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Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of
the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional
quantum Hall states) contains information about the counting of their edge modes when the ground-
state is cut in two spatially distinct regions and one of the regions is traced out. We analytically
substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopo-
tential Hamiltonians by finding a one to one map between the thermodynamic limit counting of
two different entanglement spectra: the particle entanglement spectrum (PES), whose counting of
eigenvalues for each good quantum number is identical to the counting of bulk quasiholes (up to
accidental zero eigenvalues of the reduced density matrix), and the orbital entanglement spectrum
(OES), considered by Li and Haldane. By using a set of clustering operators which have their origin
in conformal field theory (CFT) operator expansions, we show that the counting of the OES eigen-
values in the thermodynamic limit must be identical to the counting of quasiholes in the bulk . The
latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Our results
can be interpreted as a bulk-edge correspondence in entanglement spectra. Moreover, we show that
the counting of the PES and OES is identical even for CFT states which are likely bulk gapless,
such as the Gaffnian wavefunction.

PACS numbers: 63.22.-m, 87.10.-e,63.20.Pw

I. INTRODUCTION

Determining the universality class of a real system ex-
hibiting a topological phase is a difficult task in con-
densed matter physics. Renormalization group meth-
ods have been very successful in uncovering the universal
physics in phases with local order parameters, but, due to
their perturbative approach, cannot be readily general-
ized to topological phases which do not exhibit symmetry
breaking. The density matrix renormalization group1–4

and tensor matrix product states5,6 can probe topologi-
cal order in one dimension, but have had limited success
with higher dimensional systems so far. The prototype
of two-dimensional topologically ordered phases are the
experimentally accessible fractional quantum Hall (FQH)
phases. A promising tool to extract topological informa-
tion from the ground state wavefunction in these phases
is the entanglement entropy7–11. However, it depends on
scaling arguments, is hard to obtain to sufficient accuracy
from numerical calculations12,13, and does not uniquely
determine the topological order in the state.

In 2008, Li and Haldane14 proposed a new tool to iden-
tify topological order in non-abelian FQH states – the
entanglement spectrum. They divided the single-particle
orbitals in a Landau level on the sphere along the equa-
tor and constructed the reduced density matrix of the
ideal (model) and the realistic (Coulomb) FQH states in
the upper half of the sphere (part A) by tracing out or-
bitals in the lower half (part B). Having thus created
a ‘virtual’ edge, they defined the orbital entanglement
spectrum (OES) to be the plot of the negative logarithm
of the eigenvalues of the reduced density matrix of A vs
the z-angular momentum of A (LAz ) for a fixed number
of particles in A. In particular, Li and Haldane consid-

ered the part of the spectrum with the lowest-lying levels
and the highest-weight eigenstates of the reduced den-
sity matrix of A. They noticed that the number of levels
in every OES of the model states, such as the Laughlin
and the Moore-Read, was much smaller than the Hilbert
space dimension and was identical to the counting of the
conformal field theory (CFT) modes associated with the
edge at large values of LAz . Although the number of levels
in the OES of the Coulomb state saturated the Hilbert
space dimension, a gap separated the levels higher in the
spectrum from a CFT-like low-lying spectrum at small
values of LAz with the same counting as the model state.
This was taken as evidence that the Coulomb state at
ν = 5/2 and the model Pfaffian state belonged to the
same universality class. Based on extensive numerical
evidence, they conjectured that — 1) In the thermody-
namic limit, the counting of the OES (ie. the number
of non-zero eigenvalues of the reduced density matrix) of
the model state is the counting of the modes of the con-
formal theory describing its gapless edge excitations, 2)
The ‘entanglement gap’ separating the low-lying, CFT-
like levels from the generic ones higher in the Coulomb
spectrum is finite in the thermodynamic limit.

