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We used the Hartree-Fock approximation to classify the electronic phases that might occur in
a transition-metal nanowire. The important features of this situation are orbital degeneracy (or
near-degeneracy) and interactions favoring locally high-spin configurations. In this circumstance,
spin density wave and triplet superconductivity states are favored. If the interactions favor locally
low-spin configurations as in the previously studied spin-ladder systems, orbital density wave and
singlet superconductivity are observed.

PACS numbers: 71.10.Fd, 71.10.Pm, 71.20.Be, 73.21.Hb

I. INTRODUCTION

Self-assembly epitaxial techniques have enabled the
fabrication of one-dimensional (1D) atomic wires com-
posed of adatoms confined at step edges on surfaces of
appropriately chosen substrates.1–3 In many physically
relevant cases, the surface bandgap structure of the sub-
strate material is such that the electronic states of the
adatoms are decoupled from the bulk substrate bands
(at least to leading order) and a one-dimensional electron
system can be realized. STM (Scanning Tunneling Mi-
croscope) and ARPES (Angle-Resolved Photoemission)
measurements of Au nanowires grown on the Si(577) sur-
face show that a charge-density wave (CDW) occurs at
low temperatures.4,5 The physics of Au nanowires is still
the subject of debate,1,6 but it appears that the rele-
vant band is derived from Au s-states for which electron-
electron interactions are relatively weak, and the domi-
nant physics may be associated with lattice instabilities.7

However, many other adatom/substrate pairs are possi-
ble, and this opens new possibilities including the study
of one-dimensional electron gases formed from transition
metal d-orbitals. For example, wires composed of Co
adatoms have been furrowed on a Cu substrate.8,9

From the theoretical point of view, the important fea-
tures of transition metal-based wires are the orbital de-
generacy of the transition-metal d-levels, which permits a
rich set of on-site interactions and the small size of the or-
bitals, which leads to larger interaction effects. In partic-
ular, the Hund coupling favors locally high spin configu-
rations, potentially leading to interesting spin structures.
Motivated by these ideas and the recent experimental
success,8,9 in this paper, we investigate the physics of a
nanowire in which the important electronic states are de-
rived from the transition metal d-orbitals. We use mean-
field theory to establish the phase diagram and elucidate
the general classes of behavior. While mean-field theory
is not an exact description of interacting electron systems
especially in low spatial dimensions, it should tell reason-
able indication of what physics is relevant and provide a
starting point for more exact treatment. A subsequent
paper will use renormalization group and bosonization

methods to obtain a detailed picture of the same model
when one-dimensional nature is significant.

Consideration of the physics of transition metals leads
to models with multiple electronic bands with more or
less arbitrary interactions. Models of this general class
have been previously considered in the literature, both
for their intrinsic interest,10 and as steps toward under-
standing heavy fermion systems,11–14 and high temper-
ature superconductor systems.15–20 In these models the
multiple bands arise from physically different atoms: in
the heavy fermion case, one band represents the local
moments and the other the wide band of conduction elec-
trons; in the high Tc case an important motivation has
been models of “spin-ladder” compounds.21 While a for-
mal mapping may be established between these models
and the models of interest here, the different structure
of the interactions leads to different physical behaviors.
Models more directly analogous to those of present inter-
est have also been investigated, and the focus has been
put on ferromagnetism and orbital ordering in the strong
coupling regime.22–27 The relation of these works to the
results obtained here is discussed below in Secs. II, IV
and VI.

The organization of this paper is as follows. In Sec. II
we explain the model and the symmetries. In Sec. III, we
define order parameters encoding the physics arising from
the backscattering and forward scattering. The general
properties of mean-field solution and approximation we
employed will be presented in Sec. IV. In section V, we
show the obtained phase diagrams in the weak coupling
limit, and discuss the results. Section VI is devoted to
phase diagrams obtained in the strong coupling limit.
Finally, Sec. VII is conclusion and summary.

II. MODEL

While many of our considerations are general, we
are motivated in particular by recent success growing
monatomic Co chains at step edges on a Cu surface.8,9

Band calculations indicate that the Co electrons are hy-
bridized into the bulk Cu states mostly away from Fermi
energy, and Co electrons form one-dimensional partly
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FIG. 1. (Color online) Schematic pictures of two-leg Hub-
bard ladders and d-orbital model. In two-leg Hubbard model,
there is hopping along the ladder t, and transverse hopping
t⊥. The on-site interaction is U . For atomic wire with d-
orbitals, we have intraband hopping, tA and tB , with various
on-site interactions, U , U ′, and J .

filled bands near Fermi energy.28 Thus, as a first approx-
imation, we may consider that the system is described by
a multi-orbital Hubbard-like model representing the Co
d-orbitals with local onsite Coulomb interactions

H =
∑
〈i,j〉

∑
m,s

−tmm
′

ij

(
c†imscjm′s + H.c.

)
+Hint. (1)

Here c
(†)
ims is the annihilation (creation) operator for a d-

electron in orbital m with spin s at site i. tmm
′

ij is the
hopping between from orbital m on site i to orbital m′ on
site j. The interaction termsHint will be discussed below.
Through the paper, we set the lattice constant equal to 1.
The presence of the surface breaks the symmetry between
d levels and may lead to an arbitrary ionization level.
For the sake of simplicity, we will consider here only the
case where Fermi energy crosses two orbitals, m = A,B,
although in the general case one would have 5 d-derived
bands with an arbitrary Fermi energy. Furthermore, the
rotational symmetry in Hint as we will see always allows
us to diagonalize the hopping matrix, so we will ignore
tAB .

