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A detailed study of the low-temperature physics of an interacting double quantum dot system in
a T-shape configuration is presented. Each quantum dot is modeled by a single Anderson impurity
and we include an inter-dot electron-electron interaction to account for capacitive coupling that
may arise due to the proximity of the quantum dots. By employing a numerical renormalization
group approach to a multi-impurity Anderson model, we study the thermodynamical and transport
properties of the system in and out of the Kondo regime. We find that the two-stage-Kondo effect
reported in previous works is drastically affected by the inter-dot Coulomb repulsion. In particular,
we find that the Kondo temperature for the second stage of the two-stage-Kondo effect increases
exponentially with the inter-dot Coulomb repulsion, providing a possible path for its experimental
observation.

PACS numbers: 73.63.Kv, 72.10.Fk, 72.15.Qm, 73.23.Hk

Keywords: Double quantum dots, Kondo effect, Mixed valence regime, Coulomb blockade, Two-stage Kondo,

Thermodynamics, Conductance, Capacitive coupling

I. INTRODUCTION

Many-body electron-electron interaction is one of the
most striking phenomena in low dimension condensed
matter systems. In this context, quantum dots1 (QDs)
have played a prominent role in the recent progress
of theoretical studies,2,3 as well as in experimental
realizations,4–8 as they offer a unique opportunity for
successful measurement of many-body-related physical
phenomena arising at low temperature regimes. The rel-
evance of electron-electron interactions in QD systems
results from the strong confinement of the electrons due
to the reduced sizes of typical structures.9–11 This in-
teraction is responsible for several fascinating phenom-
ena, e.g., Coulomb blockade,11,12 and Kondo effect,7,13,14

leading to characteristic behavior of the thermodynam-
ical and transport properties, which depend drastically
on the number of QDs, as well as on their topological
configuration in the structure. In recent years, strong
on-site interaction in double13,15–24 and triple25–32 QD
(DQD and TQD) structures have received a great deal of
attention when in the Kondo regime. However, on-site
electron-electron interaction does not exhaust all the pos-
sibilities in multiple QD structures, as electrons can, due
to their proximity, interact with each other, even when
located in different QDs. It is important to note that re-
cent advances in the lithography of lateral semiconductor
QDs have allowed greater control over capacitively cou-
pled DQD systems in parallel or in series.33–37 This makes
it even more relevant to better theoretically understand
the effects of capacitive coupling over systems like the
one studied in this paper. Only recently has this long-
range interaction attracted more widespread attention of
experimental and theory groups alike.38–43

The T-shape configuration, where two QDs are mutu-
ally coupled via a tunneling matrix element, while only
one of them is coupled to metallic contacts, has attracted

considerable interest as it allows the study of the two
stage Kondo (TSK) effect, and interference phenomena
as the Fano effect23,44–47 by fine control of the inter-dot
tunnel coupling. This effect results from the progressive
screening of the localized spin of the electron in each QD
as the system is cooled down to very low temperatures.
Due to different effective couplings of the electron resid-
ing in each QD to the conduction band, these magnetic
moments are screened at different temperature scales,
which allows for the definition of two distinct Kondo tem-
peratures. While the on-site Coulomb repulsion has re-
ceived a great deal of attention, to the best of our knowl-
edge the inter-dot Coulomb interaction in this particular
system has not been considered yet. In this paper, we will
explore how the TSK effect changes when a capacitive
coupling is included between the dots. We will use the
Numerical Renormalization Group (NRG) method48–50

to calculate the transport and thermodynamical proper-
ties of the DQD system. We will show that this new
ingredient is responsible for dramatic changes in the low-
temperature physics of the system. In particular, as
shown in Fig. 8, the Kondo temperature for the second
stage of the TSK effect increases exponentially with the
inter-dot Coulomb repulsion. This may have important
consequences to the experimental observability of this ef-
fect.

The paper is divided as follows: In section II, we
present the model and a brief description of the NRG
method. In section III.A, we present numerical results
for thermodynamical quantities (entropy and magnetic
moment), for U ′ = 0. Results for finite U ′ are presented
in section III.B, which is further subdivided in three sub-
sections: subsection 1 contains thermodynamical results
(entropy and magnetic moment), 2 contains results for
QD occupancies and conductance at zero temperature,
and subsection 3 contains results for the conductance
dependence on temperature. Finally, in section IV, we
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present our conclusions.

FIG. 1: (color online) Schematic representation of the DQD
system being analyzed in this work. Note the capacitive in-
teraction, U ′, between the dots.

II. THEORETICAL MODEL AND NUMERICAL

METHOD

We study a system composed by two QDs (from now on
referred to as QD1 and QD2) coupled by a tunneling ma-
trix element as well as by capacitive inter-dot Coulomb
repulsion. This system is described by the generalized
Anderson Hamiltonian, which can be written as

H = Himp +Hcb +Hhyb, (1)

where Himp is the Hamiltonian describing the QDs
[which we define as “impurity region”], Hcb describes the
conduction bands, and Hhyb describes the coupling of
QD1 and the conduction bands (see Fig. 1). More ex-
plicitly,

Himp =
∑

i=1,2
σ

εic
†
iσciσ +

∑

i=1,2

Uini↑ni↓ + U ′n1n2

+t′
∑

σ

[

c†1σc2σ + c†2σc1σ

]

, (2)

where the operator c†iσ (ciσ) creates (annihilates) an elec-
tron in the i-th (i = 1, 2) QD, with energy εi, spin σ,

niσ = c†iσciσ is the number operator, and ni =
∑

σ niσ.
The second term in Himp corresponds to the on-site
Coulomb repulsion, where, for simplicity, we will take
the intra-dot interactions U1 = U2 = U throughout this
paper. The third term describes the inter-dot Coulomb
repulsion U ′ due to the proximity of the dots, and the
last term describes the coupling between the two dots,
with tunneling matrix element t′.

