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Magneto-Optical Faraday and Kerr Effects in Topological Insulator Films
and in Other Layered Quantized Hall Systems

Wang-Kong Tse and A. H. MacDonald
Department of Physics, University of Texas, Austin, Texas 78712, USA

We present a theory of the magneto-optical Faraday and Kerr effects of topological insulator (TI)
films. For film thicknesses short compared to wavelength, we find that the low-frequency Faraday
effect in ideal systems is quantized at integer multiples of the fine structure constant, and that the
Kerr effect exhibits a giant π/2 rotation for either normal or oblique incidence. For thick films
that contain an integer number of half wavelengths, we find that the Faraday and Kerr effects are
both quantized at integer multiples of the fine structure constant. For TI films with bulk parallel
conduction, we obtain a criterion for the observability of surface-dominated magneto-optical effects.
For thin samples supported by a substrate, we find that the universal Faraday and Kerr effects
are present when the substrate is thin compared to the optical wavelength or when the frequency
matches a thick-substrate cavity resonance. Our theory applies equally well to any system with two
conducting layers that exhibit quantum Hall effects.

PACS numbers: 78.20.Ls,73.43.-f,75.85.+t,78.67.-n

I. INTRODUCTION

Because topological insulators (TIs) have gapless he-
lical surface states1–4 that respond strongly to time-
reversal symmetry breaking perturbations, magneto-
optical studies have emerged as an important tool for
their characterization5–15. This paper expands on pre-
vious work10,11 in which we demonstrated that ideal TIs
exhibit striking unversal features in their long-wavelength
response — a universal Faraday angle equal to the fine
structure constant and a giant 90 degrees Kerr rotation.
The present paper details the formalism used to obtain
these results and generalizes the theory to new circum-
stances motivated by current experimental activity. In
particular, we include the influence of bulk conduction
on the magneto-optical properties, analyze the role of
the substrate material, and examine the case of oblique
incidence of the light source. We also extend our theory
to include thick TI films in which the electromagnetic
wave can excite one of the cavity resonance modes of the
film. Although we focus on the case of TI thin films,
our results apply generically to systems containing two
conducting layers that exhibit quantum Hall effects.

When bulk conduction and surface longitudinal con-
duction are both negligible, the magneto-optical proper-
ties of a TI thin film can be elegantly characterized by
adding a magneto-electric coupling term to the electro-
magnetic Lagrangian to obtain topological field theory8.
This description of magneto-electric properties shows
that TIs provide a solid-state realization of axion elec-
trodynamics, similar to those anticipated by Wilzcek
in Ref. [16]. The topological field theory formulation
of magneto-electric properties can be derived by inte-
grating out the electronic degrees of freedom to obtain
the magneto-electric polarizability of the bulk insulator,
which is expressible as a Chern-Simons 3 form8,9. By ap-
pealing to bulk time-reversal invariance considerations,
it is possible to conclude that the coupling constant θ

of the topological field theory8,9 is 0 mod(2π) for ordi-
nary insulators and πmod(2π) for TIs. These possibili-
ties correspond respectively to integer quantized surface
Hall conductances in the case of ordinary insulators and
to half-integer quantized surface Hall conductances11 in
the case of topological insulators, providing a demonstra-
tion of this important TI property. The topological field
theory approach has a number of limitations, however,
in describing real experiments because i) it does not ac-
count for the surface longitudinal conductance which is
never precisely zero at finite temperatures even when the
quantum Hall effect is well established, ii) the surface
Hall conductivity in topological field theory is ambigu-
ous up to an integer multiple of e2/h, and iii) real thin
film samples often have a finite bulk conductivity that is
not readily incorporated. In addition, the thin film geom-
etry normally used for magneto-optical studies requires
seemingly artificial spatial profiles of the θ coupling con-
stant, as discussed in the following paragraph. For these
reasons we prefer to model the surface Hall conductivi-
ties using a microscopic two-dimensional massless Dirac
model for the TI surface states that is fully detailed be-
low. The main disadvantage of our approach is that it
captures the precise quantization of the DC surface Hall
conductivity only when the massless Dirac model’s ultra-
violet cutoff is set to infinity. An important lesson from
our approach is that topological field theory applies only
when time-reversal symmetry breaking is strong enough
to overcome disorder and establish a surface quantum
Hall effect, and then only in the limit of temperatures
and frequencies small compared to the surface gap in-
duced by time-reversal symmetry breaking.

The original discussion of Wilzcek16 imagined axion
electrodynamics induced by a bulk spherical medium
with a non-zero θ parameter separated from vacuum with
θ = 0 by a single simply-connected surface. In the case
of a spherical TI sample, this formulation can correctly
capture the material’s surface Hall conductivity. Simi-
larly, the case of an ideal semi-infinite TI slab8 can be
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FIG. 1: (Color online) (a). Schematic illustration of the Faraday and Kerr effects. Incident linearly polarized light becomes
elliptically polarized after transmission (Faraday effect) and reflection (Kerr effect), with polarization plane angle rotations θF
and θK respectively. (b) Fabry-Perot-like reflection and transmission in the TI film geometry. ‘T’ stands for the top surface
and ‘B’ the bottom surface.

described by a topological field theory model with θ 6= 0
in the topological insulator and θ = 0 in vacuum. In
a magneto-optics setting, however, a propagating elec-
tromagnetic wave necessarily interacts with two nearby
surfaces, since a real TI thin film sample has both top
and bottom surfaces. Assuming that the mechanism that
breaks time-reversal invariance at the TI surface does so
in the same sense on both top and bottom, both surfaces
will have the same Hall conductivity. In topological field
theory, this would be captured by a model in which the
discontinuity in θ in the direction of light propagation
has the same sign and magnitude at both surfaces. To
describe a thin film with identical half-quantized Hall
conductivities on opposite surfaces it is then necessary
to take θ = ±2π in one of the vacuum regions. A TI thin
film model in which the surrounding material has θ = 0
everywhere would instead describe a system with oppo-
site Hall conductivities on opposite surfaces. Because of
the opposite contributions, the magneto-optical effects
would then vanish for films thinner than a wavelength.

Given the surface massless Dirac models, our ap-
proach to magneto-electric properties is more conven-
tional. Magneto-electric properties are completely de-
termined by the conductivity of the material, including
bulk and surface, longitudinal and Hall contributions.
The role of the theta-term in axion electrodynamics equa-
tions is completely replaced by the appearance of explicit
surface Hall conductivities that influence electromagnetic
wave boundary conditions. These calculations make it
clear that magneto-electric properties depend essentially
on the numerical values of the surface conductivities, not
just on whether they are quantized or half-quantized.
This is especially important when surface time-reversal
invariance is broken by an external magnetic field, since
both the sign and the magnitude of the surface currents
will be sensitive to the position of the Fermi level within

the bulk gap. In addition to this advantage, the optical
response of the surface Dirac fermions can be evaluated
microscopically, enabling a natural incorporation of dy-
namical and many-body effects.