In the weak coupling limit, the band structure is char-
acterized by four Fermi points: two Fermi momenta,
kA and kB , and two chiralities, r = R,L. R (L) rep-
resents electrons around positive (negative) Fermi mo-
menta. The total particle number is n = 2(kA+kB)/π. It
is useful to distinguish the two cases of half filling (n = 2)
and arbitrary filling (n 6= 2). For arbitrary filling we ex-
pect in general that kA 6= kB 6= π/2 but two special cases
are possible: we may have degenerate bands, kA = kB ;
alternatively, one of the two bands may be half-filled, i.e.,
kA = π

2 6= kB . If n = 2 then kA + kB = π; in general
we expect kA 6= kB but both bands could be commensu-
rate, kA = kB = π

2 . When two bands have equal Fermi

momenta and Fermi velocities, the kinetic term acquires
O(3) ' SU(2) orbital symmetry.

For the two-orbital system the interaction terms have
the following form:

Hint = U
∑
i,m

nim↑nim↓

+ U ′
∑
i,s

niAsniBs

+ (U ′ − J)
∑
i,s

niAsniBs

− J
∑
i,s

c†iAsciAsc
†
iBsciBs

+ J ′
∑
i

(
c†iA↑c

†
iA↓ciB↓ciB↑ + H.c.

)
,

(2)

where and nims = c†imscims is the electron density and
s = −s. U and U ′ indicates on-site Coulomb repulsion
between two electron in the same band or different bands,
and J represents Hund coupling favoring high spin state.
J ′ is the so-called pair-hopping term. For a transition
metal ion in free space all of these parameters are pos-
itive. We assume that the symmetry breaking by sub-
strate primarily affects the hopping terms in the Hamilto-
nian without changing the local orbitals too much. This
enables us to use free-space rotation symmetries to re-
duce the number of interaction constant.29 In this case
we have

J = J ′ (3)

U = U ′ + 2J. (4)

The first equality is derived from the fact that Wannier
wave functions are real, and the second one represents
rotational invariance in orbital space. With this simpli-
fication, the interaction terms now have U(1) orbital ro-
tational symmetry about y-axis. To show the symmetry
explicitly, we introduce the following charge, spin, and
orbital (pseudo-spin) operators:

ni =
∑
ms

nims, (5)

Si =
1

2

∑
mss′

c†imsσss′cims′ , (6)

T i =
1

2

∑
mm′s

c†imsτmm′cim′s, (7)

where σ and τ are Pauli matrices. Then, the interactions
in terms of U and J are given by,

Hint =
∑
i

(
U

2
n2
i + JS2

i + 3JT 2
i − 2J(T yi )2 − U + 5J

2
ni

)
.

(8)

For a transition metal ion in free space, U � J > 0,
so that all interaction parameters are positive. Screening
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will reduce the value of U , but will lead to only negligible
changes in J ,30 and most calculations indicate that even
the reduced value of U is greater than J .

Now we talk about the symmetry of the Hamiltonian in
Eq. (1) and Eq. (8). When J = 0, the interaction part has
SU(4) symmetry in spin and orbital sector, and J 6= 0
reduces the symmetry to SU(2) symmetry in spin and
U(1) rotational symmetry in orbital space. The orbital
symmetry in the interaction is preserved only when two
bands are equivalent. Otherwise, the orbital symmetry
of the total Hamiltonian is completely broken.

Lastly we compare our models to previously stud-
ied ones. In particular, this model is similar to two-
leg Hubbard ladder models, which have been stud-
ied extensively.10–20,31–38 The comparison is sketched in
Fig. 1. In essence the two sides of a rung of the ladder
(or, more precisely, the odd and even parity combinations
of these states when there is strong transverse hopping)
map to the two atomic states we consider. Generically,
in the ladder problem, the hopping across a rung is non-
vanishing, implying in our language kA 6= kB . However,
the interactions of two models are quite different. In
two-leg ladder problems, the intraband interactions U
and transverse hopping t⊥ are supposed to induce effec-
tive antiferromagnetic coupling (−U/t2⊥ < 0) between
two sites connected by a rung of the ladder.10,15–18 On
the other hand, the model considered here doesn’t have
such hopping since two states in an atom are orthogonal,
but instead it has Hund coupling (J > 0), which favors
high-spin states.

More recently several groups attempted a general clas-
sification of the physics of ladder systems with generic
interactions either with transverse hopping,19,20 or with-
out transverse hopping.37 When two Fermi momenta are
different, kA 6= kB , our model is considered in Refs. 19
and 20, while when kA = kB , we have pair-hopping term
which is not included in Ref. 37. These studies employ
perturbative renormalization group and bosonization as-
suming weak interactions and one-dimensionality. While
we will pursue this direction in subsequent paper, here
in this paper we will use a mean-field approach, which
allows us to access the strong coupling regime of the
model – which is hard to success by perturbative RG and
bosonization – as well as to classify the different possible
states.

More directly related studies has been done on the
same model focusing on ferromagnetism and orbital
orders.22–27 In the strong coupling regime, U � J � t,
both analytical and numerical calculation show ferromag-
netism and orbital antiferromagnetism as a ground state
at quarter filling. Around quarter filling, ferromagnetic
state is robust to hole-doping and electron-doping with
nearest neighbor hopping. However, below quarter fill-
ing, the inclusion of further hopping leads to disappear-
ance of ferromagnetism while the state still exists above
quarter filling. Haldane gapped state with S = 1 is ex-
pected at half filling.