Hcb =
∑

ℓkσ

εℓkc
†
ℓkσcℓkσ, (3)

where the operator c†ℓkσ (cℓkσ) creates (annihilates) an
electron with momentum k, energy εℓk, and spin σ in the
ℓth lead (ℓ = L,R). Finally,

Hhyb =
∑

kσ

[

Vℓkc
†
1σcℓkσ + V ∗

ℓkc
†
ℓkσc1σ

]

. (4)

While QD1 couples directly to the band, notice that QD2
couples to the band indirectly through QD1.
For simplicity, we assume the hybridization coupling

Vℓk = V to be real, independent of k, and the same
for both leads. The conduction band is characterized by
a constant density of states given by ρc(ω) = Θ(D −
|ω|)/2D, where D is the half-bandwidth and Θ(x) is the
standard Heaviside step function. To properly study the
low-temperature physics of this setup we employWilson’s
NRG48–50 approach, which allows for a systematic assess-
ment of the Kondo effect in impurity systems. Within the
NRG, we logarithmically discretize the conduction band
and map it into a tridiagonal form, which corresponds
to a semi-infinite chain where the coupling between the
sites has the form

tN =
(1 + Λ−1)(1− Λ−N−1)

2
√
1− Λ−2N−1

√
1− Λ−2N−3

Λ−N/2, (5)

where Λ is the discretization parameter (all results shown
here are for Λ = 2.5). The “impurity” site (N = −1) pos-
sesses sixteen degrees of freedom, corresponding to all the
base-states necessary to fully describe the quantum state
of the two QDs, while the other N ≥ 0 sites correspond
to single orbital non-interacting sites of Wilson’s chain.
Denoting the base-states of H−1 = Himp for the QDs as

| φi〉−1 ≡| m1,m2〉−1 (6)

where mk = 1, 2, 3, 4 corresponds, respectively, to 0, ↑, ↓
or ↑↓. In this basis the Hamiltonian H−1 has matrix
elements

[H−1]ij =−1〈φi | H−1 | φj〉−1. (7)

By diagonalizing the matrix defined in Eq. 7 we obtain
a set of sixteen eigenstates Ψi〉−1 with corresponding

eigenenergies E
(−1)
i . In terms of these base-states the

eigenstates can be written as

| Ψi〉−1 =
∑

j

Aij | φj〉−1, (8)

where Aij is the projection of the ith eigenvector onto
the j-th base-state. Once we obtain the eigenstates, we
calculate all the necessary matrix elements for the next
iteration, after which we add a new site N = 0. To
describe the resulting system we enlarge the Hilbert space
such that the new basis is constructed performing all 64
possible combinations

| φi〉0 :=| m〉⊗ | Ψj〉−1, (9)

where m = 1, · · · , 4 and j = 1, · · · , 16. This procedure is
repeated until the system has reached its strong-coupling
fix point. When the dimension of the Hilbert space be-
comes larger than Ns, where typically Ns = 2500, it is
truncated by discarding the eigenstates corresponding to
the largest eigenenergies. At each iteration N we keep
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the energy spectrum E
(N)
i , together with the matrix ele-

ments necessary to calculate the relevant physical quanti-
ties. This procedure allows us to calculate thermodynam-
ical properties, such as entropy Simp, magnetic moment
µ2
imp = kBTχimp, spin-spin correlation 〈S1 ·S2〉, occupa-

tion numbers niσ ≡ 〈niσ〉, as well as dynamical quanti-
ties, like density of states (DOS) and conductance. For
the entropy and magnetic moment it is usual to define the
contribution from the impurity as Simp and µ2

imp. These
quantities are generically written as Ximp = X − X0,
where X0 is calculated in the absence of the impurity.
Within the canonical ensemble, as a function of temper-
ature TN , we can write,

X(TN) =
1

ZN (TN)

∑

i

N 〈Ψi | X̂ | Ψi〉Ne−βNE
(N)
i , (10)

where βN = (TN)−1, and

TN =
1

2kBβ̄
D(1 + Λ−1)Λ−(N−1)/2 (11)

is a characteristic temperature associated to the N -th
iteration, β̄ is a real number of order 1, X̂ is the operator
associated to the quantity X and

ZN (TN ) =
∑

i

e−βNE
(N)
i (12)

is the canonical partition function.
The conductance is calculated by the generalized Lan-

dauer formula

G/G0 = −
∑

σ

∫ ∞

−∞

Im[Tσ(ω)] [∂f(ω)/∂ω]dω, (13)

where Tσ(ω) = 2πV 2ρc(ω)G
σ
11(ω), G0 = (2e2/h) and

Gσ
11(ω) is the Fourier transform of the full interacting

double-time Green’s function

Gσ
ii(t, t

′) = −iΘ(t− t′)
〈 [

ciσ(t), c
†
iσ(t

′)
] 〉

, (14)

which in the present case results to be (in the absence of
magnetic field) spin independent. The Green’s function
is calculated at frequency ωN = D(1 + Λ−1)Λ−(N−1)/2

within NRG in a standard manner via Lehmann repre-
sentation,

Gσ
ii(ωN ) =

∑

nn′

| N 〈Ψn | ciσ | Ψn′〉N |2

ωN −
(

E
(N)
n − E

(N)
n′

)

×
(

e−βE(N)
n + e−βE

(N)

n′

)

. (15)

We also employ a logarithmic Gaussian broadening51 of
the discrete NRG spectrum in order to obtain a smooth
curve for the QDs DOS at arbitrary frequency ω

ρσi (ω) = − 1

π
ImGσ

ii(ω), (16)

necessary to calculate the conductance at finite temper-
ature.

