F qh thus avoiding di-
verging terms from the instability. This is equivalent to
projecting out the long wave length limit at which the
instability occurs by employing a finite size effect. The
procedure is well justified and entails no inaccuracy for
our purposes due to the following arguments:

1. Note first that T el affects solely the T1[110] branch,
while its effect is negligible on all other frequencies
(Fig. 5a). The T1[110] branch corresponds, how-
ever, to a small part of the full 3D Brillouin zone
and thus enters Eq. (13) only with a small weighting
factor. This is demonstrated in Fig. 1a. Changing
T el from 800 K (close to transition temperature) to
1160 K (close to melting) affects F qh by less than
0.1 meV/atom. In fact, we can go further and cal-
culate F qh at T el=0K by projecting out again the
(now larger) instability region. Fig. 1a shows that
even in this extreme case F qh changes by no more
than 0.5 meV/atom for the largest supercell.

2. For the frequencies on the T1[110] branch which
are captured by the supercells used for the an-
harmonic calculations (exact frequencies) the fixed
T el condition is fully relaxed by utilizing the UP-
TILD method (Sec. III D). This reduces further
the weighting factor and confines the affected re-
gion basically to the long wave length limit.

3. Moreover, we expect the long wave length limit to
be additionally stabilized by phonon-phonon inter-
action. An explicit evaluation of this statement is
practically not feasible. We are, however, able to
device a method (Sec. III F) that allows to esti-
mate the effect due to phonon-phonon interaction
also for this Brillouin zone region. We can clearly
see (gray line in inset of Fig. 5a) that the phonon-
phonon interaction indeed removes the instability
as expected.

2. Computational details

The dynamical matrix D is calculated using the direct
force constant method35 (also referred to as the small dis-
placement method36,37). A displacement of 0.03 Bohr ra-
dius is used throughout to obtain the Hellmann-Feynman
forces. We ensure that this choice leads to linear forces
on all atoms in the supercell. As intensively discussed in
Ref. [9] an important convergence parameter when apply-
ing the force constant method in combination with the
PAW method is the grid for the augmentation charges.
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FIG. 1: (Color online) a) Supercell size convergence and
b) electronic temperature (Fermi broadening) dependence of
the quasiharmonic free energy of the bcc phase for the GGA-
PBE functional at a lattice temperature of 716 K (experimen-
tal transition point31). In a) the supercell size convergence
(in terms of the conventional cubic bcc unit cell) is shown
for three different electronic temperatures and corresponds to
frequencies on a dense Fourier mesh. In b) both curves re-
fer to a 3×3×3 bcc supercell, one is however calculated using
only exact frequencies ωq while the other is based on a dense
ωq mesh.

This is particularly crucial for elements with high elec-
tron density in the augmentation region. The chosen
calcium PAW potential (8 valence electrons) has in this
respect a relatively strong contribution (similar to the
Ag case in Ref. [9]) and we therefore carefully test corre-
sponding dependencies. Augmentation grids of 423×103

(fcc) and 864×103 (bcc) grid points/atom turn out to be
sufficient. With these settings for the augmentation grid
a plane wave cutoff of 240 eV is an accurate choice.

We take special care to satisfy the electronic k-
sampling convergence, which is essential in elucidating
the T el dependence. The values are in the range of
23 × 103 k-points · atom. (This unit is useful when
dealing with different phases or varying supercell sizes;
the given value corresponds, e.g., to a 6×6×6 k-mesh in
a 3×3×3 cubic fcc cell with 108 atoms.) We also ex-
perience that a very high energy convergence criterion
(≈ 10−5 meV/supercell) is needed in the electronic loop
to get the required accuracy in the Hellmann-Feynman
forces. This value is constant for different supercell sizes,
since forces are derivatives requiring the same absolute
energy convergence. To achieve this high convergence
criterion the block-Davidson iteration scheme38 for elec-
tronic minimization is most useful.

As for the supercell size, we consider for each phase 3
different cell sizes with up to 256 atoms (Tab. I). For the
phonon dispersion, we find that with two exceptions both
phases show a very fast convergence indicating predom-
inant short range interactions. The first, minor excep-
tion concerns the fcc T1[110] branch (cf. Fig. 4) where
a known39 Kohn anomaly causes small deviations from
a linear behavior. Corresponding phonon energy differ-
ences are, however, very small (<0.5 meV/atom) and

TABLE I: Supercell size convergence of the quasiharmonic
free energy F qh per atom at the experimental fcc-bcc phase-
transition temperature31 of 716 K for the GGA-PBE xc func-
tional. A dense Fourier interpolated frequency mesh is used
to calculate F qh. The supercell sizes are given in terms of the
cubic fcc and bcc conventional unit cells with 4 and 2 atoms,
respectively.

fcc bcc

supercell atoms F qh(meV) supercell atoms F qh(meV)

2×2×2 32 -297.9 3×3×3 54 -313.4

3×3×3 108 -298.7 4×4×4 128 -313.6

4×4×4 256 -298.6 5×5×5 250 -313.6

thus barely visible. More importantly they do not affect
the resulting quasiharmonic free energy (Tab. I) and thus
do not need to be resolved in full detail for our purpose.

The other, much more pronounced exception occurs
along the already discussed bcc T1[110] branch as a con-
sequence of the instability (Fig. 5a). The corresponding
dispersion relation is complex in terms of a Fourier ex-
pansion. A significant number of Fourier components
needs to be included clearly indicating long ranged inter-
actions in real space. Even after stabilization the branch
shows deviations from a sinusoidal behavior requiring
rather large supercells to capture the exact wave vec-
tor dependence. In order to handle this challenging task,
we apply a special treatment in describing the phonon
dispersion along this branch as discussed in Sec. III F.
Despite the rather strong influence of the supercell size

on the phonons in the bcc T1[110] branch, the resulting
quasiharmonic free energy shows again a very small de-
pendence. This issue is illustrated in Tab. I and Fig. 1a.
The reason is exactly the same as for the negligible T el

dependence discussed above. The weighting factor of the
affected region is too small to yield visible effects in the
free energy. Based on these findings, we conclude that the
exact wave vector dependence of the bcc T1[110] branch
does not need to be resolved for an accurate free energy
description. We can thus safely use Fourier interpolations
based on the 3×3×3 cell for fcc and the 4×4×4 cell for
bcc for our F qh calculations presented in Sec. IV. (The
fcc phonon dispersion in Fig. 4 corresponds, however, to
a 4×4×4 cell to fully resolve the Kohn anomaly.)
Let us also briefly mention our procedure for the

parametrization of the F qh(V, T ) surface. The tempera-
ture dependence is straightforward since it is contained
analytically in Eq. (13). As regards the volume depen-
dence, it has been pointed out in Ref. [14] that various ap-
proximations (e.g., linear Grüneisen method) are not suf-
ficient for a high accuracy description. We therefore in-
vestigated this issue in detail using up to 10 explicitly cal-
culated volume points in the relevant range. We find that
a second order polynomial fit F qh(V, T ) =

∑2

i=0 ci(T )V
i

results in a sufficiently accurate description with an er-
ror of below 0.2 meV/atom. This parametrization is thus
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applied for the calculations in Sec. IV.

D. Anharmonic vibrations

1. Effect of electronic temperature

The basic equation for the (classical) explicitly anhar-
monic free energy F ah within the thermodynamic inte-
gration scheme reads for a unary crystal16

F ah(V, T ) =

∫ 1

0

dλ

〈
F el
R
(V, T el)− F el

0 (V, T el)
M

2

−
∑

k,l

M

2
ukulDkl(V, T

el)

〉

NV T,λ

, (16)

where F el
R

= F el({RI}), F
el
0 = F el({R0

I}), uk = Rk−R0
k,

M=atomic mass, and where T el explicitly indicates the
dependence on the electronic Fermi broadening. Further,
〈 ... 〉NV T,λ is the thermodynamic average of a NV T en-
semble at a fixed coupling coefficient to the quasihar-
monic reference, λ.
The thermodynamic average can be calculated using

molecular dynamics (MD) simulations. In such a case
there are four distinct ways in which temperature en-
ters Eq. (16): First, it directly controls the thermostat
during the MD run (MD temperature: Tmd). Second, the
electronic temperature/broadening affects the Hellmann-
Feynman forces which are used to generate the phase
space trajectory (dynamic influence: T el

dyn). We can
also describe this as the effect of the electrons on the
nuclei thermodynamics (el→ nucl anharmonic coupling).
Third, the electronic free energy change, (F el

R
− F el

0 ), at
a certain fixed point {RI} in ionic configuration space
depends directly on T el (static influence: T el

stat). This
can be viewed as the reversed effect where the ions affect
the electron thermodynamics (nucl→ el anharmonic cou-
pling). Fourth, T el influences the reference potential via
the dynamical matrix D (reference temperature: T el

ref).
In principle, to guarantee thermodynamic equilibrium

at a given temperature T we must ensure that

T = Tmd = T el
dyn = T el

stat, (17)

whereas an arbitrary temperature can be chosen for T el
ref .