III. ORDER PARAMETERS

Mean-field theory involves minimizing the energy with
respect to a free-fermion density matrix characterized by
non-vanishing expectation values for fermion bilinears in
the particle-hole (ph) and particle-particle (pp) channels.
A general bilinears is characterized by a momentum q,
spin s, and orbital m. We distinguish between q = 0
cases (ferromagnetism, ferro-orbital order, and supercon-
ductivity), and q 6= 0 (charge/spin density wave, orbital
density wave, FFLO or pair-density wave superconduct-
ing states). We will mostly not be interested in the de-
pendence of the expectation values on the magnitude of
the fermion momentum and will mostly be interested in
electronic states near the Fermi points. Therefore, we la-
bel the bilinears by the chirality, spin, and orbital indices
without explicitly denoting the q or fermion momentum.
The basic objects are particle-hole bilinears,

(∆ph)ss
′;mm′

rr′ =
1

N

∑
k∼kF

〈c†rmscr′m′s′〉, (9)

and particle-particle bilinears,

(∆pp)ss
′;mm′

rr′ =
1

N

∑
k∼kF

〈msc†rmsc
†
r′m′s′

〉, (10)

where c
(†)
rms is the annihilation (creation) operator of elec-

tron with chirality r, orbital m, and spin s. We will use
the following convenient basis to represent these,

Oijph =
∑

mm′ss′

τ imm′σ
j
ss′(∆ph)ss

′;mm′
+ H.c.

Oijpp =
∑

mm′ss′

τ imm′σ
j
ss′(∆pp)ss

′;mm′
+ H.c.,

(11)

where i, j = (0, 1, 2, 3) and τ and σ are Pauli matri-
ces with τ0

ab = σ0
ab = δab. These operators transforms

as tensors of rank 2 under the rotation of SO(4) '
SU(2)spin × SU(2)orbital. Due to the SU(2)spin symme-
try of the Hamiltonian, we can take the quantization axis
along z-direction for spins, and consider only j = 0 and 3.
However, we will keep all orbital components, since there
are cases without any orbital symmetry. σ0(3) combi-
nation gives spin singlet (triplet), that is, charge (spin)
mode. Similarly τ0(3) gives orbital singlet (triplet), and
τ1(2) gives symmetric (anti-symmetric) combinations of
orbitals. When the two bands are equivalent and J = 0,
the Hamiltonian has SU(4) symmetry; not only spin
triplet, but also orbital triplet are degenerate.

We first discuss the cases with r = r′ in Eq. (9), which
corresponds to spatially uniform density order. We con-
sider only ferromagnetism (FM), orbital-ferromagnetism
(OFM), and combinations of these two. These orders are
characterized by non-zero density polarizations:

∆FM = 〈nA↑〉 − 〈nA↓〉+ 〈nB↑〉 − 〈nB↓〉 6= 0

∆OFM = 〈nA↑〉+ 〈nA↓〉 − 〈nB↑〉 − 〈nB↓〉 6= 0.
(12)
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“Angular momentum” (A,R) (A,L) (B,R) (B,L)

s + + + +

px + − + −
py + + − −
d + − − +

TABLE I. Angular momentum and phase at each Fermi point.

In Sec. VI, we will consider FM(+OFM) state, and this
is a state where ∆FM is maximized first, and then ∆OFM

is maximized next.

Next, we turn to the density wave for r 6= r′. In or-
der to classify these phases, we label our particle-hole
order parameters by the phases at each Fermi point and
transferred momentum; there are 4 possible cases for in-
terband (q = kA + kB) and for intraband (q = 2km)
order (Table I). s-wave has the same phases at all Fermi
points. px-wave changes its sign under parity transfor-
mation, R↔ L, and py-wave does under band exchange,
A↔ B. d-wave is odd under both transformations. Ap-
plying this classification, we find that i = 0 and 1 are
both s-wave, although the former is intraband type and
the latter is interband type. We put “ ’ ” for interband
order to distinguish these two. i = 2 and 3 is found to be
interband and intraband py-wave accordingly (Table II).

When a band is commensurate, we have another family
of order parameters called “bond” order (BOW), which is
basically the density-wave slid from on-site to“on-bond”,
and is the same as dimerization. The only difference be-
tween site order and bond order is phase of the order
parameter; ∆ is real for on-site order, and imaginary for
bond order. We found that the energy gain is maximized
when order parameter is real, indicating that always on-
site order has lower energy. Therefore, we will ignore the
bond orderings in the remainder of the paper. Further-
more, we don’t consider the string orders either in this
paper, since these orders are non-local. We will study
them in the subsequent paper using bosonization.

To be complete, in two-leg ladder problems, p′CDW
is more commonly called as orbital antiferromagnet
(OAF),39 or staggered flux (SF) state.19 py-density waves
can be called orbital-density waves, but should be distin-
guished from PDW in Ref. 19, which is a bond-order.

We label the particle-particle channels for supercon-
ducting orders in the same manner (Table II). In partic-
ular, when kA 6= kB , the order parameter with i = 0, 3
has non-zero momentum q = kA− kB ; the order exhibits
periodic structure in real space similar to FFLO (Fulde-
Ferrell-Larkin-Ovchinnikov) state.40,41 However, in our
case, there is no external field to split the spin up and
down electrons. This possibility of FFLO state in multi-
orbital system without external field was first pointed out
by Padilha and Continentino.42 The pySS state in our no-
tation often appears as dSS in two-leg ladder problems.10

IV. METHOD

We employ the standard Hartree-Fock approximation,
reducing the quartic part of the Hamiltonian to quadratic
by

ÂB̂ ∼= 〈Â〉B̂ + 〈B̂〉Â− 〈Â〉〈B̂〉, (13)

where 〈Â〉 and 〈B̂〉 are determined by minimizing the
energy. These expectation values correspond to (quasi)
long-ranged orders43 induced either by forward scatter-
ing or by backscattering. Since it is not feasible to treat
all the scattering processes in whole parameter space,
we mainly investigated two regimes: the weak coupling
regime where backscattering is dominant, and strong cou-
pling regime where forward scattering and backscattering
compete. This separation is motivated from the obser-
vation that Stoner’s scenario of phase transition driven
by forward scattering requires coupling to be larger than
some critical value, although the backscattering always
opens a gap even in the weak coupling limit in 1D.44

Therefore, in the weak coupling regime, we ignore for-
ward scattering, and focus on backscattering. In the
strong coupling regime, we first assume that forward scat-
tering drives the system to some kind of density polar-
ization, and then consider the effect of residual backscat-
tering to these polarized states.