III. NUMERICAL RESULTS

In order to proceed with our numerical analysis, let us
set D, typically the largest energy scale of the problem,
as our energy unit (D = 1). We then choose for all
calculations U1 = U2 = U = 5 × 10−4 and V = 3.2 ×
10−3, so that U/πΓ1 ≈ 5, where Γ1 = 2πV 2ρ0, and ρ0 =
1/(2D). We will study in detail the two cases where
U ′ = 0 and U ′ = U , and also the range 0 < U/U ′ < 1.
The bare levels ε1 and ε2 will be controlled by the same
gate voltage (Vg), such that ε1 = ε2 = Vg. With the
parameters set above, and Vg = −(U/2 + U ′) (i.e., with
the system at the particle-hole (p-h) symmetric point),
we can estimate the Kondo temperature for the single
QD as49 TK =

√
Γ1U exp(−πU/8Γ1) ≈ 2.89 × 10−7 for

QD1, when QD2 is completely disconnected (t′ = 0 and
U ′ = 0).

A. U ′ = 0 case

Although this case has been studied in great detail
in Ref. 23, we will present below some results that will
help us understand the more complicated situation at
finite U ′. In Figs. 2 and 3, we show results for the
temperature dependence of the entropy (Fig. 2) and the
square of the total magnetic moment (Fig. 3) of the DQD
system, Simp/kB ln(2) and µ2

imp/(gµB)
2, for U ′ = 0,

ε1 = ε2 = −U/2, and various values of t′, where kB is
Boltzmann’s constant and µB is the Bohr magneton. For
the special case where t′ = 0 [(black) # curve], the DQD
corresponds to the case where just QD1 is coupled to the
conduction band and QD2 is completely decoupled from
the rest of the system.52 In this situation, as the tem-
perature decreases, we find the following regimes: (i) for
kBT ≫ U the DQD is in its free orbital (FO) regime;
in this regime, the temperature is high enough to allow
for all the sixteen DQD states to be populated. This
results in an entropy Simp = kB ln(16) (see Fig. 2) and
a total square magnetic moment µ2

imp = 2 × (gµB)
2/8

(Fig. 3), (ii) for kBTK < kBT < ε1, ε2, thermally ex-
cited charge fluctuations are suppressed, and therefore
the entropy decreases to Simp = kB ln(4), as only states
with one electron in each QD are favored (providing four
states; the two states with both electrons in the same QD,
either QD1 or QD2, have higher energy). This implies
that µ2

imp increases, as double and unoccupied states in
each QD are suppressed, and the DQD is in the so-called
local moment (LM) regime. As the temperature further
decreases, and becomes lower than TK , QD2 remains in
its LM regime (and, for Vg = −U/2, is singly occupied),
while the other spin (in QD1) is progressively screened
by the conduction electrons due to the formation of the
Kondo state. This regime is characterized by the plateaus
Simp = kB ln(2) and µ2

imp = (gµB)
2/4. These contribu-

tions arise just from the spin in QD2, as it is never Kondo
screened when t′ = 0.
For finite t′, however, the behavior of the DQD for
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FIG. 2: (color online) Temperature variation of the entropy
for various values of t′ (see legend). The other parameters are
U1 = U2 = 5 × 10−4, U ′ = 0, ε1 = ε2 = −2.5 × 10−4, and
V = 3.2× 10−3. Note that the temperature in the horizontal
axis is scaled by the Kondo temperature of QD1 (see text),
which, for the parameters chosen, is TK = 2.89×10−7. Details
for the different regimes are provided in the text.
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FIG. 3: (color online) Magnetic moment kBTχ as function of
temperature for various values of t′. All parameters are the
same as in Fig. 2.

temperatures below TK is quite different from the one
just described above for t′ = 0. For very small values
of t′, as shown in Ref. 23, the DQD system presents a
TSK effect, where both QD1 and QD2 spins are screened
by the conduction band, but the screening of the spin in
QD2 occurs at a much lower temperature than that at
which the spin in QD1 is screened. The second screening
stage emerges at a characteristic temperature T ′

K which
depends mainly upon t′ and TK (the Kondo temperature

for QD1) as

T ′
K = aTK exp (−bTK/J ′), (17)

where a and b are real positive numbers, with values of
O(1),23 and J ′ = 4t′2/U is an effective antiferromagnetic
coupling (between electrons in QD1 and QD2) favoring a
local singlet state that competes with the regular Kondo
energy scale TK . As a result, a TSK effect is expected for
J ′ < TK . We can clearly see this behavior, for example,
when t′/U = 0.0026 [(red) � curve] in Figs. 2 and 3. Note
that for this value of t′/U the second drop in the entropy
(signaling the screening of the electron in QD2) happens
at T ′

K ≈ 10−17, with J ′ ≈ 1.35 × 10−8 (for this value
of t′) being much larger than T ′

K , but smaller than TK

(remember that TK ∼ 2.89 10−7). As t′ increases, and
eventually J ′ becomes larger than TK , a strong singlet is
formed locally, destroying the TSK picture. A detailed
discussion of this crossover can be found in Ref. 23; here,
instead, we focus on the effect of the inter-dot Coulomb
repulsion, as discussed in the next section.