Many researchers have investigated properties of the
entanglement spectra since. The authors of [15] discov-
ered that the entanglement spectrum in the thin-annulus
limit (the conformal limit) had for several examples a full
gap at finite system sizes. The counting of the entire low-
lying spectrum of the Coulomb state is the same as that
of the corresponding model state in this limit. Motivated
by this result, we recently conjectured a counting princi-
ple for the finite-size counting of the OES of the Laughlin
states16. Other cuts have also been studied. Tracing out
a fraction of the particles in the many-body ground state
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FIG. 1: Left: Sketch of the partition in orbital space (part B in grey). The tracing procedure creates a virtual edge and the
orbital entanglement spectrum (OES) probes the chiral edge mode(s) of part A. Right: OES of the ν = 1/2 Laughlin state
of N = 9 bosons, with orbital cut lA = 8 and NA = 4. The minimal angular momentum LAz,min defined in the text is the

LAz,min = 20 sector in the plot. The entanglement level counting at ` = |LAz − LAz,min| = 0, 1, . . . , 4 is (1, 1, 2, 3, 5), which is the

counting of modes of a U(1) boson in the thermodynamic limit. Finite size effects appear at LAz = 15.

corresponds to a particle cut; the entanglement spectrum
of the resulting reduced density matrix is the particle en-
tanglement spectrum (PES) introduced in [17]. The level
counting of the PES of a model state (described as a CFT
correlator) is bounded from above by the number of bulk
quasi-hole states of the model state; along with the OES,
it is conjectured to contain all the topological numbers
of the state. Entanglement spectra in other systems have
also been explored; see, for instance, Refs. [18–35].

Analytic work in this emerging field is challenging be-
cause of the strongly interacting nature of FQH states.
The Li-Haldane conjecture (the correspondence between
the counting of the number of modes of the real space
spectrum in the thermodynamic limit and the counting
of the edge-excitation spectrum) is easy to prove in non-
interacting systems, such as the Integer Quantum Hall
system and topological insulators36–38.

In this article, we partially prove the first part of the
Li-Haldane conjecture for clustering model states: in the
thermodynamic limit, we show that the counting of the
CFT associated with the edge is an upper bound of the
counting of the low-lying levels of the OES. We give
physical arguments for why this bound should be satu-
rated. We prove the upper bound for the bosonic (k, 2)-
clustering states (the Read-Rezayi sequence) multiplied
by any number of Jastrow factors, and for the Gaffnian.
In principle, this should hold for all model states defined
as the unique, highest-density zero modes of (k+1)-body
pseudopotential Hamiltonians39. This proof is obtained
by establishing a bulk-edge correspondence in the entan-
glement spectra: the particle and orbital entanglement
spectra have the same counting for the range of parame-
ters that become the most relevant in the thermodynamic
limit. For finite-size systems, the correspondence holds
for the counting at large angular momenta.

The paper is organized as follows: Our notation is in-
troduced in Section II. We define the orbital entangle-
ment matrix and spectrum in Section III and the parti-

cle entanglement matrix and spectrum in Section IV. In
Sec. IV C, we present the upper bound to the number of
levels in the particle entanglement spectrum and argue
for its saturation. In Sec. V, we formulate the cluster-
ing properties of the model state in the single-particle
orbital basis. We use them to relate the counting of the
particle and orbital entanglement spectra of the Read-
Rezayi sequence in Sec. VI. The parameter range for
which the bulk-edge correspondence holds is presented
in Section VI B. The proof for the upper bound of the
Li-Haldane conjecture is presented at the end of the same
section. In Section VI D, we extend the proof to the other
model states. Examples and the mathematical formula-
tion of the ideas in the proof are in the Appendices.

II. NOTATION

The results that we present in this article hold on any
surface of genus 0 (such as the disc or the sphere) pierced
by Nφ flux quanta; for simplicity, we choose the sphere
geometry. The single-particle states of each Landau level
are eigenstates of L̂z, the z-component of angular mo-

mentum and |~L|2, the square of the magnitude of the
total angular momentum vector40. In the Lowest Lan-
dau Level, the degenerate single-particle states belong to
a multiplet of angular momentum L = Nφ/2 and conse-
quently, Lz ∈ [−Nφ/2, . . . , Nφ/2]. Identifying the coordi-
nate z = tan θeiφ, where θ and φ are the two angles that
parametrize the sphere, the unnormalized monomials:

〈z|m〉 = zm ,m =
Nφ
2
− Lz , (1)

span the lowest Landau level and will be our single-
particle basis of choice in this article. We are forced to
adopt a dual notation in this article - the single-particle
orbitals are indexed by their z-angular momentum Lz in
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FIG. 2: Left: Sketch of the partition in particle space. The particles of part B that are traced out are denoted in grey.
Right: particle entanglement spectrum (PES) of the ν = 1/2 Laughlin state of N = 9 bosons, with particle cut NA = 4.
The minimum angular momentum LAz,min defined in the text is LAz,min = 20 in the plot. The entanglement level counting is

identical to the counting of quasiholes in a Laughlin state of 4 particles with total flux Nφ = 16 at all angular momenta LAz .
For ` = |LAz − LAz,min| = 0, 1, . . . , 4, the counting is universal, i.e. independent of NA: (1, 1, 2, 3, 5).

...

FIG. 3: The configurations in the PES can be related to those of the OES using the clustering constraints. These constraints
reveal the vanishing properties of the FQH state as particles are brought closer together. They relate the long-wavelength
properties of the FQH state when two particles are far away from each other to the short-wavelength properties of the state
when particles are close together, and hence can be used to ’drag’ particles from the PES hilbert space into the more restrictive
OES hilbert space.

the figures, and by a shifted label m = (Nφ/2−Lz) in the
text. At the north (south) pole, Lz = Nφ/2 (−Nφ/2).

Fermionic/bosonic many-body wavefunctions of N
particles and total angular momentum Ltotz can be ex-
pressed as linear combinations of Fock states in the occu-
pation number basis of the single-particle orbitals. Each
Fock state |λ〉 can be labeled either by the list of occupied
orbitals, λ, or by the occupation number configuration,
n(λ). λ = [λ1, λ2, . . . , λN ] is an ordered partition of Ltotz
into N parts and each orbital with index λj is occupied
in the Fock state. By definition, λi ≥ λj if i < j. n(λ)
is the occupation number configuration. It is defined as
n(λ) = {nj(λ), j = 0, . . . Nφ}, where nj(λ) is the occu-
pation number of the single-particle orbital with angular
momentum j. In the unnormalized polynomial basis,

〈z1, . . . , zN |λ〉 = S[zλ1
1 · . . . · z

λN
N ] (2)

where S is the process of symmetrization/anti-
symmetrization over all indices i, j such that λi 6= λj .
For example, if Nφ = 2 and N = 2, orbitals 2 and 0
are occupied in the Fock state |2, 0〉 of the 3 available

orbitals. Consequently, λ = [2, 0], n(λ) = {101} and
〈z1, z2|2, 0〉 = z2

1 + z2
2 . Similarly, λ = [1, 1], n(λ) = {020}

and 〈z1, z2|1, 1〉 = z1z2 for the other Fock state at the
same total angular momentum.

We will repeatedly run into a special kind of parti-
tion in this article — the (k, r)-admissible partition. A
(k, r)-admissible partition labels a Fock state, whose oc-
cupation configuration has no more than k particles in r
consecutive orbitals. These partitions play a prominent
role in our discussions as they count the Hilbert space
of the quasiholes of our model FQH liquids, which have
generalized (k, r)-exclusion Haldane statistics41. For the
examples above, λ = [2, 0] is (1, 2)-admissible, while [1, 1]
is not.

Three useful relations between partitions are ‘domi-
nance’, ‘squeezing’ and ‘addition’. A set of partitions
may always be partially ordered by dominance, indicated
by the symbol ‘>’. A partition µ dominates another par-
tition ν (µ > ν) iff

∑r
i=0 µi ≥

∑r
i=0 νi ∀r ∈ [0, . . . , N ].

Squeezing is a two-particle operation that connects n(µ)
to n(ν). It modifies the orbitals occupied by any two



4

particles in n(µ) from m1 and m2 to m′1 and m′2 in n(ν),
such that m1 +m2 = m′1 +m′2 and m1 < m′1 ≤ m′2 < m2

if the particles are bosonic or m1 < m′1 < m′2 < m2

if they are fermionic. Dominance and squeezing are
identical concepts: a partition µ dominates a partition
ν iff ν can be squeezed from µ by a series of squeez-
ing operations. The ‘sum’ of two partitions µ + ν is
defined as the partition with occupation configuration
n(µ+ ν) = {nj(µ) + nj(ν), j = 0, . . . Nφ}.