A. Effect of backscattering

In this subsection, we explain the treatment of
backscattering since we can treat it in the same man-
ner for both weak and strong coupling regime by us-
ing constant density of states (DoS). Although the de-
tailed form of DoS is important to determinate the phase
boundary between strong coupling phases and weak cou-
pling phases, this approximation is justified within each
regime: in the strong coupling regime, kinetic terms are
less important than interactions; in the weak coupling
regime, electrons far away from Fermi energy is irrele-
vant.

We first focus on a single band case. The quadratic
Hamiltonian obtained by mean-field approximation can
be diagonalized, and the system is gapped at Fermi en-
ergy εF . Using the energy ε measured from εF , the new
dispersion is found to be,

±
√
ε2 + g2∆2 (14)

where ∆ is order parameter in Eq. (9) and Eq. (10), and
g is the corresponding coupling constant. In our model,
g is expressed by some linear combinations of U and J .
Complete list of coupling constants expressed by U and J
is given in Table III of the Appendix. Note that there ex-
ist contributions from Umklapp processes at half filling,
and extra interband scattering when kA = kB . Under
the assumption of constant DoS, the energy gain by this
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(i, j) Particle-hole order (Oij
ph) Particle-particle order (Oij

pp) P L S

(0, 0) Charge density wave (CDW) d′-wave singlet SC(d′SS) -1 0 0

(0, 3) Spin density wave (SDW) p′y-wave triplet SC (p′yTS) 1 0 1

(1, 0) s′-wave charge density wave (s′CDW) py-wave singlet SC (pySS) 1 1 0

(1, 3) s′-wave spin density wave (s′SDW) d-wave triplet SC (dTS) -1 1 1

(2, 0) p′y-wave charge density wave (p′CDW) s-wave singlet SC (sSS) 1 1 0

(2, 3) p′y-wave spin density wave (p′SDW) px-wave triplet SC (pxTS) -1 1 1

(3, 0) py-wave charge density wave (pCDW) s′-wave singlet SC (s′SS) 1 1 0

(3, 3) py-wave spin density wave (pSDW) p′x-wave triplet SC (p′xTS) -1 1 1

TABLE II. Classification of order parameters. “ ’ ” indicates that the order is interband type. The eigenvalues of each
superconducting phase under parity (P ), orbital rotation (L), and spin rotation (S), are also listed. The corresponding order
parameters are given in Eq. (11), and the orbital (i) and spin (j) indices are defined in Eq. (9) and Eq. (10). Particle-hole
channels are even under parity.

gap is given by

δE = ν

∫ 0

−Λ

(
ε+

√
ε2 + g2∆2

)
dε− g∆2, (15)

where ν is the density of states for single band, and Λ
is the cutoff or bottom of the band. The values of these
parameters are different in the weak coupling and strong
coupling regime, and we will explain it below. The sec-
ond term in Eq. (15) comes from the decomposition of
quadratic term (see Eq. (13)), and represents energy in-
crease by the ordering.

By maximizing the energy gain in terms of ∆, we get
the analytical solution to the gap equation,

∆ =
Λ

g
sinh−1

(
2

νg

)
. (16)

The stable condition for ordered phase is g > 0. In order
to obtain the phase diagram, we compare the energies of
possible phases, and choose the order which gives small-
est energy as the ground state. Thus, phase boundaries
indicate 1st order transition from one minima to another
without coexistent region.

When multiple bands are involved, the calculation be-
comes more tedious. In our two-band model, the im-
portant possibilities are: two bands have the same or-
der independently by intraband scattering, or two bands
have an order by interband scattering. For the former
case, the Eq. (15) remains the same where ν is density
of states for each band, and total energy only depends
on the averaged density of states, νintra ≡ (νA + νB)/2.
For the latter case, the dispersion becomes more compli-
cated in general, though the final result depends only on
single parameter, ν−1

inter = (ν−1
A + ν−1

B )/2. Thus, there is
an inequality between interband and intraband density
of states,

νintra > νinter. (17)

Therefore different density of states lead to suppression
of interband scattering.

Next, we see the weak coupling limit and the strong
coupling limit of the above results.

B. Weak coupling limit

In the weak coupling limit (g → 0), Eq. (16) is reduced
to

∆→ 2Λ

g
e−

2
νg , (18)

and the energy gain for single band by gap-opening is
found to be

δE ∼ νg2∆2. (19)

The density of states is fixed to be the value at Fermi
energy, and the cutoff Λ is taken to be small compared
to band width 4t. The density of states at Fermi energy
is connected to the Fermi velocity of the band v, and it is
given by ν = (2πv)

−1
. Therefore, we see that the velocity

difference suppresses interband processes from Eq. (17).

C. Strong coupling limit

In the strong coupling regime, along with the backscat-
tering, we have forward scattering which induces static
orders or density polarized states. We assume that this
polarization is maximized in the strong coupling limit,
and study the effect of backscattering on each polarized
state. We will not consider partially polarized states,
which might appear between non-polarized state and
fully polarized state, because the possible intermediate
phases are complicated and depend sensibly on the de-
tails.