B. Finite U ′

1. Entropy and magnetic moment
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FIG. 4: (color online) Same as in Fig. 2, but now for U ′ = U
and different values of t′ (see legend). The Kondo temper-
ature used to scale the horizontal axis is that obtained for
U ′ = U and t′ = 0. The inset contains a comparison of t′ = 0
results between U ′ = 0 [(black) # curve] and U ′ = U [(red) 3

curve], showing that the Kondo temperature of the first stage
(for t′ = 0) does not depend on U ′.

Now, we turn on U ′ and for simplicity we choose
U ′ = U (later on, we will analyze results for 0 < U ′ < U).
The new features to note in the entropy, Fig. 4, in rela-
tion to the results in Fig. 2, for U ′ = 0, are (i) the very
clear plateau (in Fig. 2) at Simp/kB ln(2) = 2 splits into
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two narrower plateaus in Fig. 4: one at Simp/kB ln(2) ≈
2.66, and the one at Simp/kB ln(2) = 2 becomes less
well defined, more like a shoulder. The plateau at
≈ ln(6)/ ln(2) = 2.58 (starting at T ≈ 102 TK) comes
from the fact that now, as U ′ = U , all 6 states with 2
electrons have very similar energies. As the temperature
goes further down, the 4 states that can participate in a
Kondo state in QD1 (one electron in each QD) will have
lower energy and the shoulder around Simp/kB ln(2) = 2
will form (at T ≈ TK), (ii) to obtain the second stage of
the TSK (signaled by the suppression of the plateau at
Simp/kB ln(2) = 1, for finite t′) one needs to go to one
order of magnitude smaller values of t′, when compared
to the results for U ′ = 0 (compare the (purple) △ curve
in Fig. 2, for t′ = 0.004, with the (purple) △ curve in
Fig. 4, for t′ = 0.005, where all traces of the second stage
in the TSK effect have vanished), (iii) it is also appar-
ent that, contrary to the U ′ = 0 case, T ′

K depends much
more strongly on t′. Indeed, it is clear that the tem-
perature at which the entropy starts to decrease to zero
becomes considerably higher as t′ increases, in contrast
to what can be seen in Fig. 2. It is important to note
that the horizontal axis in Fig. 4 is scaled by the Kondo
temperature (for QD1) for t′ = 0, estimated with the
expression in the text above (at the beginning of section
III). In the inset to Fig. 4 we show that TK for U ′ = 0
and for U ′ = U are equal: Indeed, this is illustrated in
the inset by the agreement between the entropy curves
(for T < TK) calculated for t′ = 0 [(black) # curve for
U ′ = U , and (red) 3 curve for U ′ = 0].
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FIG. 5: (color online) Magnetic moment kBTχ as function of
temperature for various values of t′. All parameters are the
same as in Fig. 4.

In relation to the magnetic moment (Fig. 5), a few dif-
ferences are quite apparent when U ′ is turned on: (i) as
t′ decreases, the peak in the susceptibility moves from
T/TK ≈ 102 to T/TK ≈ 1. As seen in the entropy re-
sults, at T/TK ≈ 102 the 2 states with both electrons
in the same QD have the same energy as the ones with

one electron in each QD, and therefore the square of
the magnetic moment is smaller. As the temperature
decreases towards TK , the DQD will start to form the
Kondo state, lowering the energy of the states where QD1
is single occupied, thus increasing the square of the mag-
netic moment; (ii) as discussed in the case of U ′ = 0, for
the 3 larger values of t′, a strong local singlet is formed
(J ′ > TK) and both Kondo stages are suppressed, and
the magnetic moment starts to decrease for T > TK .
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FIG. 6: (color online) (a): Entropy and (b): Magnetic mo-
ment, as a function of temperature for various values of t′ (see
legend). All parameters are the same as in Fig. 4, except that
now the results are for a gate potential value (Vg/U = −0.45)
away from the p-h symmetric point (i.e., Vg/U = −3/2).

For the sake of completeness, in Fig. 6, we show the
entropy [panel (a)] and the magnetic moment [panel (b)]
at Vg/U = −0.45, i.e, when the system is away from the
p-h symmetric point. Figure 6(a) shows the entropy for
t′ = 0, 5 × 10−3, 1 × 10−2, 2.5 × 10−2, and 5 × 10−2

[(black) #, (green) ▽, (blue) △, (red) �, and (magenta)
3, respectively). For this relatively high value of gate
potential, states with 2 and 3 electrons (with 6 and 4
states, respectively) have high energy and do not form
a plateau below the 4 electron plateau (with 16 states).
The plateau formed at 102 × TK corresponds to single
occupancy of the DQD (with four possible states). Note
that this plateau is only stable for the two lower values
of t′ (besides t′ = 0). Let us analyze first the results for
these lower values of t′: As the temperature goes down,
to around 10 × TK , states where only QD1 is occupied
become more favorable (as they will participate in the
formation of the Kondo state). This gives origin to the
plateau at ln(2), which will start to be suppressed once
the Kondo singlet is formed (at T ≈ TK , for t′ = 0).
Note that as t′ becomes finite and increases, the Kondo
screening will occur at a lower TK , and therefore the
plateau at ln(2) will become broader. The decrease in
TK occurs because now the magnetic moment becomes
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more delocalized and the screening by the Fermi sea is
less efficient. Finally, as t′ further increases, the plateau
at ln(4) is suppressed and the system goes straight to the
plateau with two states [ln(2)]. This is a manifestation
of the formation of molecular orbitals.53 The value of TK

obtained for the higher values of t′ decreases even further:
for example, for t′ = 5 × 10−2, TK decreases by ≈ 10−3

of the TK value obtained for t′ = 0. This decrease occurs
because the effective Γ connecting the molecular orbital
to the band is smaller than Γ1 (coupling of ε1 to the
band for t′ = 0). A similar analysis can be done of the
magnetic moment results in Fig. 6(b).