FQH wavefunctions in the lowest Landau level
are translationally invariant, symmetric, homogeneous
polynomials of the coordinates of the N particles,
(z1, z2 . . . zN ). We consider mainly the bosonic Read-
Rezayi sequence at filling ν = k/2 here (see Sec. VI D
for other model states). These states are the unique,
highest density zero-mode wavefunctions of (k + 1)-
body pseudopotential Hamiltonians39. Recent work42

has shown the Read-Rezayi bosonic wavefunctions ψ to
be Jack polynomials Jαλ0

indexed by a parameter α =
−(k+ 1) and the densest-possible (k, 2)-admissible ‘root’
configuration43:

n(λ0) = {k0k0k0 . . . k0k} . (3)

For the (k, 2)-clustering states, the number of fluxes for
the ground state wavefunction is Nφ = 2(N/k − 1).
All the Jack polynomials at α = −(k + 1) indexed by
(k, 2)-admissible root configurations are (k, 2)-clustering
polynomials, i.e. they vanish as

∏
i>k(z − zi)

2 when
z = z1 = . . . zk. They form a basis for all many-body
(k, 2)-clustering polynomials and can be decomposed into
a linear combination of Fock states with configurations
squeezed from the root partition. Importantly for us,
they span the entire zero-mode space of the (k+1)-body
hardcore model Hamiltonian consisting of the ground
state and all the quasihole states42. They provide a nat-
ural description of the particle entanglement spectrum as
we shall see in Sec. IV C.

III. THE ORBITAL ENTANGLEMENT MATRIX
(OEM)

A. Definition

Consider dividing the set of single-particle orbitals
{0, 1, . . . , Nφ} into two disjoint sets A = {0, 1, . . . lA − 1}
and B = {lA, . . . Nφ}. As the single-particle orbitals are

polynomially localized in the θ̂ direction, this partition in
the single-particle momentum space roughly corresponds
to an azimuthally symmetric spatial cut.

The number of orbitals in A (B) is lA (lB), where lB =
Nφ + 1 − lA. Without loss of generality, let lA ≤ lB
(lA ≥ lB for A and B swapped). Any occupation number
state |λ〉 may be expressed as a tensor product |µ〉 ⊗ |ν〉
of states with partitions µ and ν belonging to the Hilbert
spaces of A and B respectively. Thus, the model state

can be decomposed as:

|ψ〉 =
∑
λ

bλ|λ〉 =
∑
i,j

(Cf )ij |µi〉 ⊗ |νj〉, (4)

where the kets {|µi〉} and {|νj〉} form orthonormal bases
that span the Hilbert spaces of A and B. Note that for
an orbital cut all terms in the decomposition are totally
symmetric in all the particles. This is not the case for the
particle cut that is discussed in Section IV. The matrix
Cf is the full orbital entanglement matrix (OEM). The
(i, j)th matrix element of the full OEM is equal to the
coefficient of |µi + νj〉 in |ψ〉:

(Cf )ij = bµi+νj . (5)

In this article, we will almost exclusively deal with en-
tanglement matrices. Unless stated otherwise, the rows
(columns) of these matrices, for both the OEM defined
in Eq.(4) and for the PEM defined below, will be labeled
by partitions µi (νj) corresponding to the occupation ba-
sis states |µi〉 (|νj〉) in A (B). The vector defined by the
entries of a row/column in the entanglement matrix shall
be referred to as row/column vector.

Readers unfamiliar with the OEM and how to con-
struct it are encouraged to take a look at Appendix A 1,
where we explicitly construct the OEM for a simple ex-
ample.