As a constant density of states, we will use the averaged
value for tight binding dispersion, ν = 1/(4t), since most
of the electrons participate in density-wave formation in
the strong coupling limit. The energy of each state con-
sists of two parts: static energy, and energy reduced by
backscattering. The former is simply given by the sum of
kinetic terms, and static density-density interaction. As
we take constant DoS to be 1/(4t), kinetic term becomes
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0.5

1.0
J

(c)kA = kB 6= π/2

FIG. 2. Hartree-Fock phase diagrams for away from half filling. Physically relevant region is U/2 > J > 0. CDW (SDW) is
charge (spin) density wave, and SS (TS) stands for spin-singlet (triplet) superconductivity. The number of massless modes in
charge (C) and spin (S) sectors is also given in the parenthesis. We used ν = 1/4 to get the phase diagram for kA 6= kB = π/2.

2tn(n− 1) with particle density n in each band. The re-
duction of energy by density wave formation is obtained
from Eq. (15). In particular, in the limit of g → ∞, it
becomes

δE ∼ 1

4
gν2Λ2 − 1

2
νΛ2 + · · · , (20)

with

∆ ∼ νΛ

(
1

2
− 1

3ν2g2

)
+ · · · . (21)

The backscattering tries to use all the electrons to form
a density wave in the strong coupling limit, so the cutoff
Λ in Eq. (15) is taken as the energy of band bottom.

V. WEAK COUPLING PHASE DIAGRAMS

Here we present Hartree-Fock phase diagrams in the
weak coupling regime. In order to obtain the phase di-
agrams, we compare the energy of possible phases, and
choose the one with lowest energy as ground state. Along
with the order parameter with (quasi) long-range corre-
lation, these phases are characterized by the number of
gapless excitations in charge and spin modes. We denote
a system with m massless charge modes and n massless
spin modes as CmSn.18 Without any interaction, the
original Hamiltonian has 4 bands and this corresponds
to C2S2.

We first explain the three cases away from half filling,
and then see the phase diagrams for systems at half fill-
ing. For all the cases, the physically relevant parameter
region is U � J > 0, although we investigated various
parameter regions beyond this restriction.

A. Away from half-filing

The weak coupling phase diagrams where filling is away
from half filling are given in Fig. 2 for three cases. We will
look at each parameter region, and explain the dominant
physics which governs the phase.

1. U � J > 0

First we concentrate on upper right plane (U, J > 0)
since this is the physically relevant parameter region. In
the small J region, the Coulomb repulsion U dominates
the physics, and as in the one orbital Hubbard model46

the ground state is a spin density wave. In the generic
case of two incommensurate Fermi wave vectors the phase
of the spin density wave is not pinned between the two
channels and there is a continuous family of solutions.
In kA = kB case, the two Fermi momenta are the same,
and the relative phase mode is pinned down; there is no
degeneracy here.

In terms of number of massless modes, total charge
mode and relative charge mode are both massless in de-
generate SDW phase where both spin modes are mas-
sive. Thus, the degenerate SDW phase is expressed as
C2S0. This represents two independent metallic spin-
gapped chains of C1S0. Non-degenerate SDW phase in
kA = kB case has massive relative charge mode so it
becomes C1S0.

2. J � |U | > 0

The condition for Coulomb integrals to be positive
(U � J > 0) means that this regime is unlikely to be
relevant to real materials. One notable feature for large
J is that we have p-wave superconductivity, which is also
observed in numerical calculations.27,36 This is different
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FIG. 3. Hartree-Fock phase diagrams at half filling. Physically relevant region is U/2 > J > 0. CDW (SDW) is charge (spin)
density wave, and SS (TS) stands for spin-singlet (triplet) superconductivity. The number of massless modes in charge (C) and
spin (S) sectors is also given in the parenthesis. The sSS states should be read as S-Mott or S’-Mott state.

from the case of two-leg ladder systems, where purely
repulsive Coulomb interaction leads to d-wave supercon-
ducting ground state of spin singlet;10 the p-wave super-
conductivity is triggered by attractive interaction. We
can understand this by looking at the limit of J → +∞,
where the spin on the same site is fully polarized, but
an orbital degeneracy remains. So the only on-site inter-
action with dynamical consequences is (U − 3J)nAσnBσ
in Eq. (2). By employing the knowledge that negative-U
Hubbard model has spin singlet superconductivity as the
ground state,47 we find that the analogous ground state
of this limit is interband orbital singlet superconductivity
with parallel spin, which is namely p′yTS. The degener-
acy of p′yTS with p′xTS arises from the absence of pinning
effect between two SC as is the case for SDW and pSDW.
When two Fermi momenta are not equal, these supercon-
ductivities show periodic modulation of order parameters
in real space similar to that found in FFLO state.

At last, the degenerate p′xTS and p′yTS state is C2S0,
and non-degenerate p′yTS for kA = kB is C1S0.

3. −U � |J | > 0

Next, we turn our attention to negative U region. This
regime is also not likely to be realized in transition-
metals. When |U | is large enough, it is naturally expected
that attractive U < 0 gives some kind of superconduc-
tivity; indeed, we found pySS for positive J , and sSS for
negative J when two Fermi momenta are different. pySS
is replaced to CDW when kA = kB .