Interesting magneto-optical effects occur in both low-
frequency and higher frequency regimes. In the latter
case, we have found interband absorption10 and cyclotron
resonance11 features in the Faraday and Kerr rotations
that are dramatically enhanced by the cavity confine-
ment effect of the TI thin film. We focus mainly on the
large topological magneto-optical effects at low frequen-
cies which can be observed only if the following condi-
tions are satisfied: (1) The TI surface has a quantized
Hall effect allowed by time-reversal breaking due to either
external magnetic field or exchange coupling to external
electronic degrees of freedom. We know from vast experi-
ence with the quantum Hall effect in an external magnetic
field in graphene, which is also described by a massless
Dirac equation, that the quantum Hall effect can occur at
quite weak magnetic fields when the Fermi level is close
to the Dirac point and disorder is very weak. Exchange-
coupling to spin yields a half-quantized anomalous Hall
effect in the absence of disorder17,18. Although there are
no experimental examples of quantized anomalous Hall
effect as yet, the requirements on time-reversal break-
ing perturbation strength in the presence of disorder are
likely to be similar. The magneto-electric anomalies re-
quire large Hall effects at finite electromagnetic wave fre-
quency. This condition requires that the frequency be
much smaller than the surface gap. (2) The dimension of
the TI along the direction of light travel should be shorter
than the electromagnetic wavelength or a nonzero integer
multiple of the half wavelength. In either case, the di-
electric properties of the TI bulk medium that separates
the two quantized Hall layers do not influence the trans-
mitted and reflected light. When these conditions are
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satisfied, the magneto-optical effects are universal and
topologically protected against weak surface disorder.

The outline of our paper is as follows. In the Section
II, we review linear response theory for the optical con-
ductivity tensor of TI surface helical quasiparticles. In
Section III, we summarize the electromagnetic scatter-
ing formalism appropriate for a system with two metallic
surfaces surrounded by dielectrics, applicable to TI films
and to other similar layered systems. We then present
and discuss our results for the magneto-optical Faraday
and Kerr effects, first for TI films that are thinner than
a wavelength and then for the general case. In Section V
we address some issues pertinent to experiments includ-
ing the influence of bulk conduction, the role of oblique
incidence, and the role of substrates. Finally in Section
VI we discuss the closely related magneto-optical prop-
erties of graphene-based layered massless Dirac systems.

II. DYNAMICAL RESPONSE OF A
SPIN-HELICAL DIRAC FERMIONS

We first derive explicit analytic expressions for the
longitudinal and Hall optical conductivities of the spin-
helical quasiparticles of topological insulator surfaces
with time-reversal symmetry broken in two different
ways: (1) an exchange field that couples to spin, and
(2) an external magnetic field that couples to both spin
and orbital degrees of freedom. The former case can be
realized by exchange coupling between the TI surface and
an adjacent ferromagnetic insulator8,10. The response of
TI surface carriers to exchange coupling is unique, and
ongoing progress along this direction has been reported
by several experimental groups19–22.

In the presence of time-reversal symmetry breaking,
the massless Dirac Hamiltonians for the top (T) and bot-
tom (B) surfaces are

H = (−1)L [vτ · (−i∇+ eA/c) + V/2] + ∆τz, (1)

where τ is the spin Pauli matrix vector (expressed in 90◦

rotated basis from the real spins23), A is the magnetic
vector potential, ∆ is the Zeeman coupling strength, V
accounts for a possible potential difference between top
and bottom surfaces due to doping or external gates, and
L = 0, 1 for the top (0) and bottom (1) surfaces. Note
that in spite of the sign difference in the kinetic energy
terms for the top and bottom surfaces, the conductivi-
ties are identical on the two surfaces. The massless Dirac
surface states description is valid for energies below the
energy cut-off of the Dirac Hamiltonian εc, which we as-
sociate with the separation between the Dirac point and
the closest bulk band.

A. Exchange Field

Time-reversal symmetry breaking by an exchange field
can be realized by interfacing the TI surface with an insu-

lating ferromagnet with magnetization oriented perpen-
dicularly. Magnetic proximity coupling with strength ∆
will favor alignment of the TI surface spins. The numer-
ical value of ∆ would be determined by the orbital hy-
bridization between the ferromagnetic material and the
TI surface. A = 0 in Eq. (1) in the absence of an applied
magnetic field. In this limit, the Dirac cone is gapped
with conduction (µ = 1) and valance (µ = −1) band
dispersions and eigenstates

εkµ = µεk, |kµ〉 =

[
C↑kµ

C↓kµe
iφk

]
. (2)

where εk =
√

(vk)2 + ∆2, φk is the azimuthal angle of
the crystal momentum, and

C↑kµ = sgn(µ)
√
εk + sgn(µ)∆/

√
2εk,

C↓kµ =
√
εk − sgn(µ)∆/

√
2εk, (3)

The optical conductivity tensor of the helical quasi-
particles on topological insulator surface can be obtained
from the Kubo formula24:

σαβ (ω) = ig
∑
k

∑
µµ′

fkµ − fkµ′

εkµ − εkµ′

〈kµ|jα|kµ′〉〈kµ′|jβ |kµ〉
ω + εkµ − εkµ′ + i/2τs

,

(4)
where α, β = {x, y}, µ, µ′ = ±1 denote the band index,
fkµ is the Fermi factor for band µ, 1/τs is the quasi-
particle lifetime broadening of the surface states, and g
is the (odd) number of Dirac cones on the TI surface,
which we take for simplicity and concreteness to be 1.
This expression is not quantitatively correct when dis-
order is present (i.e. when τs is finite), because it does
not capture the localization physics that is important
in the quantum Hall regime, but it is adequate for our
present interest. We evaluate the longitudinal conduc-
tivity σxx(ω) = σRxx + iσIxx and the Hall conductivity
σxy(ω) = σRxy + iσIxy in the topological transport regime
when the Fermi level lies within the TRS breaking gap.
Since all surface optical conductivities eventually appear
in the outgoing electromagnetic fields in the combination
σαβ/c, we shall adopt the ‘natural units’ for the opti-
cal conductivities and express σαβ in e2/~ = α c units
(α = 1/137 is the vacuum fine structure constant) and
set c = 1 except where specified. For the dissipative
components of the optical conductivity we find that:

σRxx =
1

16πx(ω2 + Γ2)2

×
{
x
[
(ω2 + Γ2)2 + 4(ω2 − Γ2)∆2

]
g(x)

+4Γ∆2
[
ω2 + Γ2 + ωxf(x)

]} ∣∣x=εc

x=∆

σIxy =
∆

8π(ω2 + Γ2)
[−2ωg(x)− Γf(x)]

∣∣x=εc

x=∆
(5)

For the reactive, non-dissipative components of the opti-
cal conductivity σIxx and σRxy, which are due to off-shell
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virtual transitions, we find that:

σIxx =
1

32πx(ω2 + Γ2)2

{
8ω∆2(ω2 + Γ2)− 16xωΓ∆2g(x)

+x
[
(ω2 + Γ2)2 + 4∆2(ω2 − Γ2)

]
f(x)

} ∣∣x=εc

x=∆

σRxy =
∆

8π(ω2 + Γ2)
[−2Γg(x) + ωf(x)]

∣∣x=εc

x=∆

(6)

where R(x)|x=x2
x=x1

means R(x2)−R(x1), Γ = 1/2τs, and

f(x) = ln

∣∣∣∣ (ω − 2x)2 + Γ2

(ω + 2x)2 + Γ2

∣∣∣∣ ,
g(x) = tan−1

(
ω − 2x

Γ

)
− tan−1

(
ω + 2x

Γ

)
. (7)

When the disorder broadening is small such that Γ� ∆,
it is useful to obtain analytic results in the disorder-free
limit Γ→ 0, in which case

g(x)
∣∣x=εc

x=∆
= −πθ(|ω| − 2|∆|), (8)

and Eqs. (5)-(7) reduce to our previous results [Eqs. (2)-
(3) in Ref. 10] obtained from the quantum kinetic equa-
tion approach.