However, the most important differences coming from
adding U ′ are related to the behavior of TK and T ′

K .
First, the value of TK being used for the scaling of the
horizontal axis (in Figs. 2 to 5) is that obtained when
t′ = 0. Note from Figs. 2 and 3, that TK is very weakly
dependent on t′ when U ′ = 0. That is clearly not the
case for U ′ = U , where it can be seen a strong variation
of TK and T ′

K with t′. In addition, more interestingly
from an experimental point of view, it is clear that the
ratio T ′

K/TK increases by a few orders of magnitude for
U ′ = U .
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FIG. 7: (color online) (a) Entropy Simp and (b) Magnetic
moment kBTχ as function of temperature for various ratios
of U ′/U (between 0 and 1, see legend) for t′/U = 0.0026.
To preserve the p-h symmetry for each curve we set Vg =
−U/2 + U ′. All the other parameters are the same as in
Figs. 4 and 5. It is clear from the results that the Kondo
temperature for the second stage of the TSK effect is greatly
enhanced (by a few orders of magnitude) when U ′ increases.

To analyze in more detail the increase of T ′
K with U ′

we show, in Fig. 7, results for entropy [panel (a)] and
magnetic moment [panel (b)] which clearly indicate the
strong increase in T ′

K (by a few orders of magnitude)
when the ratio U ′/U varies from 0 to 1 for a fixed value
of t′/U = 0.0026. This increase in T ′

K can be understood
by estimating the Kondo temperature T ′

K for the second
stage of the TSK, by using eq. 17 to estimate T ′

K , and

0 0.2 0.4 0.6 0.8 1 1.2
U′/U

10
-10
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10
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10
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10
-2

10
0

T
′ K
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K
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K

fit: aExp(-bT
K

/J′)

a=0.11
b=0.95

FIG. 8: (color online) Fitting (dashed line) of the T ′

K values
[red dots] extracted from Fig. 7, obtained by using eqs. 17
and 18. The values obtained (from the fitting) for the two
free parameters a and b are indicated in the figure.

explicitly calculating J ′ for finite U ′:

J ′ = −U − U ′ −
√

(U − U ′)2 + 16t′2

2
, (18)

indicating that, at least for small values of U ′/U [where
J ′ ∼ 4t′2/(U − U ′)], there should be an exponential in-
crease of T ′

K with U ′/U . This expectation is supported
by the NRG results shown in Fig. 7. One can go one step
further by substituting eq. 18 into eq. 17, and use the
equation thus obtained to fit the values of T ′

K that can
be extracted from Fig. 7. This fitting is shown in Fig. 8.
Note that the only free parameters are ‘a’ and ‘b’ (values
indicated in the figure). It can be clearly seen that the
fitting, at least up to U ′/U ∼ 0.7, is very good (note that
the vertical axis is in a logarithmic scale). Indeed, this
is one of the principal results of this paper. Given the
recent advances in the use of floating interdot capacitors
(see Ref. 33), values of U ′/U for double dot systems have
been steadily increasing, and may, in light of our results,
offer the hope of observing the so far experimentally in-
accessible energy scale T ′

K .

2. Zero-temperature case: QD occupation and conductance

We first study how the occupation of the dots, 〈ni〉 ≡
∑

σ〈niσ〉, is modified due to inter-dot Coulomb repul-
sion. In Fig. 9, we show 〈n2〉 (top) and 〈n1〉 (bot-
tom) as function of Vg for various values of t′. For
t′ = 0 [(black) # curve], at Vg ≈ 0 one can observe
a smooth increase of 〈n1〉, while 〈n2〉 remains zero all
the way down to Vg/U ≈ −0.5, where 〈n2〉 jumps to 1
and 〈n1〉 abruptly decreases. The value of Vg for which
the first discontinuity of 〈n2〉 occurs (expected to be at
Vg ≈ 0, when U ′ = 0) depends on the additional ca-
pacitive energy necessary to put electrons in different



7

-4 -3 -2 -1 0 1
V

g
/U

0

0.5

1

1.5

2

〈n
1〉

0

0.5

1

1.5

〈n
2〉

t′/U=0
t′/U=0.001
t′/U=0.005
t′/U=0.010

EIVKIV

DO

K

U′=U

FIG. 9: (color online) Total occupation 〈n2〉 (top) and 〈n1〉
(bottom) as function of gate voltage (Vg) for t′/U = 0 (#),
t′/U = 1.0× 10−3 (�), t′/U = 5× 10−3 (3) and t′/U = 1.0×
10−2 (△). Other parameters are t′/U = 5× 10−4, V = 3.2×
10−3, and U = U ′. The regions delimited by the vertical lines
in the bottom panel refer to QD1 states, namely, empty (E),
intermediate valence (IV), Kondo (K) and doubly occupied
(DO) intermediate valence.

dots, due to the inter-dot Coulomb repulsion U ′. Note
that all the charge occupancy and conductance curves,
as a function of Vg (in Figs. 9, 10, 11, and 13), for
Vg/U < −(U/2 + U ′)/U = −3/2 were obtained by p-
h symmetry from those calculated for Vg/U > −3/2.