To understand these phases, here we consider two-
particle local eigenstates. There are 4C2 = 6 locally

possible states. The spin triplet (S = 1) states are

|S = 1, Sz = 1〉 ≡ c†A↑c
†
B↑|0〉

|S = 1, Sz = 0〉 ≡ 1√
2
σxss′c

†
Asc
†
Bs′ |0〉

|S = 1, Sz = −1〉 ≡ c†A↓c
†
B↓|0〉

(22)

The on-site energy is ES=1 = U−3J . Among three spin
singet (S = 0) states, U(1)orbital doublet states are

|S = 0, x〉 ≡ 1√
2
σxmm′c

†
m↑c

†
m′↓|0〉

|S = 0, z〉 ≡ 1√
2
σzmm′c

†
m↑c

†
m′↓|0〉

(23)

with ES=0,− = U−J . The last piece is U(1)orbital singlet

|S = 0,+〉 ≡ 1√
2
δmm′c†m↑c

†
m′↓|0〉 (24)

with ES=0,+ = U + J . This indicates that, for large
negative U , interband superconductivity with S = 1 is
preferable for J > 0, and intraband spin singlet super-
conductivity is preferable for J < 0. The latter super-
conductivity is indeed sSS phase in negative J region.
On the other hand, the positive J region doesn’t match
with pySS states in the phase diagram. This discrepancy
is attributed to the different numbers of allowed scatter-
ing processes; when two Fermi momenta are different,
the number of interband scattering process is fewer than
that of intraband ones. Therefore, interband ordering is
suppressed. For example, the following interband process
is prohibited when kA 6= kB ,

nAσnBσ ' c†ALσcARσc
†
BRσcBLσ + H.c. (25)

although similar intraband process is allowed,

nmσnmσ ' c†mLσcmRσc
†
mRσcmLσ + H.c.. (26)
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Therefore, |S = 0, z〉 is more suitable in positive J , and
this corresponds to pySS. Of course, when J becomes
sufficiently strong, the energy gain by spin alignment be-
comes predominant, and the system exhibits spin-triplet
superconductivity. Similarly, the CDW phase in upper
left area for equivalent bands shows up since it is strongly
enhanced due to the “nesting” of kA = kB although pySS
is not affected.

Here all the phases are non-degenerate, so only the
total charge mode is massless, C1S0.

4. −J � |U | > 0

Finally, the large negative J region is again described
by the nAσnBσ term in Eq. (2), and ground state should
be interband orbital density-wave, which corresponds to
SDW of simple Hubbard model. So the possible candi-
dates are either s′CDW, or pCDW. Taking into account
the ordering of the fermionic operators in nAσnBσ, we
find that s′CDW has correct sign to be the ground state.
For kA = kB case, s′CDW and pCDW are degenerate as
U(1)orbital symmetry requires.

B. At half filling

The phase diagrams for half filling cases are shown
in Fig. 3. At half filling, the most of the argument of
the general filling still apply, but we have to take Umk-
lapp processes into consideration. Since Umklapp pro-
cesses enhances only density-wave states, superconduct-
ing states which appear in negative U region are now
replaced by CDW as in kA = kB case away from half fill-
ing. An interesting new phase is s′SDW which is located
between s′CDW and SDW for kA 6= kB case. At this
special filling, interband Umklapp process is enhanced,
so s′SDW is dominant at small J . However, s′SDW is
stable only when U > J , although SDW is stable for all
U, J > 0 region (See Table III of the Appendix). Thus
at large J , SDW is again dominant, and we obtain the
above phase diagram.

The sSS phase at half filling should be read as S-Mott
or S’-Mott state, which often appear in two-leg ladder
problems;19 at commensurate filling, we know that the
system is insulating due to Umklapp process and not
metallic. These Mott insulating states have similar order
parameter as sSS except total charge mode when it is
written in bosonic fields, and turn into sSS upon doping.

Finally for most of the phases appearing at half filling is
completely gapped, C0S0, except a region where s′CDW
and pCDW are degenerate. In this degenerate region,
the orbital sector is massless, C1S0.

sSS

py SS

 SDW
p SDW

-1.0 -0.5 0.0 0.5 1.0
U-1.0

-0.5

0.0

0.5

1.0
J

(a)kA 6= kB 6= π/2 at n 6= 2

SDW
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-1.0 -0.5 0.0 0.5 1.0
U-1.0

-0.5

0.0

0.5

1.0
J

(b)kA 6= kB at n = 2

FIG. 4. Phase diagrams for vA/vB ≈ 40. Physically relevant
region is U/2 > J > 0.

C. Effect of velocity difference

As we pointed out in Sec. IV, the velocity difference
suppresses interband scattering process, and intraband
order becomes dominant. In our cases, the dominant
phases appearing are pySS, CDW, SDW, pSDW and sSS.
As the velocity difference gets larger from vA/vB = 1,
the phases governed by interband scattering are grad-
ually excluded, and beyond vA(B)/vB(A) ≈ 40, which
corresponds to νintra/νinter ≈ 10, the whole phase di-
agram is covered by intraband type ordering (Fig. 4).
The kA 6= kB = π/2 case looks like Fig. 4(a) when either
vA/vB or vB/vA becomes large. When kA = kB , the
phase diagrams are similar to Fig. 4(b) regardless of the
filling.

VI. STRONG COUPLING PHASE DIAGRAMS

We turn now to the phase diagrams in the strong cou-
pling regime, U � J � t. Since we are mostly interested
in high-spin state, we compared the energies of following
4 ferromagnetic states and 4 antiferromagnetic (or SDW)
states:

(1): FM, FM(+OFM), FM+ODW, FM+OAFM

(2): SDW, AFM, OFM+SDW, OFM+AFM,

where AFM stands for antiferromagnetism, and OAFM
is orbital-antiferromagnetism. In particular, we will dis-
tinguish two spin-density waves: AFM with q = π and
SDW with q = 2kF . The two states are identical when
kF = π/2 but while the SDW state is driven by a Fermi
surface instability and is the only important state in the
limit of weak coupling, the AFM state is stabilized by
commensurability (Umklapp) effects and may exist for a
range of carrier concentrations near the commensurate
value. We similarly define orbital density wave (ODW)
with wave vector q = 2kF , and OAFM with wave vector
q = π.