B. External Quantizing Magnetic Field

Landau level (LL) quantization of the TI’s sur-
face Dirac cones has recently been observed by STM
experiments25,26. In the presence of a quantizing field,
the vector potential in Eq. (1) is given in the Landau
gauge by A = (0, Bx) and the Zeeman coupling by ∆ =
gJµBB/2, where gJ is the electron g factor. Define raising

and lowering operators a = (`B/
√

2)[∂x+(x+x0)/`2B ] and

a† = (`B/
√

2)[−∂x + (x + x0)/`2B ] with `B = 1/
√
e|B|

the magnetic length and x0 = ky`
2
B the guiding center

coordinate, Eq. (1) can be written as[
∆ −i

(√
2v/`B

)
a

i
(√

2v/`B
)
a† −∆

]
|n〉 = ε|n〉, (9)

where |· · ·〉 denotes an eigenspinor. The LLs are labeled
by integers n and for n 6= 0 and have eigenenergies [rela-
tive to the respective Dirac point energies (−1)LV/2] and
eigenspinors

εn = sgn(n)

√
2v2

`2B
|n|+ ∆2, |n〉 =

[
−iC↑n||n| − 1〉
C↓n||n|〉

]
.(10)

where ||n|〉 without an overbar denotes a Fock state (|n|
is the absolute value of n), and

C↑n = sgn(n)
√
ε|n| + sgn(n)∆/

√
2ε|n|,

C↓n =
√
ε|n| − sgn(n)∆/

√
2ε|n|. (11)

In the n = 0 LL spins are aligned with the perpendicular
field so that

ε0 = −∆, |0〉 =

[
0
|0〉

]
. (12)

In the quantum Hall regime (ΩBτs � 1 where ΩB =
v/`B is a characteristic frequency typical of the LLs spac-
ing), the conductivity tensor can be expressed in LL basis
as

σαβ (ω) =
ig

2π`2B

∑
nn′

fn − fn′

εn − εn′

〈n|jα|n′〉〈n′|jβ |n〉
ω + εn − εn′ + i/2τs

,

(13)
where the current operator is j = ie [H,x] = evτ . For
convenience we rewrite the LL index as n = sm, where
m = 0, 1, 2, · · ·Nc and s = ±1 for electron-like and hole-
like LLs. The current matrix element 〈n|jα|n′〉 captures
the selection rule |n′| − |n| = ±1 for LL transitions. Af-
ter some algebra we find that the conductivity tensor
Eq. (13) in e2/~ = αc units is given by

σαβ(ω) =
v2

2π`2B

Nc−1∑
m=0

∑
s,s′=±1

fsm − fs′(m+1)

εsm − εs′(m+1)
Γs,s

′

αβ (m,ω),

(14)

where

Γs,s
′

{xxxy}
(m,ω) = −

{
i
1

}
C2
↑s′(m+1)C

2
↓sm (15)(

1

ω − εsm + εs′(m+1) + i/2τs
± 1

ω + εsm − εs′(m+1) + i/2τs

)
.

In Eq. (15), Nc ' `2B(ε2
c − ∆2)/2v2 is the largest LL

index with an energy smaller than the ultraviolet cut-off
εc, prefactor i and sign ‘+’ inside the parenthesis apply
to the Γxx expression, 1 and ‘−’ to the Γxy expression.
Eqs. (14)-(15) express σαβ as a sum over interband and
intraband dipole-allowed transitions which satisfy |n′| −
|n| = ±1. In the ω = T = τ−1

s = 0 limit Eq. (14)
yields correct half-quantized plateau values for the Hall
conductivity.

III. LIGHT PROPAGATION THROUGH A TI
SLAB

In this section, we formulate the problem of electro-
magnetic wave scattering through a topological insula-
tor slab illustrated schematically in Fig. 1(b). Here we
discuss only the normal incidence case. More general re-
sults for the oblique incidence case are presented in an
Appendix.

Consider an electromagnetic wave propagating along
the z direction through two materials, labeled by i and j,
with dielectric constant and magnetic permeability εi, µi
and εj , µj respectively. The interface between them is
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at z = ai. We write the electric field component of the
electromagnetic field in the form

Ẽi = eikiz
[
Etix
Etiy

]
+ e−ikiz

[
Erix
Eriy

]
, (16)

where the tilde accents denote vectors Ẽ = [Ex Ey]T,

the superscripts ‘r’ and ‘t’ on Ẽ denote the reflected
and transmitted components of the electric field, and
ki = (ω/c)

√
εiµi is the wavevector in medium i. The

corresponding magnetic field is given by Faraday’s law
as

H̃i =

√
εi
µi

{
eikiz

[
−Etiy
Etix

]
+ e−ikiz

[
Eriy
−Erix

]}
, (17)

The electric and magnetic fields at the interface z = ai
satisfy the electrodynamic boundary conditions Ẽi = Ẽj

and −iτy(H̃j − H̃i) = (4π/c)J̃ i, where τy is the Pauli

matrix and J̃ i = σ̄iẼi is the surface current density at
z = ai. Note that this surface current can have longitu-
dinal and Hall response components in this microscopic
theory and not only Hall components as assumed in topo-
logical field theory.

The scattering matrix that relates incoming [Ẽti Ẽrj ]T

and outgoing [Ẽri Ẽtj ]T fields at a conducting interface
can be written in the form

S =

[
r̄ t̄′

t̄ r̄′

]
, (18)

where the superscripts ‘r’ and ‘t’ on Ẽ denote reflected
and transmitted components of the electric fields, and
r̄, r̄′ and t̄, t̄′ are 2×2 reflection and transmission tensors,
which are of the form:

r̄ =

[
rxx rxy
−rxy ryy

]
, t̄ =

[
txx txy
−txy tyy

]
, (19)

and similarly for r̄′ , t̄′ . Matching boundary conditions,
we obtain the following expressions for r̄, t̄ r̄

′
and t̄

′
:{

rxx
rxy

}
=

ei2kiai

(
√
εi/µi +

√
εj/µj + 4πσxx)2 + (4πσxy)2

×
{
εi/µi − (

√
εj/µj + 4πσxx)2 − (4πσxy)2

−8π
√
εi/µiσxy

}
, (20)

{
txx
txy

}
=

ei(ki−kj)ai

(
√
εi/µi +

√
εj/µj + 4πσxx)2 + (4πσxy)2

×
{

2
√
εi/µi(

√
εi/µi +

√
εj/µj + 4πσxx)

−8π
√
εi/µiσxy

}
. (21)

For normal incidence, the two diagonal elements of the

reflection and transmission matrices are identical: r
(′)
yy =

r
(′)
xx and t

(′)
yy = t

(′)
xx. r̄′ can be obtained from r̄ by making

the replacement ki → −kj and interchanging εi/µi and

εj/µj , and t̄′ from t̄ by interchanging εi/µi and εj/µj . In

addition, t̄ and t̄′ are related by t̄/
√
εi/µi = t̄′/

√
εj/µj .