B. Properties

Cf has a block-diagonal form; each block in the full
OEM Cf is labeled by NA, the number of particles in
A, and LAz , the total z-angular momentum of the NA
particles in A. Note that LAz =

∑NA
i=1 µi for the state

|µ〉, where µi here are the components of the partition µ.
Due to an unfortunate but necessary choice of notation,
µi also index the partitions of the Hilbert space of part A.
In that case, µi is a partition by itself, and its components
are µi1, µi2, . . . , µiNA . The use of µi as a partition or as a
component of a partition µ will be self-evident in the text.
To understand the origin of the block-diagonal structure
of Cf , observe that |ψ〉 is an eigenstate of the particle-

number operator N̂ and the total z-angular momentum

operator ˆLtotz . As both operators are sums of one-body

operators, N̂ = N̂A⊗ I+ I⊗ N̂B and ˆLtotz = L̂Az ⊗ I+ I⊗
L̂Bz . Thus, every |λ〉 in Eq.(4) is labeled by the quantum
numbers, N and Ltotz , while every |µi〉 (|νj〉) is labeled
by NA (NB = N − NA) and LAz (LBz = Ltotz − LAz ). In
the remainder of this article, the symbol C refers to the
block of the full OEM Cf with labels NA and LAz .

The reduced density matrices are obtained from Cf

as ρA = CfCf
† and ρB = Cf

†Cf . The block-diagonal
structure of Cf carries over to the reduced density matri-
ces and the rank of ρA and ρB in each block is equal to
that of C. Neither ρA nor ρB uniquely determine all the
coefficients of |ψ〉; Cf clearly contains more information
than either of the reduced density matrices.
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The singular value decomposition of C is given by:

∑
i,j

Cij |µi〉 ⊗ |νj〉 =

rank(C)∑
i=1

e−ξi/2|Ui〉 ⊗ |Vi〉. (6)

The kets on the left-hand-side of Eq. (6) are defined as
in Eq. (4). |Ui〉 and |Vi〉 are the singular vectors in the
Hilbert spaces of A and B restricted to a fixed particle
number and z-angular momentum. They are linear com-
binations of the occupation number basis vectors |µi〉 and
|νj〉. The ξi’s are the ‘energies’ plotted as a function of
LAz in the orbital entanglement spectrum (OES) intro-
duced in [14].

The number of finite energies (rank(C)) at each
(NA, L

A
z ) is independent of the geometry of the 2-d sur-

face and the symmetrization factors arising due to mul-
tiple particles occupying the same orbital. Let Cf

d and
Cf

s be the full OEMs in the disc and sphere geome-
try, or in any other two genus 0 geometries. Modify-
ing the geometry of the surface changes the normaliza-
tion of the single-particle orbitals (the quantum mechan-
ical normalization); thus every bλ in the expansion of
|ψ〉 in Eq. (4) in the disc basis is multiplied by a fac-

tor N (λ) =
∏N
i=1N (λi). when expanded in the single-

particle orbital basis on the sphere. N (j) is a factor
relating the normalization of orbital j on the disc to that
on the sphere. The OEM’s on the disc and the sphere
are thus related as:

|ψ〉 =
∑
i,j

(Cf
d)ij |µdi 〉 ⊗ |νdj 〉

=
∑
i,j

(Cf
d)ijN (µdi )N (νdj )|µsi 〉 ⊗ |νsj 〉, (7)

where the superscripts d and s refer to the disc and
sphere geometries, or to any other two genus 0 ge-
ometries. Cf

s is obtained from Cf
d by multiplying

whole rows and columns by normalization factors; thus
rank(Cf

s) = rank(Cf
d). An identical argument shows

the rank of Cf to be independent of the symmetriza-
tion factors that arise in the normalization of the many-
body states constructed from normalized single-particle
orbitals. We are therefore free to work in an unnormal-
ized single-particle basis from this point.

For a given cut lA in orbital space, the maximum num-
ber of particles that can form a (k, 2)-clustering droplet in
A is defined to be the natural number of particles NA,nat:

NA,nat = kb(lA + 1)/2c , (8)

where bxc is the integer part of x. Physically, NA,nat/lA
is very close to the original filling ν. We may think of
the original, homogenous QH fluid as being composed
of two droplets in A and B of NA,nat and NB,nat =
N −NA,nat particles each, interacting via correlated ex-
citations along their common edge. We would thus ex-
pect the OES at NA,nat, called the natural spectrum, to
be the low-energy sector of the full entanglement energy

spectrum and to contain information about the edge the-
ory of the model state. In the thermodynamic limit, the
number of finite energies (level counting) of the OES is
conjectured to be identical to the counting of the modes
of the CFT describing the edge for values lA, NA → ∞
such that lA/Nφ → const.(> 0) and NA/NA,nat → 1.