As discussed by three of the current authors in a pre-
vious work,54 this gate-voltage-dependent charge oscil-
lation can be understood as a competition between the
Kondo and Intermediate Valence (IV) regimes:55 level ε2,
when t′ = 0, acts as a dark state, whose charge occupa-
tion, which can only be an integer, adds a step function
of height U ′ to the gate potential Vg in QD1 (depending
on 〈n2〉 being 0 or 1). The value of Vg for which the
transition of 〈n2〉 between 0 and 1 (and vice versa) oc-
curs depends on Γ1 and reflects which many-body regime,
Kondo or IV, better optimizes the energy of QD1. The
dark state ε2 acts like a switch between the two regimes
and may have applications in quantum computation.54,56

For example, when the first discontinuity occurs, for
Vg/U ≈ −0.5, QD1 is in a Kondo state, however, a fur-
ther decrease of Vg makes it energetically more favorable
for QD1 to be in an IV state, which can be accomplished
by charging QD2 (by exactly one electron), this, due to
the capacitive coupling, increases the effective gate po-
tential of QD1, discharging it, and bringing it back to the
IV regime.57 As Vg/U further decreases below −0.5, QD1
starts to transition from an IV to a Kondo state; when
Vg/U ≈ −1, again the IV state for QD1 is more favorable;
this regime can now be achieved by completely avoiding
the Kondo regime through the discontinuous charging of
QD1 by one extra electron. Total charge is kept constant
by discharging QD2 completely (〈n2〉 = 0). Finally, fur-

ther decrease of Vg, bringing it close to the p-h symmetric
point [Vg = −(U/2+U ′) = −3U/2], increases the charge
in QD1 to almost 2 electrons; at this point, the Kondo
state in QD1 is more favorable, and a new discharging
and charging occurs of QD1 and QD2, respectively, after
which, each QD hosts one electron. These gate-voltage-
dependent occupancy oscillations are clearly observed for
all curves in Fig. 9, with the difference that, for finite t′,
there are no discontinuities. we rather notice that the
jumps are smoothened out as t′ increases. This contin-
uous charging of QD2 now results from the broadening
Γ2 of the local bare (and also the many-body) level at
QD2. For the non-interacting case it is easily shown that
Γ2 ∝ t′2Γ1. It is important to note the differences and
similarities between this model and the one studied in
Ref. 54: in the latter, one has a two channel system,
where the dark state, for small values of t−, acquires a
finite broadening and smoothens out the discontinuities
seen in the 〈n1〉 and 〈n2〉 curves in Fig. 9. In the model
being studied here, a similar process occurs: the dark
state in QD2 acquires a broadening through its connec-
tion t′ to the single conduction channel through QD1.
Nonetheless, through a comparison of Fig. 9 in this work
with Fig. 5 in Ref. 54 [panels (c) and (d)], one can see
that qualitatively the results are very similar, indicat-
ing that the basic processes determining the gate voltage
dependent occupancy oscillations are the same.

The strong gate-voltage-dependent variations in 〈ni〉
(i = 1, 2) (caused by the capacitive coupling) are expected
to have dramatic influence in the conductance of the sys-
tem, specially in the Kondo regime (see Fig. 10). For
U ′ = 0, and in the special case where t′ = 0, QD1 will be
in a Kondo state for all Vg values in the interval [−U, 0].
For finite U ′, however, the charging and discharging of
the QDs moves QD1 from a Kondo to an IV regime, and
vice versa (as described above). For t′ = 0 (panel (a) in
Fig. 10), when Vg becomes negative, we observe a narrow
Kondo plateau of height G0, and then the conductance
drops suddenly to almost zero at Vg/U ≈ −0.5, which is
exactly the gate potential value where QD1 is discharged
(see Fig. 9). This drop signals the transitioning of QD1
from the Kondo to the IV regime, as described above and
in Ref. 54. The small peak (of height ≈ 0.3 G0) observed
at Vg/U ≈ −1 corresponds to the discontinuous jump of
the renormalized level ε̃1 ≈ ε1 + U ′〈n2〉, caused by the
discontinuous change in 〈n2〉 from 1 to 0, leading QD1
from a low occupancy (〈n1〉 ≈ 0.0) IV regime, to a high
(〈n1〉 ≈ 2.0) IV regime, completely skipping the Kondo
regime (with occupancy 〈n1〉 ≈ 1.0).

When the system reaches the vicinity of its p-h sym-
metric point [Vg = −(U/2 + U ′) = −3U/2], there are
exactly two electrons in the QDs (one in each) and the
Kondo effect is fully reestablished in QD1 (for t′ = 0),
thus the conductance reaches G0. Due to p-h symmetry,
the other half of the curve can be explained in a sim-
ilar way. The curve in panel (a) of Fig. 10 should be
compared to the right-side panel of Fig. 3(b) in Ref. 54.