The latter is a consequence of the unrestricted choice
of the reference potential within a thermodynamic inte-
gration scheme. However, our results for both calcium
phases indicate that in practice Eq. (17) does not need
to be satisfied and that

T = Tmd 6= T el
dyn 6= T el

stat (18)

yields accurate anharmonic free energies even if T el
dyn and

T el
stat vary independently by more than 1000 K. Further,

we find that the theoretical invariance with respect to
the reference matrix is broken in practice for the bcc

phase. In fact, we need to set T el
ref = T el

dyn for efficiency

and T el
ref = T el

stat for accuracy in order to avoid errors of
several meV/atom in the final free energy.
To elucidate the effect of Eq. (18) we perform calcu-

lations at T =Tmd=800 K and at independently varying
T el
dyn and T el

stat. In particular, we use electronic temper-
atures of 0 K, 800 K, and 1160 K and we properly treat
T el
ref to avoid the corresponding error at this stage. For

the dynamic case, i.e., for varying T el
dyn, we find for both

phases that within the statistical error of<0.5 meV/atom
the ionic trajectories are insensitive to changes in the
electronic temperature. For the static case, i.e., varying
T el
stat, we can efficiently reach a higher numerical precision

by employing the UP-TILD method (following section).
We find differences of less than 0.2 meV/atom for fcc
and bcc when changing T el

stat from 0 K to 1160 K. We
can therefore conclude that in calcium there is negligible
anharmonic coupling in both directions: el→ nucl and
nucl→ el.
We now turn to the T el

ref dependence. The above men-
tioned broken invariance and related errors occur only in
the bcc phase. They are related to the peculiarities in the
T1[110] phonon branch, but they are not a direct conse-
quence of the instability. We focus on a specific example
to enable a convenient discussion.
Consider the curves represented by open circles (blue,

orange, and gray) in Fig. 2. They show the anharmonic
free energy for a 54 atomic bcc supercell calculated once
with T el

ref = 0 K (gray) and once with T el
ref = 1160 K

(blue/orange), but keeping T el
dyn and T el

stat in both runs
at a fixed temperature of 1160 K. We note differences
of up to 3 meV/atom in the absolute value and a strik-
ingly different volume dependence particularly for LDA.
Explicit tests show that both of these effects are almost
completely due to the electronic temperature dependence
of the single exact frequency on the T1[110] branch (and
its symmetric counterparts) captured in the 54 atomic
bcc cell (red upper tick labeled ”3” in the inset of Fig. 5).
This frequency has a relatively strong weighting factor if
the free energy is obtained from a coarse grid of exact fre-
quencies. In practicable anharmonic calculations we are,
indeed, forced to calculate the free energy on a coarse grid
of exact frequencies, since only those frequencies can be
described which are contained in the specific supercells.
Next, we need to combine the results for the anhar-

monic free energy with a corresponding F qh calculation
in order to obtain the total vibronic free energy. For
F qh, we can and we should use a dense Fourier inter-
polated mesh in order to guarantee a good sampling of
the low energy branches. The different sampling for F qh

(mesh frequencies) and F ah (exact frequencies) can, how-
ever, result in an error in the final vibronic free energy
(F qh + F ah) if we choose for the bcc phase an inconsis-
tent electronic temperature for the reference potential,
i.e., T el

ref 6= T el
stat. In the present case we find an error of

≈ 3 meV/atom caused by different T el dependencies of
the free energy from mesh frequencies and the one from
exact frequencies (Fig. 1b). The different T el dependence
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FIG. 2: (Color online) Volume dependence of the anhar-
monic Helmholtz free energy for both investigated xc func-
tionals (LDA and GGA-PBE) and phases (fcc and bcc). The
temperatures are (see main text for details): Tmd=800 K,
T el
dyn =T el

stat =1160 K, and T el
ref =1160 K (for blue and or-

ange curves) and T el
ref =0 K (gray curves). Open circles corre-

spond to a 3×3×3 bcc supercell (54 atoms), closed circles to a
4×4×4 bcc supercell (128 atoms), open triangles to a 2×2×2
fcc supercell (32 atoms), and closed triangles to a 3×3×3 fcc
supercell (108 atoms). Statistical errors are of a similar size as
the symbols indicating calculated values (not shown). Lines
in between symbols are a guide to the eye. The arrows at
the top indicate equilibrium volumes at T=0K and the melt-
ing temperature, respectively, for both xc functionals and the
experimental T=0K equilibrium volume.

can be understood by considering the effective contribu-
tion of the T1 branch. As mentioned above the weighting
factor for this region is relatively strong for the coarse ex-
act frequency grid. In contrast, it is significantly smaller
for a dense mesh due to the occurrence of low energy
branches in other regions of the Brillouin zone showing a
different T el dependence.
We stress that the above effect is not a direct conse-

quence of the instability. In the discussed example we are
using the procedure described in Sec. III C 1 to project
out the instability region. Therefore the exact as well
as mesh frequencies used to calculate the free energy do
not contain any imaginary modes. The reason for the
strong influence of T el

ref is rather the peculiar dependence
of the stable region of the T1[110] branch on electronic
temperature (Fig. 5a).

2. UP-TILD method

A direct high-accuracy calculation of F ah using
Eq. (16) is computationally demanding. We employ
instead the UP-TILD14 method which generates in a
first step a low converged (e.g., cutoff or k-points, not
statistics) and therefore efficient thermodynamic aver-

TABLE II: Optimized UP-TILD parameters for calcium and
the corresponding speed ups and UP-shifts 〈∆F el〉UP per
atom as compared to a ”usual” thermodynamic integration
run. Cutoff refers to the employed plane wave cutoff energy
and the k-density is given in k-points · atoms.

fcc calcium bcc calcium

2×2×2 sc 3×3×3 sc 3×3×3 sc 4×4×4 sc

32 atoms 108 atoms 54 atoms 128 atoms

low high low high low high low high

cutoff (eV) 130 170 130 170 130 170 130 170

k-points 23 43 23 33 23 43 Γ 33

k-density 256 2048 864 2916 432 3456 128 3456

speed up ×15 ×10 ×25 ×40

〈∆F el〉UP 1meV 1meV 1meV 4meV

age 〈 ... 〉lowNV T,λ by employing Langevin dynamics. In a
second step, the high converged thermodynamic average

〈 ... 〉highNV T,λ is obtained by the following upsampling pro-
cedure

〈 ... 〉highNV T,λ = 〈 ... 〉lowNV T,λ − 〈∆F el〉UP, (19)

where

〈∆F el〉UP=
1

N

N∑

R

(
F el,low
R

−F el,low
0

)
−
(
F el,high
R

−F el,high
0

)
.

(20)
The sum runs over N uncorrelated structures (typically
N<100) which are extracted from the low converged run;
separately for each volume, temperature, and coupling

coefficient. For each such structure, F el,low
R

(F el,high
R

) de-
notes the corresponding electronic free energy calculated

with low (high) convergence parameters. Further, F el,low
0

and F el,high
0 refer to the electronic free energies of the re-

spective equilibrium structures.
Our optimized values for the UP-TILD method in cal-

cium are given in Tab. II. For both smaller supercells
(2×2×2 for fcc and 3×3×3 for bcc), very efficient low
convergence parameters – 20 sec and 80 sec respectively
for a single MD step on a AMD Opteron 2.4 GHz with 24
cores – give already an extremely accurate value for F ah.
The remaining UP-shift is only 〈∆F el〉UP=1 meV/atom
and the corresponding convergence of the sum in Eq. (20)
is very quick with N=10 ... 20. For the 3×3×3 fcc super-
cell, we evaluate the possibility to use only the Γ point
for the electronic sampling. This, however, turns out
to be insufficient for generating a reasonable configura-
tion space distribution and a 2×2×2 k-mesh has to be
used instead. In contrast, for the larger bcc supercell,
a Γ point calculation is a good starting point for the
UP-TILD method, as we verify explicitly, resulting in a
remarkable speed up of ×40.
As regards the Langevin dynamics, we investigated the

important influence of the friction parameter γ over 4 or-
ders of magnitude. We find that γ ≤0.001 is significantly
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too low to achieve any reasonable statistical convergence.
A value of ≥0.1 is instead too high resulting in imprecise
anharmonic free energies. The best choice turns out to
be close to 0.01, a value which has been successfully em-
ployed also in a recent aluminum study.14 The precise
value for an optimal γ depends additionally on the MD
time step ∆t, since it is mainly the product γ∆t entering
the Langevin equations and determining the dynamics.
We find that γ∆t=0.01·20 fs and 0.02·10 fs result in sim-
ilar accuracy and efficiency. Time steps larger than 20 fs
should not be used since they fail to sample the high fre-
quency vibrations in calcium and thus lead to wrong free
energies.

We sample the MD trajectory at each λ value for up to
50 ps (after equilibration) resulting in general in a sta-
tistical error of below 0.5 meV/atom. We are able to
efficiently reduce the expensive equilibration time on the
actual DFT potential (≈ 1 ps) by employing an inexpen-
sive pre-equilibration on the reference potential (200 ps).
Exact equilibration and simulation times depend, how-
ever, strongly on temperature and volume since increas-
ing both leads to an increase in the phase space which
needs to be sampled. They can also depend on the cou-
pling constant λ with values close to 0 and 1 being par-
ticularly difficult to converge statistically. Our largest
statistical errors are in the range of 1 meV/atom for a
single λ value. Note, however, that this error does not
translate into an equivalent error in the final anharmonic
free energy since the latter is averaged out and thus re-
duced by performing the λ integration.

Concerning the λ integration, we performed detailed
investigations using a mesh of up to 11 explicitly cal-
culated λ points (0, 0.1, ... , 1). For the fcc phase, we
find that the thermodynamic average 〈 ... 〉NV T,λ obeys a
nearly linear dependence (cf. circles in Fig. 3a) as sim-
ilarly found for instance in fcc aluminum.14 In fact, our
results indicate that we might replace the full λ integra-
tion by considering a single value at λ=0.5, while loosing
only 1 ... 2 meV/atom in precision. To keep our desired
accuracy goal we, however, refrain from a linear approx-
imation and capture instead the full dependence on a
dense λ mesh of 6 equidistantly distributed points.