For future reference, LAz,min denotes the minimum z-
angular momentum of the NA particles in A of a (k, 2)-
clustering model state:

LAz,min = bNA/kc(2NA − kbNA/kc − k). (9)

We stress that LAz,min is the maximum value on the x-
axis of the numerically generated entanglement spectra
existing in the literature, due to the different indexing
scheme in the text and the figures (see also the discussion
in Section II). For instance, in Fig. 1, LAz,min describes

the sector of the OES at LAz = 20.
For an arbitrary pure bosonic state of N particles, the

rank of the OEM Cf must generically be the smaller
of its dimensions. The model states are special because
the rank of the OEM block at given (NA, L

A
z ) is in

general much smaller than its smaller dimension. The
rank of the OEM block at given NA, as a function of
` = |LAz − LAz,min|,57 is called the counting of the OES,
see also Fig. 1. For model states, it has been observed
from small size numerical calculations that the counting
is universal for the first few values of `,14 i.e. indepen-
dent of N , NA, and lA. The universal counting is distinct
for each model state, which is why Li and Haldane pro-
posed it as a way to determine the topological order44 of
the FQH states. For instance, for a Laughlin state the
universal counting is {1, 1, 2, 3, 5, 7, 11, . . .}, while for the
MR state it is {1, 1, 3, 5, 10, 16, . . .}. In the OES of the
Laughlin 1/2 state in Fig. 1, the counting is universal
for ` = 0, . . . , 4: {1, 1, 2, 3, 5 . . .}, starting from the right
edge of the spectrum. For larger `, finite-size corrections
occur. The universal counting is identical to counting
the modes of a massless, chiral boson, which is the CFT
describing the edge of the Laughlin FQH states.

IV. THE PARTICLE ENTANGLEMENT
MATRIX (PEM)

A. Definition

In the orbital cut that we just discussed, the Hilbert
space of A at given (NA, L

A
z ) was spanned by the possible

occupation configurations |µ〉 of NA particles, such that∑NA
i=1 µi = LAz and µi < lA ∀i. We now consider making a

cut of a FQH state |ψ〉 in particle space by dividing the N
particles into groups A and B with NA and NB = N−NA
particles. Without loss of generality, let NA ≤ NB .

Let us first consider the model state in the
unnormalized real space basis, ψ(z1, . . . , zN ) =∑
λ bλ〈z1, . . . , zN |λ〉. For simplicity, we choose the parti-

cles at positions {z1, . . . , zNA} as group A and the re-
maining particles {zNA+1, . . . , zN} as group B. Each
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many-body basis state 〈z1, . . . , zN |λ〉 can be decomposed
as

〈z1, . . . , zN |λ〉 =
∑
µ,ν

〈z1, . . . , zNA |µ〉 · 〈zNA+1, . . . , zN |ν〉 ,

(10)

where the sum runs over all partitions µ and ν of NA
and NB particles respectively, such that µ + ν = λ. In
particular, there is no orbital restriction on the parti-
tions in contrast to the orbital cut considered in the last
section. Thus, the Hilbert space of A(B) is spanned by
all possible occupation configurations of NA(NB) parti-
cles in the full single-particle orbital basis of the state
|ψ〉. It contains the smaller Hilbert space of A(B) with
the orbital restriction that only the first lA (the last lB)
orbitals are occupied. The latter is the Hilbert space ob-
tained from the orbital entanglement cut, but with fixed
particle number NA.

Just as in the previous section, we can write the model
wavefunction ψ(z1, . . . , zN ) as:

ψ(z1, . . . , zN ) =
∑
λ

bλ〈z1, . . . , zN |λ〉

=
∑
λ

∑
µi+νj=λ

(Pf )ij〈z1, . . . , zNA |µi〉·〈zNA+1, . . . , zN |νj〉,

(11)

where the summation is over all partitions µi (νj) of NA
(NB) particles in Nφ orbitals. Note that each term in
the second line of Eq. (11) is only symmetric in the first
NA and last NB = N − NA particle coordinates sepa-
rately; the summation ensures that the full expression is
symmetric in all particle coordinates. The matrix Pf is
the full particle entanglement matrix (PEM). As was the
case for the OEM, the matrix elements of the PEM are
directly related to the weights of the model wavefunction
by

(Pf )ij = bµi+νj . (12)

Even though Eq. (12) looks very similar to Eq. (5), they
define two different matrices, because the sets of parti-
tions {µi} and {νi}, labeling the rows and columns, are
different for the orbital and particle cut. However, they
are not completely unrelated as we will see in the next
subsection.