Scattering from a TI film presents an electromagnetic
problem in which scattering occurs from two interfaces
at which currents flow and dielectric constants are dis-
continuous. The reflection and transmission tensor can
be composed from the single-interface scattering matrices
¯r(′), ¯t(′) for the top and bottom surfaces to obtain

r̄ = r̄T + t̄′Tr̄B

(
1− r̄′Tr̄B

)−1
t̄T, (22)

t̄ = t̄B
(
1− r̄′Tr̄B

)−1
t̄T. (23)

The presence of a dielectric substrate underneath the TI
film is easily accounted for by propagating the reflection
and transmission tensors Eqs. (22)-(23) through an ad-
ditional layer of dielectric. Detailed expressions for the
reflection and transmission tensors that allow for oblique
incidence and account for a dielectric substrate are given
in an Appendix.

IV. MAGNETO-OPTICAL FARADAY AND
KERR EFFECTS

For linearly polarized incoming light, the Faraday and
Kerr angles can be defined in terms of the relative rota-
tions of left-handed and right-handed circularly polarized
light to obtain:

θF =
(
arg{Et

+} − arg{Et
−}
)
/2, (24)

θK =
(
arg{Er

+} − arg{Er
−}
)
/2, (25)

where Er,t
± = Er,t

x ± iEr,t
y are the left-handed (+) and

right-handed (-) circularly polarized components of the
outgoing electric fields.

In this section, we present our results for an ideal topo-
logical insulator under normal light incidence. We then
discuss non-ideal effects that may be relevant in exper-
imental situations in Section V. It is important to em-
phasize that the magneto-optical effects are essentially
the same in this limit for time-reversal symmetry broken
by exchange coupling or by a quantizing magnetic field.
In the case of a quantizing field, there are many gaps
in the surface spectrum because of Landau quantization.
The quantized Hall conductivity in e2/h units is equal to
the filling factor νT,B. The largest gap in the magnetic
field case occurs occurs at νT,B = 1/2 and has the same
Hall conductivity as for the Zeeman gap case. In the
magnetic field case, it is possible to shift the Hall con-
ductivities of either surface by integer multiples of e2/h
away from e2/2h simply by shifting the position of the
Dirac point relative to the chemical potential, and this
shift would influence the magneto-optical effects. When
the chemical potential is placed in the largest gap in the
magnetic field case, the only differences between the two
scenarios are in the details of the higher frequency re-
sponse.
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A. Thin Film d� λ

First we consider the case of a TI film that is thinner
than the light wavelength. In this limit it follows from
Faraday’s law that the electric field is spatially constant
across the film so that the two interfaces can be consid-
ered as one. Ampère’s Law implies that the magnetic
field changes by a value proportional to the current inte-
grated across the TI film,

−iτy(H̃T − H̃B) = (4π/c) (σ̄T + σ̄B) Ẽ, (26)

where H̃T,B denotes the magnetic fields in the top and
bottom vacuum regions outside of the film. Eq. (26)
says that, from the viewpoint of the long electromag-
netic wave, the TI film behaves effectively as a single
two-dimensional surface with a conductivity equal to the
conductivities integrated across the film. We therefore
obtain the transmitted and reflected fields

Ẽt =
1

(2 + 4πσxx)
2

+ (4πσxy)
2

[
4 (1 + 2πσxx)

8πσxy

]
,(27)

Ẽr =
1

(2 + 4πσxx)
2

+ (4πσxy)
2[

1− (1 + 4πσxx)
2 − (4πσxy)

2

8πσxy

]
, (28)

for simplicity here we use σxx, σxy to denote the total
longitudinal and Hall conductivities from both surfaces,
respectively. An important observation is that in this
limit the transmitted and reflected fields are indepen-
dent of the bulk dielectric properties of the TI film. For
weak disorder and frequencies much smaller than charac-
teristic transition frequencies (ω � ∆ for the exchange
field case and ω � ΩB for the magnetic field case), the
optical conductivity has only a dissipationless DC Hall
conductivity contribution:

σRxy =
νT,B

2π
, (29)

and σRxx = σIxx = 0, σIxy = 0. In this low-frequency
regime, the magneto-optical response of the exchange
field case becomes a special case of the quantizing mag-
netic field case with νT = νB = 1/2 as explained above.

From Eqs. (27)-(28) we find the Faraday and Kerr an-
gles

θF = tan−1 [(νT + νB)α] , (30)

θK = − tan−1

[
1

(νT + νB)α

]
. (31)

For total filling factor νT + νB values that are not too
large, the Faraday angle is quantized in integer multiples
of the fine structure constant

θF ' (νT + νB)α, (32)

and the Kerr angle

θK = −π
2
, (33)

becomes a full quarter polarization rotation.
It is also possible to understand Eq. (33) in terms of

the scattering mechanism of the reflected partial wave
components. This understanding is crucial to see that
Eq. (33) applies over a finite frequency range, as dis-
cussed in Section V B. The reflected electric field can be
easily found from Eq. (22). The algebra is simplified and
the physics underlying Eq. (33) more easily illustrated
when spatial-inversion symmetry across the TI film is
preserved, i.e. when top and bottom surfaces have the
same conductivities. This happens when the exchange
fields for both surfaces are the same, or in the quantizing
magnetic field case, when the surface densities (and thus
filling factors) are the same. Spatial-inversion symmetry
then implies that r̄B = r̄T

′, r̄T = r̄B
′, t̄B = t̄T

′
, and

t̄T = t̄B
′
. This allows the reflected electric field to be ex-

pressed solely in terms of the reflection and transmission
matrix elements of one (e.g., the top) of the two surfaces.
The first term on the right hand side of Eq. (22) repre-
sents the partial wave directly reflected from the top sur-
face, which we can evaluate in the low-frequency regime
as

Ẽr0 =
1(

1 +
√
ε/µ
)2

+
(
4πσRxy

)2
[
1− ε/µ−

(
4πσRxy

)2
8πσRxy

]
,

(34)

where ε, µ ' 1 are the bulk dielectric constant and mag-
netic permeability of the TI, and the second term consti-
tutes all the partial waves that originate from successive
reflections from the bottom surface

Ẽr′ =
1

1 +
(
4πσRxy

)2 [ 1
4πσRxy

]
(35)

− 1(
1 +

√
ε/µ
)2

+
(
4πσRxy

)2
[
2 (1 + ε/µ)

8πσRxy

]
.

Summing the two contributions, we find that part of the
second term on the right-hand side of Eq. (35) cancels
out the first term on the right-hand side of Eq. (34) com-
pletely, yielding a total reflected field

Ẽr =
1

1 +
(
4πσRxy

)2 [− (4πσRxy)24πσRxy

]
. (36)

Eq. (36) implies that the reflected partial waves that orig-
inate from successive scattering off the bottom surface
destructively interfere with the partial wave scattered off
the top surface, resulting in a suppression by a factor
∼ (σRxy)2 of the reflected electric field component along
the incident polarization direction. This leads to the gi-
ant Kerr angle in Eq. (33). It is worthwhile to make
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clear that the large Kerr angle occurs because almost all
of the reflected partial waves have a 90◦ rotated polar-
ization plane; it is not true, however, that almost all of
the light is reflected.