The situation turns out to be more involved for the
bcc phase. We find the linear approximation to cause
deviations of up to 20 meV/atom. In particular, the λ
region close to zero shows a strongly increasing depen-
dence as illustrated by the example in Fig. 3a (squares).
The strength of the increase at λ=0 depends not only on
volume and temperature but also on the quasiharmonic
reference matrix. Using an inconsistent electronic tem-
perature for the reference matrix (e.g., T el

ref =0 K but
T el
dyn = T el

stat=1160 K) results in a significantly stronger
increase than for a consistent one. In agreement with
the discussion in Sec. III D 1 this indicates that a consis-
tent electronic temperature is physically more sound and
technically more efficient. However, even for the consis-
tent case we find a strongly non-linear behavior of the
thermodynamic average in bcc making an accurate and
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FIG. 3: (Color online) Illustration of the performance of the
fit based on Eq. (21). In a) the λ-dependence of the thermody-
namic average 〈 ... 〉NV T,λ is shown for a fcc and bcc structure
both at an MD temperature of 1000 K. Gray lines indicate a
fit based on Eq. (21) and the red line is a 3rd order (cubic)
polynomial fit. In b) the root-mean-square error (RMSE)
of the explicitly calculated points from the respective fit is
shown for the bcc structure at various MD temperatures. At
a single temperature different points correspond to different
lattice constants.

efficient λ integration challenging.
A natural possibility to deal with this issue seems to

be an extension of the linear fit by including higher or-
der polynomials. However, we find this ansatz to show
only slow convergence with the number of polynomials
included. Based on our large set of calculated data, we
are able to derive a much more efficient way. Our ansatz
assumes the following fit

〈 ... 〉NV T,λ = a0 cot[π(a1λ+ a2)] + a3 (21)

involving four fitting parameters a0 ... a3. Its perfor-
mance should be therefore compared to a polynomial
with the same number of parameters, i.e., a cubic poly-
nomial. A specific example clearly showing how well
the λ dependence of the thermodynamic average is de-
scribed by Eq. (21) is given in Fig. 3a. In contrast,
the cubic fit introduces oscillations which are too strong
causing maximum deviations from the true points of
up to 10 meV/atom. The behavior found in this ex-
ample turns out to be a general feature in the Ca bcc
phase as demonstrated by the root-mean-square devia-
tions displayed in Fig. 3b. Moreover, we can safely ex-
tend the cotangent fit to describe also the smooth λ de-
pendence of the Ca fcc phase, since it is similarly well
described (Fig. 3a). In summary, we use the cotangent
fit Eq. (21) and a converged λ mesh of six equidistant
points (0, 0.2, 0.4, 0.6, 0.8, 1) for each considered volume
and temperature on both the fcc and bcc anharmonic
free energy surface.
We next describe our procedure for parametrizing F ah

as a function of volume and temperature. A detailed dis-
cussion of the corresponding difficulties has been given
in Ref. [14]. A solution has been proposed which uti-
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lizes a modified version of Eq. (13) as the fitting func-
tion and a renormalized average frequency as the fitting
parameter.14 We find this approach also well suited for
describing F ah in the present case (both fcc and bcc). We
need, however, to extend it slightly in order to accurately
take the supercell size convergence into account, which is
computationally prohibitive by direct calculation.

Our procedure is as follows: In a first step, we calcu-
late a dense (V, T )-mesh of ≈ 20 F ah points in the rele-
vant range for the two smaller supercells (2×2×2 for fcc
and 3×3×3 for bcc). We then employ the fit proposed in
Ref. [14] using in particular a renormalized anharmonic
frequency expanded as ωah = a0 + a1T + a2V , where a0,
a1, and a2 are fitting coefficients. The root-mean-square
error of this fit from the explicitly calculated values is
well below the statistical uncertainty. Next, we calculate
a much coarser grid of 3 to 4 volumes at a fixed temper-
ature (close to the transition temperature; see Fig. 2) for
the larger supercells (3×3×3 for fcc and 4×4×4 for bcc).
We find the difference between the free energies of the
larger and the smaller supercells to be ≈ 1 meV/atom for
fcc and ≈ 2 meV/atom for bcc and nearly volume inde-
pendent. We parametrize this difference using ωah = a0.
Despite the fact that ωah is volume and temperature in-
dependent, the resulting anharmonic free energy contains
both dependencies through the specific form of the fitting
function.14 In a last step, the fitted difference is added
on top of the parametrization for the smaller supercells
and the resulting sum constitutes our final anharmonic
free energy surface.

We conclude with a comment on the expected over-
all precision in F ah. From a statistical viewpoint, we
can confidently claim to be converged to well below
1 meV/atom. The reason is the fact that each surface is
assembled from a large multitude of statistically indepen-

dent runs with each run being well converged by itself.
Moreover, we have accurate parametrizations available
which tend to average out the individual statistical er-
rors. Further, we know that we are well converged in
terms of plane wave cutoff and k-points by employing
the UP-TILD method. The most difficult estimation is
related to the remaining error due to the supercell size.
For the investigated supercell sizes we see differences of
up to 2 meV/atom. In general, we expect anharmonic in-
teractions to be short ranged in real space. In the present
case, this is additionally supported by the dominating
short ranged character of the quasiharmonic interactions
(see discussion in Sec. III C). We thus estimate that a fur-
ther increase in supercell size will result in changes signif-
icantly lower than found for the investigated supercells.
Additionally, we find a similar supercell size convergence
for both phases (Fig. 2) and expect this to reduce further
the error in the free energy difference between bcc and
fcc which is our main target. In total, we conjecture our
error in F ah to be below 1 meV/atom.

E. Vacancies

The Gibbs energy of vacancy formation is obtained as

Gf(P, T ) = F v(ΩP , T ;N
v)−NvF p(VP , T ) + Pvf , (22)

where F v is the free energy of a vacancy supercell with
Nv atoms and at supercell volume ΩP which is adjusted
such as to guarantee the same P as in the perfect bulk.
Further, F p is the free energy per atom of the perfect
bulk calculated at atomic volume VP corresponding to
pressure P and vf = ΩP − NvVP the volume of va-
cancy formation. Similar to what is found for instance
in Ref. [40], our calculations also show the importance
of the Pvf term in Eq. (22) which – even for moderate
pressures – can modify Gf by a few tenths of meV. In
particular, for ambient pressure conditions of 0.1 GPa
we find an increase of Gf by ≈ 20 meV/atom. However,
the effect on the total Gibbs energy G(P, T ) in Eq. (6)
is strongly suppressed due to the exponential function in
Eq. (7) and at most notable in derivatives such as the
heat capacity.
We calculate for F v the full set of excitations as pro-

vided in Eq. (5). We focus specifically on the 2×2×2
supercell for fcc and the 3×3×3 supercell for bcc. In
the first place, all internal degrees of freedom are fully
relaxed for each cell and at each volume. Starting from
the relaxed geometries, the calculation of the various free
energy contributions for the vacancy supercell proceeds
as described in the previous sections for the perfect bulk.
In particular we use the same convergence parameters.
Special care must be, however, taken in the case of the
quasiharmonic contribution, in order to guarantee a con-
sistent treatment between the vacancy and perfect bulk.
We accomplish this by employing the correction scheme
given in Ref. [14].
In our MD simulations for the anharmonic contribu-

tion to the vacancy supercell, we experience an increased
mobility of the vacancy, i.e., a hopping from its original
site to neighboring sites, when looking at high temper-
atures and λ values close to 1. Further, we find that
the mobility is stronger in the bcc than in the fcc phase
which is intuitive due to the more open structure. In
order to guarantee a correct calculation of F ah, all con-
figurations at which the vacancy has left its original place
need to be carefully extracted and removed from the ther-
modynamic average. The reason is that our reference dy-
namical matrix has a fixed and unmovable position for
the vacancy. In order to determine vacancy motion, we
carefully monitor the next nearest neighbors of the va-
cancy during an MD run. If we encounter an atom being
closer to the vacancy equilibrium position than to its own
equilibrium position, we define this configuration as a va-
cancy movement and take the corresponding part of the
MD trajectory out of the average procedure. Our results
indicate that the employed extraction procedure is well
defined, since we find the atoms to be in general vibrating
close to their equilibrium positions – even for high tem-
peratures and λ close to 1 – and the vacancy movement
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to be a singular and clearly identifiable process.
We conclude with comments on the expected overall

precision in the total Gibbs energy due to vacancies, i.e.,
the −ceqkBT term in Eq. (6). Focussing first on the tem-
perature region relevant for the phase transition (716 K)
we find vacancy concentrations which are well below 10−4

for all phases. The corresponding contribution to the to-
tal Gibbs energy is, as a consequence, fully negligible
(< 0.01 meV/atom). In such a case also convergence is-
sues do not play any role and we can safely conclude that
the final Gibbs energy difference between bcc and fcc is
highly accurate with respect to vacancies.
The only relevant contribution due to thermally ex-

cited vacancies reveals itself in the high temperature heat
capacity (Fig. 10b) in the bcc phase. While the absolute
Gibbs energy is still very small (< 0.2 meV/atom) the
exponential decrease results in a small yet visible heat
capacity contribution. We have not explicitly considered
a larger supercell than the 54 atomic 3×3×3 bcc super-
cell for the vacancy calculations. Based on our previous
experience where we found negligible differences when
increasing from 32 to 108 atoms in fcc aluminum,14 we
expect, however, also negligible influences in the present
case.
In fact, the crucial point to note is that the qualitative

result obtained in Sec. IVE which distinguishes between
the two sets of experimental data cannot be altered by
larger vacancy supercell sizes. To see this note that the
contribution of vacancies to the total Gibbs energy has
always an exponential temperature dependence. This de-
pendence reveals itself in a strongly non-linear behavior
of the heat capacity. The upper experimental set of data
(Fig. 10a) shows however a perfectly linear behavior and
thus vacancies are clearly ruled out as a possibility to
shift the heat capacity curve from the lower experimen-
tal set of data to the upper one.