Calculations very similar to those leading to Eq. (15)
and Eq. (16) give the following results for q = π orderings
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FIG. 5. (Color online) Schematic phase diagram for the strong
coupling limit, U � J � t with J/t = 5 including inhomoge-
neous phases. Green: FM(+OFM), orange: FM+ODW, gray:
mixed state of FM(+OFM) and FM+OAFM, purple: mixed
state of FM+ODW and FM+OAFM, blue: mixed state of
FM+ODW and AFM.

in a single band with n < 1/2. The ground state energy
is given by

EGS = ν

∫ −2t(1−2n)

−2t

(
−
√
ε2 + g′2∆2

)
dε+ g′∆2

+ (static interaction energy), (27)

with ν = 1/(4t). We used g′ = 2g to emphasize that the
coupling constant is doubled at q = π due to Umklapp
process, while static energy from q = 0 part is just with
g. The kinetic energy for n > 1/2 can be obtained by
particle-hole symmetry. The solution for gap equation is
found to be

∆ =
2t

g′ sinh
(

2
νg′

)√(2n− 1)2 + 1 + 2(2n− 1) cosh

(
2

νg′

)
.

(28)
This goes to n/2 in the strong coupling limit. The solu-
tion exists only when the density is close to half filling,
nc < n < 1− nc, with

nc =
1

2

(√
cosh2

(
2

νg

)
− 1− cosh

(
2

νg

)
+ 1

)
. (29)

This becomes 1/2 at g → 0, and goes to 0 as g → ∞.
Thus, in the intermediate coupling, the density wave with
q = π is stable only around half filling.

For simplicity, we assumed two degenerate bands with
constant density of states. Particle-hole symmetry allows
us to investigate only 0 < n < 2. Comparing the energies

of the 8 states discussed above, we obtained ground state
phase diagram, which is given in Fig. 5. Below quarter
filling, FM(+OFM) – where only single band is occu-
pied – is dominant with large U ; this configuration does
not cost any interaction energy. The transition between
FM+ODW and FM(+OFM) below n = 1 can be under-
stood by Stoner’s scenario where orbital sector becomes
polarized above critical value Uc. The precise behavior
of the phase boundary as n → 0 depends on details;
for example, DoS of an isolated chain diverges at very
small n leading to the smaller value of critical interac-
tion strength.

As the filling becomes closer to quarter filling,
FM+OAFM is found to be stable because it can use
Umklapp processes to cancel static interaction energy, al-
though this solution is unstable if too much holes or elec-
trons are doped [See Eq. (29)]. As we plot the energies of
these states, we found that phase separated state exists
below n = 1, which mixes FM+OAFM and FM(+OFM)
for large U and FM+OAFM and FM+ODW for small
U . At exactly quarter filling, the system is homogeneous
FM+OAFM state.

Above quarter filling, the FM+ODW is more sta-
ble than FM(+OFM) and FM+OAFM; the energy of
FM+ODW in the strong coupling regime is roughly

E ∼ 1

8
(U − 3J)n2, (30)

while the energy of FM(+OFM) and FM+OAFM is lin-
ear in n, E ∼ (U − 3J)(n − 1). Thus, FM+ODW is
energetically preferable above n ≈ 1.18. Again the tran-
sition from FM+OAFM to FM+ODW is smeared by a
phase separated state of these two.

Near half filling, n ≈ 2, AFM state appears in weak
U regime by the same reason for FM+OAFM to appear
around quarter filling. However, the kinetic part of AFM
does not cancel the static part completely, and the resid-
ual interaction makes this state unstable as U gets larger.
AFM state forms an inhomogeneous mixed state with
FM+ODW below half filling, and at half filling, the sys-
tem is totally occupied by AFM.

Now, we’d like to compare our mean-field phase di-
agram to the previously obtained results. At quarter
filling (n = 1), Kugel and Khomskii,24 and Cyrot and
Lyon-Caen25 found FM+OAFM as the ground state by
strong coupling expansion, and this is confirmed by nu-
merical calculation.26,27 This result can be understood as
follows: when spins are totally aligned, Fermi momenta
are doubled, and effectively the system is at half filling.
Then we may regard orbital index as pseudo spins, and
the system exhibits pseudo-spin density wave, i.e., ODW.

Away from quarter filling, the Umklapp process is
killed so we expect OAFM is less dominant; indeed,
Sakamoto et al.27 found FM+ODW with tight-binding
DoS. They also found that adding far neighbor hop-
ping to get constant DoS replaces FM+ODW to para-
magnetism (S = 0) in n < 1 though the system re-
mains to be FM in n > 1. This is because FM is in-
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duced by double-exchange mechanism for electron-doped
case, but for hole-doped case, it is driven by purely one-
dimensional “spin-charge separation”,48 which is fragile
to perturbation of far-neighbor hopping. These obser-
vations do not contradict with our result above quarter
filling, though we have FM(+OFM) instead below quar-
ter filling. We think the FM(+OFM) state is actually
more or less similar to the paramagnetic state without
double occupancy in Ref. 27, since both configurations
do not cost any interaction energy below quarter filling.
The mean-field treatment picks up FM(+OFM) among
other configurations which do not have doubly occupied
sites. On the other hand, the ferromagnetism in Ref.
27 is induced by spin-charge separation, which is not a
phenomenon captured by mean-field theory. Therefore,
we conclude that the ferromagnetism of FM(+OFM) in
Fig. 5 and the state seen in the numerical results of Ref.
27 have different origins.

At half filling, the system is claimed to be Haldane
type where fully-polarized spin 1 on each site are antifer-
romagnetically coupled by exchange interaction. Slightly
below half filling, a phase separation between Haldane
phase and FM+ODW was found,27 which agrees with
our results for small U .

VII. SUMMARY

In this paper, we used mean-field theory to determine
the phase diagrams of the two-band Hubbard model
for a wide range of interactions including the intraband
Coulomb repulsion U , interband Coulomb repulsion
U ′(= U − 2J), Hund coupling J , and pair-hopping J .
For transition metal ions, we expect U � J > 0.