B. Thick Film d & λ

In the previous section, we have focused on films with
a thickness that is only a fraction of the wavelength. In
this section, we shall relax this assumption and generalize
our considerations to thicker films, with thickness com-
parable to or greater than the wavelength inside the film.
Thick films do not in general show spectacular magneto-
optical effects because the Faraday and Kerr angles are
suppressed by the large dielectric constant of the TI bulk.
Exceptions occur when the film thickness contains an in-
teger multiple of half wavelengths inside the film, i.e.
when the cavity resonance condition kTId = Nπ is sat-
isfied. Here kTI =

√
εµω/c is the wave number in the

TI film and N 6= 0 is an integer. This property was first
identified in Ref. [13], however the discussion there as-
sumed an infinitely thick dielectric substrate underneath
the TI film, neglecting scattering from the inevitable
substrate-vacuum interface and thereby overestimating
substrate suppression of magneto-optical responses. In
this section, we first consider a free-standing thick film.
We will then study the influence of a substrate, with its
finite thickness properly accounted for, in Section V.

At resonance, a standing wave is established inside the
film with the tangential components of the electric and
magnetic fields on the interior of the top and bottom
surfaces inside the film related simply by a ± sign, i.e.
E‖(z = −d/2+)/E‖(z = d/2−) = (−1)N (here z = 0
is taken at the center of the film), and similarly for
H. Under such circumstances, the transmitted and re-
flected electric fields become independent of the film’s
bulk dielectric properties, and are found to be given by
Eqs. (27)-(28) multiplied by a phase factor e−ik0d, where
k0 = ω/c is the vacuum wave number. In contrast to the
long-wavelength regime we considered earlier in which
the electromagnetic field varies slowly across the TI film,
at resonance the field amplitudes change rapidly inside
the film and the adiabatic condition k0d � 1 does not
apply. Regardless of the film thickness, however, the adi-
abaticity of TI surface electronic response can always
be established at a sufficiently low frequency satisfying
ωN � ∆ or ΩB [ωN = Nπc/(

√
εµ d) is the cavity reso-

nance frequency], such that the quantum Hall condition
Eq. (29) still holds. It follows from these considerations
that the phases of the left-handed and right-handed cir-
cularly polarized components of the transmitted and re-
flected light are given by

arg(Et
λ) = tan−1

−λ sin(k0d) + 2π cos(k0d)σRxy
λ cos(k0d) + 2π sin(k0d)σRxy

,(37)

arg(Er
λ) = tan−1

cos(k0d) + λ2π sin(k0d)σRxy
sin(k0d)− λ2π cos(k0d)σRxy

, (38)

where λ = ±1 labels the left and right-handed circularly
polarized light, and σRxy contains the sum of the top and
bottom surface Hall conductivities.

Let us make several remarks here. If we set k0d → 0,
Eqs. (37)-(38) coincide with the long-wavelength (k0d <
kTId � 1) results, from which we recover Eqs. (30)-(31)
for the Faraday and Kerr angles. In general, if in addition
to the requirement kTId = Nπ for resonance we also have
k0d = Mπ, then Eqs. (37)-(38) would imply that θF =
tan−1 [(νT + νB)α] and θK = − tan−1 [1/ (νT + νB)α]
for integer M , and θF = − tan−1 [1/ (νT + νB)α] and
θK = tan−1 [(νT + νB)α] for half-odd integer M . These
conditions would require

√
εµ = N/M . With real materi-

als this would seem to be rather impossible, however with
the advent of metamaterials it may be possible to engi-
neer one with a matching dielectric constant (N/M)2,
and employ it as an intervening dielectric between two
single-layer graphene sheets. This point will be discussed
further in Section VI. In this light, we see that the long-
wavelength limit k0d < kTId → 0 is special because it
automatically satisfies both conditions kTId = Nπ and
k0d = Mπ with N = M = 0.

When k0d is not equal to a multiple of integer or half-
odd integer of π, which is generally the case, only the
cavity resonance condition is satisfied and k0d cannot be
assumed as small in Eqs. (37)-(38). Evaluating θF and
θK from Eqs. (24)-(25) using Eqs. (37)-(38), we find that
the Faraday and Kerr rotations at resonance have the
same universal quantized value

θF,K = tan−1 [(νT + νB)α] . (39)

Note that Eqs. (37)-(39) do not depend on the value
of N and therefore all cavity resonant modes yield the
same Faraday and Kerr rotations given by Eq. (39). It
is important to emphasize, at resonance, that although
the Faraday angle is the same as the long-wavelength re-
sult Eq. (30), the Kerr angle is not given27 by Eq. (31).
Rather, both the Faraday and Kerr rotations at reso-
nance are given by the same quantized response in units
of α like Eq. (30). The giant Kerr effect Eq. (33), there-
fore, is a unique long-wavelength low-frequency property
of the thin film system only.

V. DEVIATIONS FROM AN IDEAL
TOPOLOGICAL INSULATOR FILM

Magneto-optical measurements of Faraday and Kerr
rotations produced by topological insulators5–7 subjected
to an external magnetic field have been performed by
several groups. The samples studied include bulk Bi2Se3

crystals5, thin Bi2Se3 films6 and strained HgTe films7.
It has not yet been possible to achieve ideal samples in
which the half-quantized quantum Hall effect occurs, ei-
ther in DC transport or optically. In this section we con-
sider non-ideal factors that often arise in experimental TI
samples, and explain their consequences when they act
independently. We focus on the influence of bulk carriers,
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light scattering at oblique incidence, and the influence of
a dielectric substrate.

A. Influence of Bulk Carrier Conduction

Real TI samples are complicated by the presence of
bulk free carriers which are present because of unin-
tentional doping by bulk defects28–31. Recently some
progress has been reported32 in reducing the density of
bulk carriers in TI thin films.

Bulk conduction can be described by a complex bulk
dielectric function ε(ω) which is related to the bulk con-
ductivity Σ(ω) by

ε(ω) = εb + i
4π

ω
Σ(ω), (40)

where εb is the high-frequency dielectric constant of the
TI. When the quantized Hall regime is approached on
the TI surfaces, the bulk Hall angle tan−1(Σxy/Σxx) is
expected to be much smaller than the surface Hall an-
gle (which becomes π/2 when σxx → 0). For definite-
ness the numerical results reported below assume that
the longitudinal bulk conductivity dominates, and that
its frequency-dependence can be described by the Drude-
Lorentz form,

Σ(ω) =
Ω2

b

4π (1/τb − iω)
, (41)

where Ωb =
√

4πNbe2/mb is the plasma frequency of the
bulk carriers (with density Nb and effective mass mb),
and 1/τb is the disorder scattering rate due to impurities
present in the bulk.

The influence of a finite bulk conductivity is partic-
ularly simple to describe in the long-wavelength low-
frequency limit of Eqs. (27)-(28). The total current in-
tegrated across the TI film in Eq. (26) now picks up an
extra bulk conductivity contribution given by Σd (d is
the film thickness), in addition to the conductivities from
the two surfaces. The change in the expressions for the
transmitted and reflected electric fields Eqs. (27)-(28) is
therefore altered by the replacement σxx → σxx + Σd/c.
When the surface has a perfect quantum Hall effect, the
modified expressions for the Faraday and Kerr angles are

θF = tan−1

[
(νT + νB)α

1 + 2πΣd/c

]
, (42)

θK = tan−1

{
4 (νT + νB)α

1− (1 + 4πΣd/c)2 − [2 (νT + νB)α]2

}
,

(43)

where Σ = Σ(0) is the bulk DC conductivity. The bulk
carriers thus enter as an effective longitudinal surface
conductivity Σd. Eq. (42) implies that the influence of
bulk conduction is negligible on the Faraday effect when

Σd

(e2/h)
� 1/α. (44)

For the Kerr effect, Eq. (43) implies a stricter condition
for negligible bulk conduction:

Σd

(e2/h)
. α. (45)

When the bulk conductivity is sufficiently small that
Eq. (45) is satisfied, Eqs. (42)-(43) reduce to the universal
results for the Faraday and Kerr effects, Eqs. (30)-(33).