F. T1[110] bcc instability

The focus of this section is to describe the special treat-
ment utilized in determining the T1[110] branch in the
bcc phonon dispersion (Fig. 5a). Additionally, we want to
lay out our procedure for capturing qualitatively the in-
fluence of phonon-phonon interactions on the instability
in the GGA T1[110] branch and describe the calculations
for the long wave length limit (shear of the bcc cell).
To see in detail the difficulties related to the T1[110]

branch consider the inset in Fig. 5a focussing on the GGA
phonon dispersion at T el=0 K (solid orange line). Note
next the upper red ticks indicating the exact phonon wave
vectors which are contained in supercells practically ac-
cessible in a quasiharmonic calculation. The important
point to note is that none of these exact wave vector
grids is fine enough to resolve the instability, i.e., even
for the 5×5×5 supercell both of the exact wave vectors
lie outside the instability region. As a consequence, also
the resulting Fourier interpolation based on these exact

frequencies cannot resolve the instability correctly.

An extension of the supercell to sizes which provide a
sufficient number of exact wave vectors in the instabil-
ity region is clearly not feasible in full 3D. One possible
solution would be an application of the linear response
method in reciprocal space, which does not require large
supercells.41 In the present case, however, a much more
direct approach is feasible in real space. The important
point to realize is that the [110] direction corresponds in
real space to an elongation of the primitive bcc cell only
along a single direction. For instance, in order to achieve
the dense mesh of 15 exact wave vectors shown at the bot-
tom of the inset of Fig. 5a, we need a supercell of 29×1×1
in terms of the primitive bcc cell containing merely 29
atoms. Note that the remaining exact points are lying
in the other half of the [110] direction, i.e., the direction
from N back to Γ. Besides the extended supercell the
calculation proceeds otherwise as within a ”usual” quasi-
harmonic setting. We stress in particular that, within the
quasiharmonic regime, the described approach does not
entail any additional approximation, since the phonons
are non-interacting and each branch can be therefore de-
scribed separately.

We investigated various supercells up to the above
mentioned one with 29 atoms. We find that the instabil-
ity region at various electronic temperatures is well de-
scribed (deviation < 0.3 meV) by a supercell containing
19 atoms. We use therefore this supercell for the next
task of estimating the qualitative influence of phonon-
phonon interactions on the instability. In particular, we
use for that purpose the following approach.

In a first step, we use an MD simulation in the elon-
gated supercell to generate a configuration space distri-
bution. The exact temperature controlling the MD sim-
ulation is of minor relevance since we only aim at a qual-
itative description. Out of the generated distribution, we
extract a set of uncorrelated snapshots and calculate for
each the corresponding dynamical matrix. Next, we aver-
age over the various obtained dynamical matrices which
(if convergence is achieved) restores the original bcc sym-
metry. In a final step, we calculate the phonon dispersion
for the average dynamical matrix.

The described approach takes into account phonon-
phonon interactions only among phonons along the [110]
direction, while obviously completely neglecting the in-
teractions with any other phonon in the full 3D Bril-
louin zone. Therefore, the obtained results cannot be
used quantitatively, in particular, for calculating an an-
harmonic free energy. We expect, however, that the qual-
itative result that phonon-phonon interactions result in
a stabilization of the instability (see gray line in the inset
of Fig. 5a) does indeed hold.

In order to study the long wave length limit of the in-
stability, we shear the primitive bcc unit cell modifying
a single vector. In particular, if a1, a2, and a3 denote
primitive bcc vectors, the vectors of the sheared cell are
obtained by a

′
1 = a1 + δa2 − δa3, a

′
2 = a2, and a

′
3 = a3,

with δ measuring the strength of the shear (Fig. 5b). This
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shear corresponds exactly to the long wave length limit
of the 〈110〉 polarization of the transversal branch along
the Γ to N direction, which is commonly labeled T1[110].
To study the influence of the electronic temperature on
the energy of the sheared unit cell, we use a plane wave
cutoff of 150 eV and 16,420 k-points in the irreducible
Brillouin zone (convergency better than 0.1 meV/atom).
For the pressure related investigations, we use a PAW
potential including additionally the 3s2 orbitals (10 va-
lence electrons) to avoid an error of a few meV/atom.
The plane wave cutoff for this potential is set to 310 eV.
The electronic density of states calculations (Fig. 5c) are
based on the same settings which guarantees converged
results particularly due to the high k-point sampling. We
also use a convolution with a Gaussian function with a
width of 0.1 eV to smoothen the density of states.

IV. RESULTS

Any free energy study relies on accurate T=0K calcu-
lations. Table III summarizes our respective results for
fcc and bcc calcium and we first discuss the performance
of the employed PAW potentials.
The enthalpy difference ∆Hbcc−fcc is extremely well

described showing deviations of only 0.1 meV/atom with
respect to the most accurate all-electron methods avail-
able, FLAPW and FPLMTO. For the equilibrium lat-
tice constant we find a small underestimation of 0.09%
(0.05%) for LDA (GGA) by the PAW potential. This
is directly related to a small overestimation of the bulk
modulus and its derivative. To check the influence of
these deviations at finite temperatures, we combine the
all-electron T=0K curve with finite temperature excita-
tions from PAW. We find changes of 0.3 meV/atom in the
Gibbs energy at the phase transition temperature. These
changes are the same for fcc and bcc so that the corre-
sponding difference is not affected. We therefore conclude
that the employed PAW potentials are well suited for the
present high accuracy study.
Focussing now on the comparison with experiment for

the fcc phase, we discover two interesting facts: 1) For
LDA, we find the well known9 underestimation of the
experimental lattice constant due to overbinding. GGA
generally overestimates the equilibrium lattice constant.9

For fcc calcium, we have the rare situation that also GGA
underestimates the lattice constant (albeit by 0.5% only).
2) Except for the lattice constant/volume, we face the
untypical circumstance that the scatter in experimental
data is of the same order as the deviation between LDA
and GGA. A comparison at this point stays therefore
inconclusive.

A. Stabilization of the T1[110] bcc instability

Before discussing the instability occurring in bcc, let us
first turn to the phonon dispersion of the low temperature
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FIG. 4: (Color online) Phonon dispersion of fcc Ca at 295 K
along high symmetry directions. The corresponding lattice
constant a for the theoretical calculations (LDA and GGA-
PBE) is shown in the legend. The T1 and T2 branches corre-
spond to the 〈110〉 and 〈001〉 polarization, respectively. The
experimental data including error bars are from Ref. [39].

fcc phase for which experimental data are available and
an evaluation of the performance of the xc functionals
can be done.
The fcc phase shows a phonon dispersion (Fig. 4) typ-

ical for elements with predominantly nearest neighbor
interactions.9 Our theoretical results are in good agree-
ment with experimental values. In particular, the GGA
functional shows a very good performance over almost
the entire Brillouin zone. The LDA functional results
in a qualitatively similar phonon dispersion as the GGA
functional (i.e., showing the same phonon wave vector
dependence). It produces, however, phonons that are
quantitatively roughly 1.07 times higher in energy than
GGA. This observation is consistent with trends found
in a wider range of materials provided that the phonon
dispersion is calculated at the self consistent theoretical
lattice constant.9 It is related to the above mentioned
underestimation of the experimental lattice constant by
the LDA functional which is particularly large for fcc Ca
(Tab. III).
Having established the theoretical accuracy, we turn

now to the phonon dispersion of the high temperature
bcc phase. It is physically more interesting and challeng-
ing than the fcc phase due to the instability region in the
T1[110] branch and its strong coupling to electronic ex-
citations. Our results shown in Fig. 5a reveal in general
the same quantitative trend that LDA produces signif-
icantly harder phonons. Qualitatively, LDA and GGA
show exactly the same phonon wave vector dependence
except for the T1[110] branch. There GGA shows the
already mentioned dynamical instability, whereas LDA
has a fully stable T1[110] branch.
The phonon dispersions marked by solid lines in Fig. 5a

are obtained at an electronic temperature of zero Kelvin.
The dashed and dotted lines show instead the impor-
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TABLE III: Equilibrium T=0K properties of fcc and bcc calcium: ∆H=bcc-fcc enthalpy difference, a=lattice constant,
V=volume, B=bulk modulus, B′=derivative of B with respect to pressure, and H f=formation enthalpy of the vacancy. All
values include zero-point vibrations. For FLAPW and FPLMTO, the latter are taken from the PAW results. Experimen-
tal values for ∆H correspond to T=0K and are obtained from the calphad parametrization of Saunders et al.42 and the
parametrization from the SGTE unary database43 (see also Fig. 6 and corresponding caption). The experimental lattice con-
stant/volume is the T=0K value reported in Ref. [44]. The experimental bulk moduli and derivatives are room temperature
values from Refs. [44–48]. A correction of the bulk moduli to T=0K is performed based on the temperature dependence from
Ref. [44], but turns out to be irrelevant as compared to the scatter between the different measurements.