For increasing t′ (panels (b) to (d) in Fig. 10) there
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FIG. 10: Zero-temperature conductance as a function of Vg

for the same parameters as in Fig. 9. The conductance dis-
continuities seen here are directly related to the occupancy
discontinuities observed in Fig. 9. See text for a full descrip-
tion of the variation of the peak structures with increasing t′:
(a) t′/U = 0, (b) t′/U = 10−3, (c) t′/U = 5 × 10−3, and (d)
t′/U = 10−2.

are mainly two differences in the charge and in the con-
ductance: i) the abruptness of the charging/discharging
and the discontinuities in the conductance are progres-
sively smoothed out, and ii) the central peak in the con-
ductance (around the p-h symmetric point) is fully sup-
pressed. For example, for t′/U = 1 × 10−3, a rapid
drop in the QD occupations is still clearly visible (as
observed on the � (red) curve in Fig. 9), resulting in
a rapid variation in the conductance, which now moves
down to a lower value of Vg when compared with the
t′ = 0 curve (see panel (b) in Fig. 10). Notice that
the peak at Vg ≈ −U is enhanced, as t′ increases, and
the position of the peak moves up to higher gate poten-
tial values. For t′ = 1 × 10−2 the discontinuity is fully
suppressed and one obtain a typical Kondo plateau cen-

tered at Vg = −U/2. This starts to mark the transition
to the molecular regime, which, as stated above, has a
very broad crossover region between very small and very
large values of t′.53 The suppression of the conductance
around the p-h symmetric point for small (but finite)
t′ results from destructive Fano-like interference due to
the Kondo resonance in QD2. For large t′, on the other
hand, this suppression results from the formation of a lo-
cal singlet due to an antiferromagnetic effective coupling
(J = 4t′2/U) between the two electrons in the QDs, com-
peting with the Kondo singlet formed between the elec-
tron in QD1 and the conduction electrons. This is clearly
associated to the TSK effect previously analyzed in this
system.23

One should note that there is a striking difference in
the effect of t′ over the conductance for different regions
of gate potential, and for different values of t′. For the
smallest value studied (t′/U = 1 × 10−3), as mentioned
above, the Kondo peak at half-filling is immediately sup-
pressed and this can be associated to the TSK effect.
On the other hand, the peak around Vg = −U is barely
affected for a small t′. Indeed, as the TSK effect de-
pends on the energy scale J ′, one expects that it will
be more effective at half-filling. Higher values of t′ will
then quickly modify the structures around Vg = −U/2
and Vg = −U : the peak at Vg = −U is quickly en-
hanced, while the discontinuity located at Vg ≈ −U/2
(for t′ = 0) moves to lower gate potential values, extend-
ing the Kondo plateau, until the two structures merge
and form a single Kondo peak centered at Vg = −U/2.
This occurs because now level ε2 acquires a finite width
and therefore the discharging of QD1 (and simultaneous
charging of QD2) is not abrupt anymore and the system
smoothly proceeds from the IV regime (with 〈n1〉 < 1),
to the Kondo regime (with 〈n1〉 ≈ 1), and back to the IV
regime (with 〈n1〉 < 1 again). This can be clearly seen by
observing the (blue) △ curve in Fig. 9 (lower panel) and
the curve in Fig. 10(d). As mentioned above, this also
marks the beginning of the crossover to the molecular
regime.

3. Finite-temperature case

Now we turn our attention to the effect of temperature
in the transport properties of the system described in
Fig. 1. In Fig. 11, we show the conductance for U ′ = U ,
t′/U = 1.0 × 10−3, and various values of temperature.
The curves in this figure should be compared to the cor-
responding zero temperature curves in Fig. 10 [panel (b)].
Starting with T/TK = 1.7 × 10−3 [(black) △ curve] we
notice a very similar shape when compared to the T = 0
results in Fig. 10 [panel (b)], except that the two symmet-
ric Kondo plateaus and the IV peaks at Vg/U ≈ −1 and
Vg/U ≈ −2 are slightly suppressed, which results from
the small (but finite) temperature. Results for smaller
temperatures (not shown) interpolate between T = 0
and T/TK = 1.7× 10−3. For T/TK = 1.66× 10−1 [(red)
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FIG. 11: (color online) Conductance as function of Vg for
U ′ = U , t′/U = 1.0 × 10−3 and for different temperatures:
T/TK = 1.73 × 10−3 [(black) △], T/TK = 1.66 × 10−1 [(red)
▽], T/TK = 2.59 [(blue) �], T/TK = 6.49 [(green) ⊲].

▽ curve] we observe a clear suppression of the Kondo
plateau, while the IV peaks do not differ much from those
for lower temperatures. This is readily understood, as
the characteristic energy of the Kondo state TK is much
smaller than the energy scale associated to the IV regime,
of order Γ1 (for details, see Fig. 8 in Ref. 54). On the
other hand, it is interesting to notice the emergence of a
sharp small peak at the p-h symmetric point for a higher
temperature such as T/TK = 1.66×10−1 [(red) ▽ curve].
This peak results from a revival of the Kondo peak ob-
served for t′ = 0 in the T = 0 case, see the corresponding
curve in Fig. 10(a). This revival of the Kondo peak re-
sults from the suppression of the second stage Kondo
effect (for T > T ′