Eq. (45) can alternately can be expressed as a condition
that has to be satisfied by the bulk carrier density:

Nb .
αmb

hτbd
. (46)

For a 30-nm thick Be2Se3 film and disorder broadening
~/τb = 1 − 10 meV, we estimate that the to observe the
giant Kerr effect, the bulk carrier density must be smaller
than 1014 − 1015 cm−3. To reach the regime of the quan-
tized Faraday effect given by Eq. (44), the bulk carrier
density is allowed to be larger by a factor 1/α2 so that
Nb . mb/(αhτbd) ' 1018 − 1019 cm−3. Fig 2 shows the
low-frequency Kerr angle in the presence of bulk con-
duction. The magneto-optical response is modified by
the presence of bulk carriers principally in the low fre-
quency regime where the bulk Drude-Lorentz conductiv-
ity is peaked.

Because bulk carriers originate from bulk defects, Nb

and τb are related. For the purpose of studying their
influence on the magneto-optical response we will nev-
ertheless treat Nb and τb as independent parameters.
We first illustrate the case when there are no impuri-
ties in the bulk, i.e. the case of a bulk free plasma.
We find that the giant Kerr angle remains but under-
goes a shift to progressively higher frequencies for in-
creasing bulk carrier density [Fig. 2 (a)]. Including bulk
impurities broadens [Figs. 2 (b)-(c)] the giant Kerr ef-
fect, but the Kerr angle remains substantial ∼ 1 rad for
a bulk density Nb = 1017 cm−3 and disorder broadening
~/τb = 1− 10 meV.

For thick films, we note that the presence of bulk
conduction the cavity resonance condition becomes non-
trivial. For this reason there is no simple analytic cri-
terion for neglecting the bulk conductivity. Experimen-
tally, this may also present a challenge since resonance
frequencies cannot be readily estimated unless the bulk
conductivity is known from a separate transport mea-
surement.

In passing, we mention that bulk optical phonon modes
of the topological insulator can also be excited at higher
frequencies. Since phonon energies are specific to dif-
ferent TI materials and we are mainly interested in the
low-frequency regime for the magneto-optical effects, we
shall neglect the bulk optical phonon contributions to the
conductivity. Phonon effects can be modeled by includ-
ing an additional term5,6

εph(ω) =
fph

ωph
2 − ω2 − iω/2τph

, (47)
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FIG. 2: (Color online) Kerr rotation for top and bot-
tom surface densities nT = nB = 3 × 1011 cm−2 and fill-
ing factors νT = νB = 1/2 (corresponding to a mag-
netic field of 25 T) for (a) no bulk carrier scattering (b)
~/τb = 1 meV, and (c) 10 meV at different values of
bulk carrier densities Nb = 1015 cm−3(black solid line),
1016 cm−3(red dashed), 1017 cm−3(blue dot-dashed). The di-
electric constant of Bi2Se3 εb = 29, bulk carrier effective mass
mb = 0.15me

31,33,34, film thickness d = 30 nm.

to the dielectric constant Eq. (40), where fph is the spec-
tral weight of the phonon mode with frequency ωph, and
1/2τph is the phonon damping rate. This separation be-
tween the electronic and the phononic contributions to
the bulk dielectric function applies only when the elec-
tronic time scales (Ω−1

b , ε−1
Fb, where εFb is the bulk Fermi

energy) are much smaller than the phonon time scale
(ω−1

ph ), making plasmon-phonon coupling negligible.

B. Influence of Oblique Incidence and the
Substrate

In this section, we examine the effects of oblique inci-
dence and of the substrate on the magneto-optical effects.
This discussion is particularly germane to experiments
because oblique incidence may afford an advantage over
normal incidence for Kerr effect measurement as it allows
for spatial separation between the incident light source
and the reflected light polarizer, and enhances the re-
flected light intensity.

1. Thin TI Film and Thin Substrate

We now account for a dielectric substrate layer un-
derneath the TI film and allow for the (semi-infinite)
medium underneath the substrate to be different from
vacuum, solely for generality. The incident angle on the
TI film and the emerging angle from the substrate can
therefore assume different values, denoted by θi and θo

respectively. At low frequencies (ω � ∆ or ΩB) and
long wavelength compared to both the film thickness d
and substrate thickness ds, the analysis is again simple.
We find the following Faraday and Kerr angles under
oblique incidence (Expressions for the transmission and
reflection coefficients at oblique incidence are presented
in the Appendix.):

θF = tan−1

[
2α(νT + νB)cosθi

cosθi + cosθo

]
, (48)

θK = (49)

−tan−1

[
8α(νT + νB)cosθicosθo

cos2θo − cos2θi + 8α2(νT + νB)2cosθicosθo

]
,

It is important to recognize that Eqs. (48)-(49) are inde-
pendent of the bulk dielectric constants of not only the TI
film, but also importantly the substrate. The transmit-
ted and reflected fields are generally dependent on the
dielectric constant of the ambient medium surrounding
the TI film however; these dependences enter the Fara-
day and Kerr angles expressions through the incident and
emergent angles θi and θo. Since the measurement appa-
ratus is almost inevitably located in vacuum, so one has
θo = θi by Snell’s law. It is easy to verify that Eqs. (48)-
(49) then reduce to the universal results in Section IV
A, and it follows that the long-wavelength low-energy re-
sults are not influenced by the angle of incidence or the
presence of a thin (ds � λ) dielectric substrate.

The giant Kerr effect survives10,11 up to a relatively
large frequency which we refer to as the Kerr frequency
ωK. First we derive an analytic formula for ωK at normal
incidence that also allows for the presence of a substrate.
For small frequencies, the reflected circularly polarized
components can be decomposed into separate leading-
order contributions from the top and bottom TI surfaces,
the bulk TI dielectric, and the substrate dielectric:

Er
± '

iω

2c
[(ε− µ) d+ (εs − µs) ds]− i2πσIxx

′
(0)ω

±i2πσRxy(0), (50)

where σxx, σxy contain the top and bottom TI surface
conductivities, εs, µs are the dielectric constant and per-
meability (= 1) of the substrate, and ′ in σIxx denotes
a frequency derivative. The real components of Er

± are
smaller by a factor ∼ α in this regime. As frequency in-
creases, the dielectric contribution to the imaginary part
of Er

± eventually dominates so that the ± components
have the same sign and θK rapidly falls to a small value.
The frequency range for which giant Kerr angles occur is
approximately given by

ωK =
2πσRxy(0)

[(ε− µ) d+ (εs − µs) ds] /2c− 2πσIxx
′
(0)

. (51)

A similar analysis can be carried out for the case of
oblique incidence. The Kerr frequency θK at oblique in-
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FIG. 3: (Color online) Effect of substrate and oblique in-
cidence on the low-frequency Kerr rotation. (a)-(b) illus-
trate the Kerr angle versus frequency for two cases: (a)
normal incidence on a TI film with a dielectric substrate
of thickness ds = 0.5µm: ε = 1 (a free-standing sample),
ε = 4 (a SiO2 substrate), ε = 12 (a Si substrate), and (b)
oblique incidence on a free-standing TI film at incidence an-
gle θi = 0, π/12, π/6, π/4. The top and surface densities are
nT = nB = 3 × 1011 cm−2 and B = 25 T. (c)-(d) show re-
spectively the Kerr frequency as a function of magnetic field
corresponding to cases (a) and (b) at the same surface densi-
ties. The TI film thickness d = 30 nm.

cidence without substrate is given by

ωK =
2πσRxy(0) cos θi

(ε cos2 θ − µ cos2 θi) d/2c− 2πσIxx
′
(0)

. (52)

where θi and θ are the incident angle and refracted angle
inside the TI film, respectively, related by Snell’s law

sin θi =
√
εµ sin θ.