fcc calcium bcc calcium

LDA GGA-PBE LDA GGA-PBE

paw flapw Exp. paw flapw fplmto paw flapw paw flapw

∆H (meV) 9.2 9.2 9.6 ... 15 16.5 16.6 16.5

a (Å) 5.339 5.344 5.564 5.533 5.535 5.535 4.215 4.219 4.390 4.392

V (Å3) 38.04 38.15 43.07 42.35 42.41 42.40 37.44 37.56 42.30 42.35

B (GPa) 18.5 18.1 15 ... 20 17.2 17.2 17.1 19.1 19.0 15.8 15.6

B′ 2.7 2.4 2.5 ... 3.9 3.3 3.2 3.2 4.0 3.7 2.3 2.1

H f (eV) 1.19 1.16 0.91 0.84
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FIG. 5: (Color online) Analysis of the dynamical instability in the calcium bcc phase. a) Phonon dispersion for LDA and
GGA-PBE at the consistent T=0K equilibrium volume V eq

0K (Tab. III). Solid lines show results for T el=0K and dashed and
dotted lines for two increased electronic temperatures (GGA-PBE only). The inset enlarges the [110] direction with the upper
red ticks indicating exact wave vectors for the bcc supercells used in the quasi/anharmonic calculations (numbers correspond to
the three bcc supercells given in Tab. I) and with the lower red ticks indicating the exact wave vectors employed in the special
treatment of the T1[110] description (Sec. III F). The gray line shows the qualitative result of phonon-phonon interactions
on the instability (Sec. III F) for GGA-PBE at an MD temperature of 250 K. The T1[110] branch corresponds to the 〈110〉
polarization, whereas T2[110] to the 〈001〉 one. b) Effect of electronic temperature T el and applied hydrostatic pressure P
(the other parameter being kept fixed at zero respectively) on the GGA-PBE energy dependence for a shear of the unit cell
δ corresponding to the long wave length limit of the T1[110] branch in a) (see Sec. III F for definition of δ). The applied
pressures of 0.9 GPa, 1.9 GPa, and 2.9 GPa correspond to lattice constants of 4.3 Å, 4.23 Å, and 4.175 Å, respectively. c) Effect
of electronic temperature T el, applied hydrostatic pressure P , and of the shear δ on the electronic density of states close to the
Fermi level EF. The curves for T el and P are shifted up for clarity by 1 and 2 states/eV·atom, respectively.

tant influence of electronic excitations by displaying
the phonon dispersion at Fermi broadenings of 0.05 eV
(=̂580 K) and 0.1 eV (=̂1160 K). We observe that
upon increasing the electronic temperature the insta-
ble phonon branch is lifted up becoming nearly stable
at 0.1 eV. Note two important points: 1) The T1[110]
branch is the only branch being visibly affected by elec-
tronic temperature. The other branches have almost no
dependence. 2) The whole branch containing the insta-
bility is affected even in regions where it is actually stable
(see, e.g., N point).

To gain further insight, we resolve the instability and

its temperature dependence by following the correspond-
ing modes on the energy surface. We perform such cal-
culations for various instable wave vectors and show a
representative example in Fig. 5b corresponding to the
long wave length limit. We observe that the energy de-
pendence describes a double well potential which is char-
acteristic for instabilities. The depth of the minimum
is rather small in the range of 3 meV/atom below the
fully symmetric bcc structure. The displayed energy de-
pendence shows the deepest minimum among all instable
wave vectors.

The stabilizing effect of electronic temperature can be



14

clearly seen also for the energy dependence in Fig. 5b.
We perform further investigations to elucidate the phys-
ical background for this behavior. We find that a very
similar effect of stabilization can be obtained by applying
external hydrostatic pressure on the system, i.e., com-
pressing to smaller volumes. In particular, we find that a
step size of 1 GPa corresponds to a similar energy shift as
one obtained by increasing T el by 0.05 eV (see Fig. 5b).
Incidentally, the correspondence with pressure explains
why LDA shows no instability at T el=0K in contrast
to GGA. The above mentioned strong underestimation
of the equilibrium volume by LDA produces an inter-
nal pressure in the system (quantified in the higher bulk
modulus). This internal pressure has the same effect as
the external pressure applied to the GGA system. (Note
that the total pressure is necessarily zero if the system
is at equilibrium. It is, however, not the total pressure
which is relevant here, but only the pressure contribution
caused by the ionic vibrations, i.e., thermal pressure, and
the latter turns out to be indeed much stronger for LDA
than for GGA as shown explicitly in Fig. 9.)
We are able to further trace back the origin of both

influences and relate them to the electronic density of
states close to the Fermi level (Fig. 5c). We observe that
both, the electronic temperature and pressure, lead to
the same changes in the electronic density of states. In
particular, we note that the qualitative shape of the lat-
ter stays almost unaffected, the dominating effect being
instead a shift of the Fermi level to lower energies. This
leads to a reduction of electrons at the Fermi level and
thus to a stabilization effect.
By pushing the analysis further we can also show that

a similar effect on the electron density of states is caused
by following the energy along an instable mode (low-
est/black curves in Fig. 5c). This time, however, the
changes are stronger affecting also the qualitative shape
of the density of states. At low electronic temperatures
and pressures the instability therefore succeeds over the
other two effects leading to stabilization of the unsym-
metric structure. At higher electronic temperatures and
pressures the situation changes, but the energetically low-
est structure is determined by a much more subtle inter-
play and coupling between the various influences.

B. The fcc to bcc transition including all relevant
excitation mechanisms

Let us focus now on the fcc to bcc transition. There
are two important points distinguishing the present study
from previous ones (e.g., Ref. [4]): We include all free
energy contributions that might be relevant for the tran-
sition, in particular the explicitly anharmonic part of the
vibronic motion. We further guarantee the error to be
below 0.5 meV/atom for the standard contributions and
below 1 meV/atom for the anharmonicity. These two
points are crucial because they allow to correlate remain-
ing disagreement with experiment with an error coming
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FIG. 6: (Color online) a) Gibbs energy difference between
bcc and fcc ∆Gbcc−fcc at ambient pressure (0.1 GPa). The
orange dashed line corresponds to the GGA-PBE result
shifted by −6 meV/atom. The vertical lines indicate the ex-
perimental fcc to bcc transition temperature31 T fcc→bcc

exp =

716K and melting temperature31 Tmelt
exp = 1115K. cal-

phad values are obtained from Saunders et al.42 and from
the SGTE unary database.43 The gray dotted line indi-
cates a linear extrapolation of the SGTE data42 to T=0K,
since the original parametrization diverges at low tempera-
tures. b) Influence of the various Gibbs energy contributions
on the GGA-PBE phase transition: 0K=(T=0K) enthalpy
difference, h=harmonic, q=quasi, i.e., expansion influence,
el=electronic, ah=anharmonic, and vac=vacancies.

solely from the xc functionals.

Our results for the Gibbs energy difference between bcc
and fcc including all excitations are shown in Fig. 6. Both
functionals, LDA and GGA, overestimate the experimen-
tal transition on the energy scale by≈ 6 meV/atom. This
rather small energy difference results, however, in an ex-
tremely large overestimation of ≈ 400 K on the temper-
ature scale. Note that the energy scale does not relate
to the temperature scale in terms of thermal energy, i.e.,
E = kBT (6 meV/kB ≈ 70 K). The reason is that we
are here considering temperature dependent Gibbs en-
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ergy differences between phases.

Despite the 6 meV shift with respect to experiment,
we find that the GGA approximation shows a Gibbs en-
ergy difference which has a very similar slope to that of
the calphad data. This is particularly true for temper-
atures above ≈ 400 K, whereas for lower temperatures,
the slopes differ slightly. One should not, however, corre-
late the disagreement at lower temperatures with a DFT
deficiency. At such low temperatures, particularly be-
low room temperature, the calphad Gibbs energies are
based on extrapolations of experimental data. This is
even true for stable phases, the reason being long equili-
bration times making calorimetric experiments challeng-
ing. Even more, for unstable phases such as bcc, the
Gibbs energies are based on extrapolations from their
stable regime (either temperature or concentration sta-
bilized). These circumstances make the calphad data at
low temperatures questionable especially considering the
small Gibbs energy differences being relevant. In fact,
this statement is directly supported by noting the inher-
ent inconsistency (several meV/atom) between the two
available datasets for calcium (cf. dotted and solid black
lines in Fig. 6.).

An interesting observation follows from a comparison
of the Gibbs energy difference between the two xc func-
tionals. At T=0K, we have a difference of 6 meV/atom
between LDA and GGA, which as discussed above is very
relevant in terms of the temperature scale. Nevertheless,
at higher temperatures the Gibbs energies of both func-
tionals converge and show a transition at almost exactly
the same temperature. The reason for this behavior is
that the vibronic contributions compensate the initial T
=0K difference. It might be tempting to suppose a sys-
tematic physical origin being responsible for the equality
in transition temperature between the functionals due to
this surprising agreement. So far we have, however, no
evidence that this behavior is not pure coincidence.