K), allowing the Kondo effect in QD1
to be seen through a zero bias anomaly in the conduc-
tance. On the other hand, for T > TK , as in the (green)
⊲ curve, we observe a suppression of the p-h symmetric
Kondo peak, similar to a splitting.
In order to show this effect in more detail, in Fig. 12 we

plot the temperature variation of the conductance for the
same parameters as in Fig. 11, for two different values of
Vg. For Vg/U = −1.5 [(blue) # curve], the conductance
vanishes when T → 0, increases for 10−2 . T/TK . 100,
and is suppressed again for T & TK . Note that the ini-
tial enhancement of the conductance as the temperature
increases results from the destruction of the Kondo res-
onance in the QD2, suppressing the destructive interfer-
ence between the two paths. Conversely, as the temper-
ature keeps increasing, and T exceeds TK , the conduc-
tance is suppressed due to the destruction of the Kondo
resonance in QD1. Finally, it will rise again and reach
a maximum at approximately T/TK ∼ 102 ≈ Γ1 due to
charge fluctuations in QD1. For Vg/U = −0.5 [(red) �
curve], i.e., at the edge of the right plateau of Fig. 11],
the conductance starts from G0 = 2e2/h as T → 0, and
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FIG. 12: (color online) Conductance as function of tempera-
ture for t′/U = 1.0 × 10−3 for Vg/U = −1.5 [(blue) #] and
Vg = −0.5 [(red) �], along the (blue and red) dashed vertical
lines shown in Fig. 11.

is suppressed for 10−2 . T/TK . 10 due to the destruc-
tion of the Kondo effect in QD1. This is the behavior of
the regular Kondo effect in a single QD. It is interesting
to point out that once the temperature is above TK , the
conductance at both Vg values behave alike.
In Fig. 13, similarly to Fig. 11, we show G vs. Vg, for

different temperatures, but now for t′ = 1 × 10−2, the
largest t′ value used in Fig. 10, for which the two QDs
form so-called molecular orbitals.53 These curves should
be compared to the zero-temperature curve in Fig. 10(d).
For the case of T/TK ∼ 10−10 [(red) # curve], it has the
same shape as the corresponding curve in Fig. 10(d). We
notice, however, that by gradually increasing the temper-
ature, both Kondo plateaus become valleys surrounded
by two Coulomb blockade peaks, while the gap at the
p-h symmetric point remains almost unchanged. This
is consistent with what one would expect of the charge
transport at high temperature for two molecular levels.

IV. CONCLUDING REMARKS

We have studied a strongly interacting double dot sys-
tem arranged in a T-shape configuration, where the dots
are coupled via a tunneling matrix element and also
strong inter-dot Coulomb repulsion. We have presented
a detailed study of the effect of the inter-dot Coulomb
interaction on the Kondo physics of the system. Our
numerical analysis reveals interesting crossovers between
different mixed valence and Kondo regimes that pro-
duce dramatic changes in the conductance of the sys-
tem. These crossovers can be tuned by varying the
gate voltage of the QDs, and the charging/discharging
processes produce anomalous peaks in the conductance
across the system, allowing a clear identification of the
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FIG. 13: (color online) Conductance as function of Vg and
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T/TK = 1.66×10−1 (▽), T/TK = 2.59×100 (�), and T/TK =
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various regimes. We show that the inter-dot Coulomb
repulsion not only preserves the TSK regime, but it also
dramatically increases the lowest energy scale of the TSK

effect. Indeed, T ′
K increases exponentially with the inter-

dot Coulomb interaction, as shown in panels (a) and (b)
of Fig. 7. We stress that this enhancement may allow the
experimental observation of this so far elusive effect. In
addition, by fixing the gate voltage at the p-h symmet-
ric point and raising the temperature, the conductance
shows clearly the crossover from TSK to Kondo and then
to mixed valence regime (see Fig. 12, (blue) # curve). By
contrast, away from the p-h symmetry only the regular
Kondo regime is observed. For temperatures larger than
TK (and large enough values of the coupling t′ between
the QDs) the conductance of the system as a function of
the gate voltage possesses a four-peak structure, showing
clearly the Coulomb blockade regime of the molecular
orbitals of the system. Finally, we believe that our re-
sults will motivate future experimental measurements in
capacitively coupled T-shape QD geometries.

Acknowledgments

ILF, FMS, and EV acknowledge CNPq, CAPES, and
FAPEMIG, the Brazilian agencies, for financial sup-
port. PO acknowledges FONDECYT under grant No.
1100560, and GBM acknowledges financial support by
the National Science Foundation under Grant No. DMR-
0710529. We also would like to thank G. A. Lara for
valuable discussions.

∗ Corresponding author: martins@oakland.edu
1 M. Reed, Scientific American 268, 118 (1993).
2 M. Kulkarni and R. M. Konik, Phys. Rev. B 83, 245121
(2011).

3 T. Kubo, Y. Tokura, and S. Tarucha, Phys. Rev. B 83,
115310 (2011).

4 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen-
hoven, Science 281, 540 (1998).

5 G. Schedelbeck, W. Wegscheider, M. Bichler, and G. Ab-
streiter, Science 278, 1792 (1997).

6 J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra,
and C. G., J. Appl. Phys. 101, 09E102 (2007).

7 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu,
D. Abusch-Magder, U. Meirav, and M. A. Kastner, Na-
ture 391, 156 (1998).

8 L. Kouwenhoven and C. Marcus, Phys. World 11, 35
(1998).

9 M. Rontani, F. Rossi, F. Manghi, and E. Molinari, Phys.
Rev. B 59, 10165 (1999).

10 P. W. Brouwer and I. L. Aleiner, Phys. Rev. Lett. 82, 390
(1999).

11 S. Vorojtsov and H. U. Baranger, Phys. Rev. B 72, 165349
(2005).
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