Eqs. (51)-(52) show that oblique incidence and the
presence of a substrate reduce the frequency window over
which the giant Kerr angles occur. This is illustrated nu-
merically in Fig. (3) where we have calculated the Kerr
angle as a function of frequency and magnetic field for
different dielectric substrates and different values of inci-
dence angle.

2. Thin TI film and Thick Substrate

Above we considered the case when the substrate thick-
ness is small compared with the wavelength. We see that
as long as the substrate thickness remains smaller than
the wavelength, increasing the thickness only suppresses
the Kerr frequency window, but the π/2 rotation at very
small frequencies survives. Experimentally, however, one
may have to employ a substrate with supra-wavelength
thickness for various reasons; this motivates us to con-
sider the effect of a thicker substrate. When the sub-
strate thickness is increased beyond one wavelength, one
can expect that the magnitude of the giant Kerr rota-
tion is suppressed. But that is not the end of the story.
Indeed, a logic similar to that employed in Section IV
B tells us that when the substrate thickness contains an
integer number of half wavelength, the resulting Fara-
day and Kerr rotations will again be independent of the
substrate dielectric properties.

For wavelength short compared with the substrate
thickness, but still long compared with the TI film thick-
ness (kTId� 1) and ω � ∆ or ΩB, we find the following
phases for the left- and right-handed (λ = ±) circularly
polarized transmitted and reflected light for normal inci-
dence

arg
(
Et
λ

)
=

tan−1
2Z−1

s cos(ksds)
[
λ2πσRxy cos(k0ds)− sin(k0ds)

]
+ sin(ksds)

[(
1 + Z−2

s

)
cos(k0ds) + λ4πσRxy sin(k0ds)

]
2Z−1

s cos(ksds)
[
λ2πσRxy sin(k0ds) + cos(k0ds)

]
+ sin(ksds)

[(
1 + Z−2

s

)
sin(k0ds)− λ4πσRxy cos(k0ds)

] , (53)

arg (Er
λ) = − tan−1 { (54)

2
{(
Z−2

s + 1
)
λ4πσRxy +

(
Z−2

s − 1
) [
λ4πσRxy cos(2ksds) + Z−1

s sin(2ksds)
]}(

Z−2
s + 1

)
[Z−2

s − 1 +
(
4πσRxy

)2
]−
(
Z−2

s − 1
)

[Z−2
s + 1−

(
4πσRxy

)2
] cos(2ksds) + Z−1

s

(
Z−2

s − 1
)
λ8πσRxy sin(2ksds)

}
,

where for notational simplicity we have defined the wave
impedance Zs =

√
µs/εs for the substrate. If, in addition,

we impose the requirement that the substrate thickness
contains an integer multiple of half wavelengths (ksds =

Nπ, N 6= 0) then Eqs. (53)-(54) greatly simplify, yielding

arg
(
Et
λ

)
= tan−1

λ2πσRxy cos(k0ds)− sin(k0ds)

λ2πσRxy sin(k0ds) + cos(k0ds)
,(55)

arg (Er
λ) = −λ tan−1 1

2πσRxy
, (56)
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FIG. 4: (Color online) (a). Dependence of the low-frequency
Kerr rotation of a TI thin film on the substrate thickness ds
for frequency ω/εc = 10−3, and substrate dielectric constants
ε = 4 (SiO2), ε = 12 (Si). At this frequency, λ ' 7 mm is
always much longer than the TI film thickness, but becomes
comparable to the substrate thickness when ds ∼ λ/

√
εsµs.

Cavity resonances of the giant Kerr rotation can be seen at
values of ds equal to integer multiples of λ/2

√
εsµs. (b).

Close-up showing the finer features of θK additional to the
cavity resonances; Fabry-Perot type oscillations are clearly
seen. For thick substrates, the value of θK is strongly sup-
pressed compared to the long-wavelength result away from
the cavity resonance values. The values of nT, nB, and d are
the same as in Fig. 3.

from which we recover the quantized Faraday [Eq. (30)]
and giant Kerr rotations [Eq. (31)]. This tells us that
the Faraday and Kerr rotations can survive suppression
effects from a thick substrate as long as the substrate
thickness satisfies the resonance condition. Although it
is remarkable that Eqs. (30)-(31) still hold in this circum-
stance, it is important that the light frequency needs to
be precisely tuned to the resonant frequency of the sub-
strate. In contrast, if one has the liberty to use a thin
substrate, the giant Kerr rotation can be observed in a
relatively broad range of frequencies up to ωK [Eq. (51)].
Fig. 4 shows the Kerr angle calculated as a function
of substrate thickness. We see that the Kerr angle re-
mains π/2 for substrate thickness ds much smaller than
the wavelength (up to ∼ 1µm in the plot) and then be-
comes suppressed for larger substrate thickness. How-
ever, when ds becomes comparable to the wavelength in
the substrate, a series of sharply-defined cavity resonance
peaks is seen that preserves the giant π/2 value [Fig. 4
(a)]. Around the same range of ds values, Fabry-perot
like oscillations of the Kerr rotation are also clearly seen
in Fig. 4 (b).

 

Graphene

Graphene

h-BNB

FIG. 5: (Color online) Experimental setup of the double-layer
graphene heterostructure sandwiching a hexagonal boron ni-
tride (h-BN) substrate. A quantizing magnetic field is applied
perpendicularly to the layers.

VI. GENERALIZATION TO OTHER SYSTEMS
WITH QUANTIZED HALL CONDUCTING

LAYERS

Because topological insulator properties are at present
still obscured by the issue of bulk conduction28–31, and
because samples do not yet have the quality necessary
to yield strongly developed quantum Hall effects, it
is natural to ask if similar magneto-optical effects can
be achieved in other materials systems. Indeed, the
magneto-optical effects we have discussed are not es-
sentially distinct from those of other systems with two
nearby conducting layers that exhibit quantum Hall ef-
fects. Eqs. (30), (31), (39) for the Faraday and Kerr
rotations in Section IV apply to a wide variety of other
systems when they are placed in an external magnetic
field.

Systems with two nearby graphene layers appear to be
particularly attractive because they are also described
by massless Dirac equations and, like TI surface states,
quite sensitive to time-reversal symmetry breaking per-
turbations. In fact, the quantum Hall effect can be real-
ized in graphene sheets at magnetic field strengths that
are so low35–37 that applications in optics are not out of
the question. Aside from integer and fractional quantum
Hall effects in external magnetic fields, monolayer and
bilayer graphene can also potentially exhibit quantized
anomalous Hall effects38–40 due to surface adsorption of
transition metal atoms.