Fig. 6b shows the individual contributions to the tran-
sition arising from the various excitation mechanisms
(GGA functional). The largest finite temperature ef-
fect is clearly caused by harmonic excitations (light blue
shaded). This contribution is obtained by calculat-
ing non-interacting phonon energies and the resulting
(Helmholtz) free energy at the fixed, for each phase (fcc
and bcc) self-consistently obtained T=0K equilibrium
volume. As temperature increases, the bcc phase is sig-
nificantly stabilized by harmonic excitations over fcc as
can be intuitively explained by the more open geometry
when compared to the close packed fcc structure.

The light green shaded region labeled ”quasi” corre-
sponds to the contribution where the fixed volume re-
striction is lifted and the non-interacting phonons are al-
lowed to vary along the thermal expansion. The thermal
expansion is calculated for each phase self consistently
and at a fixed pressure, i.e., the result is a Gibbs energy.
The pressure corresponds to ambient conditions to allow
a consistent comparison with calphad. We find that
the quasi contribution also favors bcc over fcc but by a

1/3 smaller amount. The argument for this behavior is
the same as above. The light orange shaded region in
Fig. 6b indicates the influence of electronic excitations.
They also favor bcc over fcc and in fact show a very sim-
ilar influence as the quasi contribution.

We now focus on the remaining two excitation mech-
anisms: vacancies and anharmonicity. While vacancies
turn out to be irrelevant for the phase transition, the an-
harmonic excitations, i.e., phonon-phonon interactions,
produce a crucial and possibly unexpected effect. Their
contribution is indicated in Fig. 6b by the black arrow
pointing upwards. It turns out that – against a possible
intuitive expectation and opposed to all before discussed
contributions – anharmonicity favors the fcc over the bcc
phase. What is even more striking is that the magnitude
of this contribution is rather large and that it nearly ex-
actly cancels the electronic and quasi contribution over
the whole temperature range. Considering Fig. 2, we can
resolve the anharmonic excitations for each phase sepa-
rately. We see that the bcc phase has a positive anhar-
monic contribution (particularly for GGA). In contrast,
the fcc phase has a comparatively strong negative anhar-
monic contribution over the full volume range. We con-
clude that the anharmonic stabilization of fcc over bcc is
due to phonon-phonon interactions which soften the orig-
inal non-interacting phonon frequencies in fcc but harden
them in bcc.

We finish this section with a crucial observation re-
garding the effect of the individual excitations on the
phase transition and the comparison with experiment.
Let us for that purpose single out two quantities captur-
ing the major part of the involved physics: The slope of
the Gibbs energy difference in the vicinity of the transi-
tion and its actual value at the transition temperature.
Both the quasi and the electronic excitations significantly
shift the actual Gibbs energy value at the transition tem-
perature towards the experimentally represented curve
(calphad). However, for the slope we observe the op-
posite trend, i.e., it is becoming more negative and thus
the disagreement with experiment becomes larger. In
contrast, anharmonicity does the following: it carries the
actual value at the transition temperature away from ex-
periment, but pushes the slope strongly towards the one
seen in the calphad curve.

This behavior is very reasonable: the absolute value of
the Gibbs energy difference at the experimental transi-
tion temperature is directly related to the energy differ-
ence at T=0K and we in fact expect the largest error to
originate from the latter. The reason is that this energy
difference involves large geometric differences, i.e., a rel-
atively open structure for bcc and a close packed struc-
ture for fcc. The slope of the Gibbs energy difference
is instead fully related to finite temperature excitations
which are eventually based on energy differences stem-
ming from small geometrical distortions. We therefore
indeed expect the error related to temperature changes
to be much smaller than the one related to the T=0K
phase differences.
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C. Similarity in the electronic free energy
dependence for LDA and GGA

Let us go back to the Gibbs energy difference
∆Gbcc−fcc containing all excitation mechanisms. Tak-
ing a closer look at lower temperatures, we note that the
curve for LDA (blue solid line in Fig. 6) has a different
dependence than for GGA (orange solid line). In par-
ticular, ∆Gbcc−fcc for LDA shows a small dip at around
100 K, while GGA behaves smoothly. The LDA depen-
dence is not a technical artefact but rather a consequence
of an important physical effect. By tracing back the ori-
gin we will identify that both xc functionals obey a very
similar free energy vs. volume dependence on an absolute
scale.
To start off we consider again the LDA ∆Gbcc−fcc

(solid curve in Fig. 7a), but now in comparison with the
bcc-fcc Gibbs energy difference excluding electronic ex-
citations (dashed curve). The latter difference has an
almost perfect linear dependence and we can therefore
directly correlate the dip with electronic excitations. In
fact, we can even go further and identify the particular
phase being mainly responsible for the unusual electronic
Gibbs energy dependence. For that purpose, Fig. 7a con-
tains additionally the electronic Gibbs energy for fcc and
bcc separately (dotted curves). One can see that the fcc
curve decreases faster at low temperatures, but – due to
its stronger curvature – bcc overtakes at around the ex-
perimental transition temperature. To understand the
different dependencies of fcc and bcc, we need to resolve
the Helmholtz free energy as a function of volume and
temperature, i.e., we need to consider the full electronic

free energy surface F̃ el(T, V ).
We therefore plot a two dimensional projection of

a representative set from F̃ el(T, V ) for fcc and bcc in
Fig. 7b and c (blue curves). One can see an important
difference: While fcc has almost no volume dependence
at any temperature, bcc shows a Helmholtz free energy
decreasing with volume and with the decrease becoming
stronger as temperature rises. This insight suffices to
understand the dependencies of the electronic Gibbs en-
ergies in Fig. 7a which for convenience are also included
into Fig. 7b and c (dotted curves).
At smaller temperatures and volumes, the bcc volume

dependence results in a free energy slightly higher than
the one for fcc, thus leading to the fcc stabilization re-
gion in Fig. 7a (gray shaded). At higher temperatures
and volumes, the bcc electronic free energy ”slides” down
relatively fast with temperature due to the strong nega-
tive volume dependence. This ”sliding down” is respon-
sible for the strong curvature of the bcc Gibbs energy
and hence also the reason for the bcc stabilization region
(green shaded in Fig. 7a). With this, we have therefore
identified the origin of the low temperature dependence
of the overall Gibbs energy difference in Fig. 6.
It remains, however, to explain why GGA seems to be-

have qualitatively different, i.e., showing a rather smooth
dependence in ∆Gbcc−fcc. For that purpose, Fig. 7b and

c contains additionally the projection of F̃ el(T, V ) for
GGA (blue lines). We recognize a similar behavior for
the fcc phase as already found for LDA, i.e., only negli-
gible volume dependence. The situation is different for
bcc. For GGA, the bcc electronic free energy has only
a very small volume dependence which is even opposite
to LDA (i.e., increasing with volume and temperature).
This clear qualitative difference between LDA and GGA
is rather unexpected and we have therefore put further
effort in elucidating this matter.
The first attempt is to verify the quality of the PAW

potential. While the cross checks for T=0K showed al-
ready a good performance of the PAW potential, the
small energy differences being relevant here and the new
type of free energy contribution might change the pic-
ture. In particular, considering the large underestima-
tion of the equilibrium volume by the LDA functional
(cf. blue dashed vertical and black dash-dotted vertical
line in Fig. 7b or c) thus resulting in an increased inter-
nal pressure (higher bulk modulus) might lead to a loss
of accuracy of the PAW potential. Such considerations,
however, have not been affirmed as the comparison of the
PAW free energy with FLAPW results in Fig. 7c (green
pluses) clearly demonstrates.
We follow therefore a different route to gain further

insight. To explain the approach note first that the rele-
vant volume ranges (at least for moderate pressures) for
LDA and GGA do not overlap (i.e., the blue and orange
curves in Fig. 7b and c are clearly separated). This means
that there is a large mismatch in absolute volumes be-
tween the two functionals. If we now extend the region of
interest and calculate for each functional the Helmholtz
free energy at volumes native to the other functional, we
obtain a volume dependence as shown by the open sym-
bols in Fig. 7b and c. For fcc the situation stays the same,
i.e., no volume dependence. In contrast for bcc, we find
now a very similar volume dependence between LDA and
GGA, but only if we consider absolute volumes. We con-
clude therefore that the seemingly inconsistent behavior
between LDA and GGA bcc is a volume effect: At abso-
lute volumes the functionals do behave consistently.

D. Theory vs. Experiment I: Extension of the
LDA-GGA similarity to vibronic free energies

Having the full Helmholtz/Gibbs free energy surface as
a function of volume/pressure and temperature at hand
we can extract any thermodynamic quantity. We will
discuss in the following the thermal linear expansion and
the linear expansion coefficient [Eq. (4)]. Even though
the latter contains almost the same information, it can
reveal discrepancies more clearly. We will also discuss
the (isothermal) bulk modulus [Eq. (2)] which, being
a second derivative, is even more sensitive to the vol-
ume/pressure dependence of the free energy surface.
Our results are shown in Fig. 8. We focus first on

the fcc phase where sufficient experimental data is avail-
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PBE electronic Helmholtz free energy is shown as a function of the volume V for fcc and bcc, respectively. For each combination
(e.g., LDA fcc), the free energy is plotted for the five given electronic temperatures. The vertical lines indicate the equilibrium
volumes at T=0K (dashed; black dash-dotted=experiment) and at the melting temperature (solid). The curves with open
circles show the continuation of the free energy beyond the normal volume range into the regime of the other functional. The
blue dotted curves show the temperature dependence of the Gibbs energy (P=0.1 GPa) and correspond therefore to the dotted
curves from a). The green pluses indicate FLAPW results (wien2k

22). d) Similar to c) but this time showing the comparison
between the full electronic free energy (darker curves) and the ideal electronic entropy term −TSel/2 (light shaded curves).
Part d) is discussed in Sec. III B.

able for comparison. We omit, however, the gray marked
thermal expansion data from Schulze49 since they appear
to have large error bars as is indicated by their intrin-
sic scatter and also by the significant deviation from the
other measurements. Comparing with the remaining ex-
perimental data we find a good agreement with both of
the investigated functionals LDA and GGA. In fact, an
important observation is that no functional performs bet-
ter than the other, as opposed to our finding for the fcc
phonons where GGA was clearly closer to experiment.
For the (fcc) quantities in Fig. 8, we can rather sup-
port an interpretation found previously for a larger set
of metals:9 LDA and GGA can be considered as approx-
imate generic upper and lower bounds to experimental
data allowing us to construct fully ab initio based error
bars for the theoretically computed thermodynamic data.