First, we looked at the weak coupling regime where
back-scattering is dominant. For equal Fermi velocities,
we observed five general features irrespective of band
structure, each corresponds to the following parameter
regions:

(1) U � J > 0: This parameter regime is relevant to
real materials. In this region, various SDW or-
ders (SDW, s′SDW, and pSDW) are most dominant
similarly to simple Hubbard model. When kA 6= kB
with incommensurate filling, SDW and pSDW are
degenerate since there is no phase pinning effect be-
tween independent SDWs in two orbitals due to the
incommensurability. When kA+kB = π, the inter-
band Umklapp process enhances s′SDW in small J
region, and becomes dominant.

(2) J � |U | > 0: The ground state is spin-triplet su-
perconductivity (p′yTS) for incommensurate filling,
and CDW at half filling. The former is driven by
the attractive interaction by large J and the Cooper
pair is formed by interband electrons. When kA 6=
kB , their order parameters have non-zero momen-
tum such as FFLO state42 but without external

field. The CDW at half-filing is induced by the
strongly enhanced Umklapp process.

(3) −U � −J > 0: This is again described by single-
band Hubbard physics, and sSS order develops.

(4) −U � J > 0: When filling is commensurate or two
Fermi momenta are equivalent, these conditions al-
low additional scattering processes for CDW, and
this becomes the ground state. On the other hand,
for kA 6= kB and incommensurate filling, intraband
pySS is dominant due to positive J and suppression
of interband process.

(5) −J � |U | > 0: The ground state is interband CDW
(s′CDW), which is an orbital analogue of SDW
in single-band Hubbard model. When the system
has U(1)orbital symmetry, pCDW is degenerate to
s′CDW.

The velocity difference reduces interband process, and
intraband ordering becomes dominant relatively. As we
increase the velocity difference from vA/vB = 1, we ob-
served that interband type ordering gradually expelled
from the phase diagram, and above vA/vB ≈ 40, the
phase diagram is completely covered by intraband type
ordering.

Second, we investigated the strong coupling regime of
the model. We found ferromagnetism is almost always
achieved, and various orbital orders are realized depend-
ing on density and interaction. Around quarter filling,
FM+OAFM with q = π modulation is stable. The region
above quarter filling is dominated by FM+ODW with
q = 2kF , and there exists phase separation between these
two phases. Below quarter-filing, FM+ODW is domi-
nant for small U , and this is replaced by FM(+OFM)
for larger U . The transition between these two phases
by changing the magnitude of interaction can be un-
derstood by Stoner’s scenario. As density gets larger,
these states pass through phase separated regime and
become FM+OAFM at quarter filling. Close to the half
filling, there is an inhomogeneous mixed state of AFM
and FM+ODW for small U .

For the Co/Cu system, it is located in U � J > 0 re-
gion if we neglect the hybridization between the Co wires
and Cu surface. Although the real system has more than
two orbitals, we may expect the following results are re-
alized in the Co/Cu systems. First, if the system is in the
weak coupling regime, it exhibits SDW, s′SDW, or de-
generate SDW-pSDW state depending on the band struc-
ture. In bosonization scheme, these phases are replaced
by spin-gapped phases or quasi-long range order phase.
In strong coupling regime, we may have FM(+OFM),
FM+ODW, or FM+OAFM. If the filling is very close to
half filling and the U is not large, AFM is also possible.
Of course the effect of hybridization or larger number
of orbitals will introduce more complex physics into the
system, but we will not pursue it here.

In a subsequent paper, we will present a result by
renormalization and bosonization taking quantum fluctu-
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ation into consideration. The low energy effective Hamil-
tonian obtained after integrating out the high frequency
modes could be different from the microscopic Hamilto-
nian we considered here, and different ground state is
expected to appear. Especially several Mott insulating
phases which are Ising dual phases of density-wave should
be investigated. These order parameters are expressed by
non-local “string” operators, and are not considered here.
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Appendix: Coupling constants

In this Appendix, we list the coupling constants of the phases we considered in this paper (Table III). The stable
condition for the gap equation requires the coupling constant to be positive. For commensurate filling, Umklapp
process doubles the number of possible scattering for density waves, though the superconducting order is not affected.
When only one band is commensurate, the intraband scattering is enhanced for density-wave formation.

kA 6= kB 6= π/2 kA 6= kB = π/2 kA = kB 6= π/2 kA + kB = π kA = kB = π/2

CDW −U −U,−2U −3U + 5J −3U + 5J −6U + 10J

SDW U U, 2U U + J U + J 2U + 2J

s′CDW U − 5J U − 5J U − 5J 2U − 10J 2U − 10J

s′SDW U − J U − J U − J 2U − 2J 2U − 2J

p′CDW U − 3J U − 3J U − 3J 2U − 6J 2U − 6J

p′SDW U − 3J U − 3J U − 3J 2U − 6J 2U − 6J

pCDW −U −U,−2U U − 5J U − 5J 2U − 10J

pSDW U U, 2U U − J U − J 2U − 2J

d′SS −U + J −U + J 0 −U + J 0

p′yTS −U + 3J −U + 3J −2U + 6J −U + 3J −2U + 6J

pySS −2U + 2J −2U + 2J −2U + 2J −2U + 2J −2U + 2J

dTS 0 0 0 0 0

sSS −2U − 2J −2U − 2J −2U − 2J −2U − 2J −2U − 2J

pxTS 0 0 0 0 0

s′SS −U − J −U − J −2U + 2J −U + J −2U + 2J

p′xTS −U + 3J −U + 3J 0 −U + 3J 0

TABLE III. Coupling constant for each phase
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