One experimental system that has now been realized
experimentally41, but not yet studied optically, consists
of two graphene layers separated by a few layers of hexag-
onal boron nitride. Transport experiments have demon-
strated that the quantum Hall effect is already strong in
this type of system at fields well below 1 Tesla. We pro-
pose the experimental setup shown in Fig. 5 to observe
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the dramatic magneto-optical effects. Because of valley
and approximate spin degeneracies the strongest quan-
tum Hall effects occur at filling factor νT,B = ±2, rather
than at νT,B = ±1/2, but this only changes some de-
tails of the magneto-optical properties. Realizing systems
with two (or indeed many) essentially decoupled layers
separated by much less than a wavelength is feasible. The
small spacing between essentially isolated quantum Hall
layers increases the frequency window over which strong
magneto-optical effects are anticipated. In addition bulk
conduction is automatically eliminated.

VII. CONCLUSION

We have presented a comprehensive theory for the
magneto-optical Faraday and Kerr effects of topologi-
cal insulator films, and more generally of layered quan-
tized Hall systems. We identify a topological regime in
which the light frequency is low compared to surface gaps
opened up by time-reversal symmetry breaking perturba-
tions and the light wavelength is either long compared to
the film thickness or an integer multiple of twice the film
thickness. In the topological regime, the magneto-optical
effects are dramatic and universal. For thin films, the
Faraday rotation angle is quantized in units of the fine
structure constant, and the Kerr angle exhibits a giant 90
degrees rotation. For thick films that contain a commen-
surate number of half wavelength, both the Faraday and
Kerr rotations are quantized in units of the fine struc-
ture constant. In the presence of bulk conduction, the
dramatic Faraday and Kerr effects for thin films remain
robust as long as the effective two-dimensional conduc-

tivity from the bulk, in e2/h units, is smaller than the
fine structure constant. The effect of a thick substrate,
which may sometimes be experimentally necessary, can
be nullified either by making it thinner than a light wave-
length or, if it must be thick, by tuning its thickness to
an integer number of half wavelength. The giant Kerr ef-
fect remains unaffected by oblique incidence when a thin
film with a thin substrate is used. These magneto-optical
effects can also be realized, perhaps even more readily, in
systems with two graphene layers separated by hexagonal
boron nitride or another thin dielectric.
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IX. APPENDIX. TRANSMISSION AND
REFLECTION COEFFICIENTS AT OBLIQUE

INCIDENCE

We denote the incident and emergent angles of the elec-
tromagnetic wave after scattering with the interface by
θi and θj . The matrix elements of the reflection and
transmission tensors can be found as

rxx =
ei2kiai cos θi

Dji

{√
εi
µi

cos2 θi sec θj

(
4πσxx +

√
εj
µj

sec θj

)
−
√
εi
µi

(√
εj
µj

+ 4πσxx sec θj

)
− cos θi

{
4π

√
εj
µj
σxx + sec θj

[
− εi
µi

+
εj
µj

+ 16π2
(
σ2
xx + σ2

xy

)
+ 4π

√
εj
µj
σxx sec θj

]}}
,

ryy = −e
i2kiai cos θi

Dji

{√
εi
µi

cos2 θi sec θj

(
4πσxx +

√
εj
µj

sec θj

)
−
√
εi
µi

(√
εj
µj

+ 4πσxx sec θj

)
+ cos θi

{
4π

√
εj
µj
σxx + sec θj

[
− εi
µi

+
εj
µj

+ 16π2
(
σ2
xx + σ2

xy

)
+ 4π

√
εj
µj
σxx sec θj

]}}
,

rxy = −e
i2kiai cos θi

Dji
8π

√
εi
µi
σxy cos θi sec θj , (57)

txx =
ei(ki cos θi−kj cos θj)ai

Dji
2

√
εi
µi

cos θi sec θj

[√
εi
µi

+ cos θi

(
4πσxx +

√
εj
µj

sec θj

)]
,

tyy =
ei(ki cos θi−kj cos θj)ai

Dji
2

√
εi
µi

cos θi sec θj

[√
εj
µj

+ sec θj

(
4πσxx +

√
εi
µi

cos θi

)]
,

txy = −e
i(ki cos θi−kj cos θj)ai

Dji
8π

√
εi
µi

cos θi sec θjσxy, (58)
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r′xx =
e−i2kjai cos θj

Dji

{
−
√
εi
µi

cos2 θi sec θj

(
4πσxx +

√
εj
µj

sec θj

)
+

√
εi
µi

(√
εj
µj
− 4πσxx sec θj

)
− cos θi

{
−4π

√
εj
µj
σxx + sec θj

[
εi
µi
− εj
µj

+ 16π2
(
σ2
xx + σ2

xy

)
+ 4π

√
εj
µj
σxx sec θj

]}}
,

r′yy =
e−i2kjai cos θj

Dji

{
−
√
εi
µi

cos2 θi sec θj

(
4πσxx −

√
εj
µj

sec θj

)
−
√
εi
µi

(√
εj
µj

+ 4πσxx sec θj

)
− cos θi

{
4π

√
εj
µj
σxx + sec θj

[
εi
µi
− εj
µj

+ 16π2
(
σ2
xx + σ2

xy

)
− 4π

√
εj
µj
σxx sec θj

]}}
,

r′xy = −e
−i2kjai cos θj

Dji
8π

√
εj
µj
σxy cos θi sec θj , (59)

t′xx =
ei(ki cos θi−kj cos θj)ai

Dji
2

√
εj
µj

[√
εi
µi

+ cos θi

(
4πσxx +

√
εj
µj

sec θj

)]
,

t′yy =
ei(ki cos θi−kj cos θj)ai

Dji
2

√
εj
µj

[√
εj
µj

+ sec θj

(
4πσxx +

√
εi
µi

cos θi

)]
,

t′xy = −e
i(ki cos θi−kj cos θj)ai

Dji
8π

√
εj
µj

cos θi sec θjσxy, (60)

where

Dji =

√
εi
µi

cos2 θi sec θj

(
4πσxx +

√
εj
µj

sec θj

)
+

√
εi
µi

(√
εj
µj

+ 4πσxx sec θj

)
+ cos θi

{
4π

√
εj
µj
σxx + sec θj

[
εi
µi

+
εj
µj

+ 16π2
(
σ2
xx + σ2

xy

)
+ 4π

√
εj
µj
σxx sec θj

]}
. (61)

Note that ryy, tyy are no longer equal to rxx, txx at
oblique light incidence. Eqs. (58)-(61) recover the normal
incidence results Eqs. (20)-(21) when θi = θj = 0.

For completeness, we also include the expressions of
the total reflection and transmission tensors in the pres-
ence of a layer of dielectric substrate. These can be com-
posed from the expressions Eqs. (22)-(23):

r̄ = r̄T + t̄′T ¯rS,B

(
1− r̄′T ¯rS,B

)−1
t̄T, (62)

t̄ = ¯tS,B
(
1− r̄′T ¯rS,B

)−1
t̄T, (63)

where
¯
r

(′)
S,B and

¯
t
(′)
S,B (the subscript ’S’ denotes substrate)

are the reflection and transmission tensors for light prop-
agation from the bottom surface to the substrate-vacuum
interface

¯rS,B = r̄B + t̄′Br̄S

(
1− r̄′Br̄S

)−1
t̄B, (64)

¯tS,B = t̄S
(
1− r̄′Br̄S

)−1
t̄B, (65)

and
¯
r

(′)
S and

¯
t
(′)
S are the reflection and transmission ten-

sors for light scattering at the substrate-vacuum inter-
face.
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