An analysis of such approximate error bars allows then
to quickly identify problematic cases.9 In fact, performing
this analysis carefully in the present case reveals a pos-
sibly unphysical dependence of the experimental expan-
sion. As mentioned above, the expansion coefficient can
magnify discrepancies so let us focus on Fig. 8b. Analyz-
ing the temperature range around 300 K, we notice that
the Touloukian data50 lie slightly higher than both LDA
and GGA, i.e., not within the ab initio error bars. Con-
sidering the full Touloukian curve,50 we find that what
is even more striking is the difference in slopes in the ex-

pansion coefficient. The Touloukian data50 shows weak
temperature dependence above 300 K, while both LDA
and GGA have a significantly stronger increase with tem-
perature. Comparing to expansion coefficients for other
elements (e.g., Ref. [50] or [52]) it appears that it is rather
the experimental data for fcc Ca that is unusual. Other
elements show indeed an increasing expansion coefficient
with temperature as does also theory predict for fcc Ca.

Turning now to the high temperature bcc phase, we
find a scarce experimental situation. No data are avail-
able for the bulk modulus and only an older measure-
ment for the thermal expansion from Bernstein.51 Unfor-
tunately, the authors report difficulties with the measure-
ment and estimate rather large error bars. Therefore, a
comparison with our theoretical data would be inconclu-
sive for the quantities shown in Fig. 8. We will come
back to this issue when discussing the heat capacity in
Sec. IVE. For the moment, let us concentrate on an
intrinsic theoretical comparison.

For that purpose, note the following trend in the fcc
ab initio curves in Fig. 8: When we move from a) to
b) and then to c), the difference between the LDA and
GGA curves increases. A similar trend occurs also for
the bcc phase, it is, however, shadowed in Fig. 8 by the
fact that the shown bcc linear expansion and bcc bulk
modulus are referenced with respect to T=0K fcc val-
ues. These trends are not merely a technical artefact
(e.g., used scale), but are indeed based on a deeper phys-
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FIG. 8: (Color online) Thermodynamic properties at ambient pressure (0.1 GPa) derived from the free energy surface including
all studied excitation mechanisms. The vertical lines indicate the experimental fcc to bcc transition temperature31 T fcc→bcc

exp =

716K and melting temperature31 Tmelt
exp = 1115K. The experimental data are from • Anderson,44 ◦ Touloukian,50 � Bernstein51

(including error bars), and � Schulze.49 Shown are a) the thermal linear expansion ǫ(T ) [Eq. (4)], b) the linear expansion
coefficient α(T ) [Eq. (4)], and c) the isothermal bulk modulus BT (T ) [Eq. (2)] relative to its T=0K value in the fcc phase Bfcc

0K.

ical argument. The reason is that upon moving from
a) to c), the quantities probe more and more sensitively
the volume dependence of the Helmholtz free energy sur-
face. Therefore, as mentioned above, the (isothermal)
bulk modulus is the most sensitive in this respect. Cor-
relating this argument with the difference between LDA
and GGA, we can draw a very important conclusion:
A main difference between LDA and GGA in describ-
ing thermodynamic quantities originates in their differ-
ent volume/pressure dependence of the Helmholtz/Gibbs
free energy surface.

We can extend this statement even further by a com-
bined analysis of the LDA and GGA results for both of
the phases fcc and bcc. To this end, note in Fig. 8c the
following behavior: While for the fcc phase the LDA func-
tional yields a harder system (i.e., higher bulk modulus)
than GGA, we see a jump at the transition tempera-
ture to an exactly opposite picture in the bcc phase. For
bcc, GGA yields the harder material with a higher bulk
modulus. We label the behavior at the transition tem-
perature a ”soft jump” for LDA and a ”hard jump” for
GGA (Fig. 8c). Concluding, we see that the difference
in the free-energy volume dependence (or equivalently
Gibbs energy pressure dependence) between LDA and
GGA is different for fcc and bcc, i.e., error cancellation
does not take place.

This conclusion is rather unfortunate, since it signif-
icantly lowers the predictive power of an ab initio ap-
proach. Based on a detailed analysis, we are however
able to remedy this situation.

For the following analysis, we concentrate on the quasi-
harmonic contribution to the temperature dependence of
the bulk modulus which contains a major part of the ef-
fect. Further, we need to relate the quasiharmonic bulk
modulus to the quasiharmonic free energy surface F qh.
It turns out that considering the free energy on an ab-
solute scale brings little insight. The reason is that the
strong temperature dependence of F qh hides the relevant
volume effects. It is much more revealing to perform
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FIG. 9: (Color online) Volume dependence of the quasihar-
monic contribution to the thermal pressure P qh at different
temperatures for the a) fcc and b) bcc phase. The verti-
cal lines indicate the equilibrium volumes at T=0K (dashed;
black dash-dotted=experiment at T=0K) and at the melting
temperature (solid). The curves with open circles in b) show
the continuation of the pressure beyond the normal volume
range into the regime of the other functional.

the analysis using instead the derivative of the free en-
ergy surface along volume, aka the pressure surface. We
therefore construct a two dimensional representation of
the quasiharmonic pressure surface P qh(V, T ) shown in
Fig. 9. Since Fig. 9 is a rather unconventional represen-
tation, let us explain it in a bit more detail.

The quasiharmonic pressure surface constitutes the
dominant part of the thermal pressure surface and it
is constructed by taking the negative derivative of the
quasiharmonic free energy surface with respect to vol-
ume. We see only positive pressures for all volumes and
temperatures in Fig. 9, because the quasiharmonic con-
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tribution (i.e., the non-interacting phonon gas) is purely
repulsive. It creates an inner pressure driving the sys-
tem to larger volumes, i.e., thermal pressure. This ef-
fect increases with temperature as can be clearly seen
in Fig. 9 (see for instance the orange curves for GGA fcc
with the temperatures included). The increase with tem-
perature is eventually the reason for thermal expansion
which can be explicitly obtained upon adding the quasi-
harmonic pressure to a corresponding T=0K pressure-
volume curve. Taking the negative derivative (scaled
with volume) of the pressure we arrive directly at the
isothermal bulk modulus. Relating this to Fig. 9 means
that a steeper positive slope of the pressure curve results
in a softer material (i.e., in a lower bulk modulus; see for
instance LDA bcc becoming softer with increasing tem-
perature as indicated by the arrow).

With that background we can come back to the anal-
ysis of the LDA and GGA bulk modulus for fcc and bcc.
The soft and hard jumps of the bulk moduli in Fig. 8c
can be understood in terms of the slopes of the pressure
curves in Fig. 9. Focus first on LDA and note that P qh

has a slightly higher slope at the same temperature for
bcc than for fcc. This explains the soft jump of the LDA
bulk modulus at the transition temperature in Fig. 8c.
In contrast for GGA, we find that P qh in Fig. 9 has a
higher slope for fcc. In fact, GGA bcc has almost no
slope. This explains the opposite behavior of the GGA
bulk modulus resulting in a hard jump at the transition
temperature.

Having traced back the effect to the volume depen-
dence of the Helmholtz free energy/pressure surface, we
can now perform the next crucial step. Similarly as in
the previous section for the electronic free energy, we ex-
tend the volume region for each functional beyond its
own regime, in order to cover also the volumes native
to the other functional (indicated by the open circles in
Fig. 9). Looking at the pressure curves in the full vol-
ume range allows us to draw an important conclusion
which perfectly fits our result for the electronic excita-
tions discussed in the previous section: Both, LDA and
GGA follow a similar quasiharmonic free energy curve
if compared on an absolute volume scale. However, due
to the different placement on this curve which is caused
by a differing equilibrium volume at T=0K, we see dif-
ferences in the thermodynamic properties which involve
derivatives of the free energy along the volume axis.

Note also that for bcc we can even closely relate the
similarity in the quasiharmonic curve with the electronic
free energy curve from Fig. 7c. The curvatures are oppo-
site (convex vs concave), but the placement with respect
to the minimum on each curve is strikingly similar. For
instance, in both cases (quasiharmonic and electronic)
the bcc phase lies in the minimum of the general free
energy vs. volume curve. In fact, we can complete the
discussion by noting that also the anharmonic contribu-
tion follows a similar volume dependence as can be seen
by a detailed inspection of the trend shown in Fig. 2.

E. Theory vs. Experiment II: Resolution of the
disagreement in the experimental heat capacity

The presented methodology is ideally suited to evalu-
ate experimental heat capacities. Accurate heat capac-
ities are a crucial ingredient in constructing phase dia-
grams, e.g., within the calphad approach, but their ex-
perimental determination is – particularly at high tem-
peratures – often accompanied by large scatter in the
data. Only very recently ab initio has reached a level
where it can help evaluating the quality of experimental
data.14,53,54

The experimental situation in Ca is shown in Fig. 10a.
In particular in the bcc phase we observe two strongly dis-
agreeing experimental sets of measurements. In the cal-
phad parametrization only one of the sets is used while
the other is disregarded. The data set chosen for the
calphad parametrization shows a steep increase with
temperature and reaches a relatively high value of more
than 5kB at the melting temperature. The other set of
experimental data shows a clearly weaker increase with
temperature reaching only a value of about 4kB at the
melting point.

Our results for the LDA and GGA based heat capac-
ities including all excitation mechanisms are also shown
in Fig. 10a. At temperatures < 300 K, the experimental
situation is decisive and we see an excellent agreement
with theoretical data from both functionals. At higher
temperatures, we find that the ab initio theory shows an
excellent agreement with the lower experimental data. A
further important observation is that even at tempera-
tures close to the melting point, LDA and GGA show a
very similar qualitative and quantitative behavior for the
heat capacity. Following the discussion in Ref. [9], we can
consider LDA and GGA as approximate ab initio error
bars. Thus based on their close agreement we confirm
the lower set and rule out the upper one. The presently
employed calphad parametrization should therefore be
reconsidered.

Fig. 10b decomposes the heat capacity into the respec-
tive contributions from various excitations. Clearly, at
temperatures above ≈ 300 K the harmonic limit of 3 kB
of non-interacting phonons (at fixed volume) is reached
(Dulong-Petit law) being the most important contribu-
tion. To describe the linear increase with temperature,
we need to include the quasiharmonic as well as the
electronic excitations. Both are similar in magnitude
contributing together ≈ 1/4 of the total heat capacity.
The anharmonic term describing phonon-phonon interac-
tions, which was of high relevance in explaining the phase
transition (see Sec. IVB) is negligible in the heat capac-
ity. It is slightly positive for the fcc phase and negative
for bcc, but only roughly 1/50 of the total heat capacity.
In contrast, while being negligible for the phase transi-
tion, vacancies are showing a non-negligible contribution
in the bcc phase at temperatures close to the melting
point. The reason is that despite their small absolute free
energy, the exponential decrease in temperature causes a



20

0 300 600 900
Temperature (K)

0

1

2

3

4

5
Is

ob
ar

ic
 h

ea
t c

ap
ac

ity
  C
P
 (

k B
) CALPHAD (SGTE)

GGA-PBE
-

LDA

0 10 20 300

0.1

0.2

0.3

0.4
fcc

T  fcc→bcc
exp T  melt

exp

bcc

Ditmars 1989
Robie 1985
Ulyanov 1985
Kubaschewski 1950
Jauch 1946
Clusius 1930
Zalesinski 1928
Eastman 1924

a)

0 300 600 900
Temperature (K)

0

1

2

3

4

Is
ob

ar
ic

 h
ea

t c
ap

ac
ity

  C
P
 (

k B
)

h + q + el + ah + vac
h + q + el + ah
h + q + el
h + q
h

fcc

T  fcc→bcc
exp T  melt

exp

bcc

harmonic

quasi
electronic

vacancies
anharmonicity

Ditmars 1989
Clusius 1930

b)

FIG. 10: (Color online) a) Isobaric heat capacity CP [Eq. (3)]
of fcc and bcc Ca at ambient pressure (0.1 GPa) containing
all studied excitation mechanisms and b) the influence of the
latter for the GGA-PBE functional. The vertical lines in-
dicate the experimental fcc to bcc transition temperature31

T fcc→bcc
exp = 716K and melting temperature31 Tmelt

exp = 1115K.
calphad data are taken from the SGTE database.43 Experi-
mental values are from � Ditmars,55 ◮ Robie,56 � Ulyanov,57

• Kubaschewski,58 △ Jauch,59 ◦ Clusius,60 N Zalesinski,61

� Eastman.62 See Fig. 6 for further notation.

strong second derivative (aka heat capacity).
A crucial contribution significantly lowering the Gibbs

energy of vacancy formation turns out to be anharmonic-
ity. The relatively high value for the enthalpy of forma-
tion of 0.84 eV at T=0K (Tab. III) is strongly lowered at
the melting temperature by −0.2 eV by anharmonic ex-
citations while quasiharmonic interactions only account
for a lowering of −0.07 eV and the electronic influence is
of even less importance (+0.02 eV).

V. CONCLUSIONS

We have studied all relevant finite temperature exci-
tation mechanisms on the prototype temperature-driven
fcc to bcc transition in calcium solely based on ab initio

techniques. Extensive convergence checks and method-
ological advancements allowed us to reach a numerical ac-
curacy of better than 0.5 meV/atom in the standard con-
tributions (T=0K energy, electronic, quasiharmonic, and
vacancy excitations) and of below 1 meV/atom in the ex-
plicitly anharmonic term. The high numerical accuracy
and a detailed analysis of the two currently most popu-
lar exchange correlation functionals, LDA and GGA, al-
lowed us to derive systematic and general trends and to
elucidate the presently achievable accuracy with density-
functional-theory. Key findings are summarized in the
following.

Bcc instability. Upon a careful study of the long wave
length limit of the T1[110] branch in the bcc phonon dis-
persion, we have revealed a dynamical instability at T
=0K and ambient pressure. We have shown that the
instability significantly depends on the electronic tem-
perature/broadening which can even lead to a full stabi-
lization. The effect is very similar to a pressure-induced
stabilization and we can relate both to the behavior of the
electronic density of states at the Fermi level. Moreover,
we have devised a method to qualitatively evaluate the
effect of phonon-phonon interactions on this long wave
length instability and have shown that they lead to ad-
ditional stabilization. Based on this insight we proposed
a straightforward method to deal with such instabilities
in quasiharmonic and anharmonic calculations.

Phase transition. The key finding is that the tempera-
ture dependence of the Gibbs energy difference between
bcc and fcc is found to be in very good agreement with
experimental (calphad) data. Of crucial importance
is the influence of anharmonic excitations shifting the
Gibbs energy difference by several meV/atom in favor of
fcc. In particular, the temperature dependence is altered
significantly by anharmonicity and only upon inclusion of
this contribution we find the good agreement with exper-
iment. While the temperature dependence of the Gibbs
energy difference is predicted with good accuracy, we find
that the actual value at the experimental phase transi-
tion temperature is overestimated by ≈ 6 meV/atom for
both functionals LDA and GGA. This rather small over-
estimation leads, however, to a drastic error on the tem-
perature axis of ≈ 400 K. We ascribe this mainly to a
failure of the used xc functionals in predicting a correct
T=0K energy difference. In this respect, van der Waals
interactions, which are missing in LDA and GGA, could
play an important role.63

Free energy vs. volume curve. Based on a comparison
of several derived thermodynamic properties with exper-
iment and on an intrinsic theoretical comparison between
LDA and GGA, we have been able to derive the depen-
dence of a general free energy vs. volume curve. This
is meant in the sense that both xc functionals follow
a very similar Helmholtz free energy curve when taken
at the same absolute volume. The difference between
the functionals is only due to the different relative place-
ment on that general curve. While LDA is placed at very
small absolute volumes due to the well known overbind-
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ing, GGA is found at larger volumes in much closer agree-
ment with experiment. The different relative placement
on the curve results in strongly varying derivatives along
the volume axis. The bulk modulus which probes the
volume dependence most sensitively shows therefore the
largest differences between LDA and GGA.
Heat capacity. The extensive compilation of experi-

mental data for the heat capacity of calcium reveals a
clear distinction between two systematically deviating
sets of experiments at high temperatures with intolerable
differences of up to 1kB. From our numerically highly ac-
curate free energy surface we are able to derive a reliable
theoretical prediction of the isobaric heat capacity. Since
the studied xc functionals show negligible differences in
the heat capacities we can with great confidence assess
the quality of the experimental data. A surprising out-
come is that for Ca the well established and widely em-
ployed calphad SGTE database43 is not based on the
best available set of experiments. A reparametrization
should be considered.
The multitude of studied properties allows to draw im-

portant general conclusions as to which performance one
can expect from traditional DFT xc functionals. Let
us recap: We find a good agreement with experiment
and between LDA and GGA for the temperature depen-
dence of the Gibbs energy difference. The actual value at
the phase transition is, however, overestimated by both
functionals. We find strong differences in the volume de-
pendence between LDA and GGA resulting, e.g., in a
strongly differing bulk modulus. The heat capacity is
instead excellently described and the difference between
LDA and GGA is insignificant.
In combining these results, a unified picture emerges

that shows how differently the various properties probe

the Helmholtz free energy surface F (V, T ) [or equiva-
lently the Gibbs energy surface G(P, T )]. The actual
value of the Gibbs energy difference at the phase transi-
tion is directly related to the T=0K energy difference be-
tween the phases. We do not expect this difference to be
in perfect agreement with experiment within a meV scale
since its determination involves substantial geometrical
differences. The large differences in the volume depen-
dence and related properties of the functionals are due
to the discussed different relative placement on a similar
absolute free energy curve. In contrast, the temperature
dependence of the Gibbs energy difference and the heat
capacity are dominated by the temperature dependen-
cies of the free energy surface. From the results of the
present study we expect this dependency to be described
accurately.

The methodology and insight gained in the present
study are an important step towards a fully ab initio

and numerical approach to compute accurate and reli-
able input for thermodynamic modelling and to identify
the performance but also the limitations of present day
xc functionals.
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