Readers unfamiliar with the particle cut and how to
construct the PEM are encouraged to look at App. A 2,
where we construct the PEM explicitly for a Laughlin
model state.

B. Properties

For a given cut with NA particles in A, Pf is block-
diagonal in the angular momentum of part A, LAz . The
block of Pf at fixed (LAz , NA) shall be denoted by P.

The reduced density matrices of part A and B are given

by ρA = PfP
†
f and ρB = P†fPf respectively. They are

block-diagonal in LAz and have the same rank as Pf in
each block. In the same spirit as the discussion of the
OEM, we define the singular value decomposition of the
PEM by:∑

i,j

(P)ij |µi〉 ⊗ |νj〉 =
∑
i

e−ξi/2|Ui〉 ⊗ |Vi〉, (13)

where the singular vectors |Ui〉 and |Vi〉 are orthonormal
vectors in the Hilbert spaces of A and B restricted to
fixed angular momentum. The plot of the ‘energies’ ξi vs
LAz is called the particle entanglement spectrum (PES)17.
In Fig. 2 we show the PES of the 9 particle 1/2 Laughlin
state for the particle cut NA = 4.

In the spherical geometry, the PEM is labeled by an ad-
ditional quantum number as compared to the OEM17—

the total angular momentum of A, (~LA)2. Consequently,
the eigenvalues of the block of the reduced density matrix

with (~LA)2 = `(`+1) have (2`+1)-fold degeneracy. This
multiplet structure, apparent in the PES in Fig. 2, does
not play any role in our discussions about the counting
of the PES in this article.

As for the OES, we can define the counting of the PES
as the number of finite entanglement levels (ie. the num-
ber of non-zero eigenvalues of the reduced density ma-
trix) as a function of ` = |LAz − LAz,min|, see also Fig. 2.

From numerical calculations, it has been observed17 that
the counting of the PES is identical to the number of
quasihole states of the model state with NA particles
in Nφ orbitals at all angular momenta LAz . For values
` = 0, . . . , bNA/kc we expect the counting to be univer-
sal, ie. independent of NA and system size. In the next
subsection we prove (following Ref. 17) that the counting
is bounded by the number of quasihole states and argue
for the saturation of the bound.

For given particle number NA and angular momen-
tum LAz the number of entanglement levels in the OES
is bounded from above by the number of entanglement
levels in the PES. To see this, note that the crucial dif-
ference between Eq.s (5) and (12) is the set of parti-
tions that label the rows and columns of the matrices.
The rows (columns) of the PEM block are labeled by
all partitions µ (ν) of LAz (LBz = Ltotz − LAz ) into NA
(NB) parts, with 0 ≤ µi ≤ Nφ (0 ≤ νi ≤ Nφ). A
subset of these, namely the ones with the restriction
0 ≤ µi ≤ lA − 1 (lA ≤ νi ≤ Nφ), are the ones that label
the rows (columns) of the OEM block. Thus, for fixed
NA and LAz the OEM block is a sub-matrix of the PEM
block, which implies that its rank is smaller or equal to
the rank of the PEM block. A simple, explicit example
for these results can be found in Appendix A.

In Fig. 2 we show the PES of the 9 particle 1/2 Laugh-
lin state for the particle cut NA = 4. The counting is
identical to the number of quasihole states of a Laughlin
state with 4 particles in 16 orbitals. For ` = 0, . . . , 4,
the counting of the PES is universal and identical to the



7

counting of the OES in Fig. 1.

C. Rank

The property that defines the k-clustered model state
ψ(z1, . . . , zN ) uniquely is that it is the lowest degree sym-
metric polynomial that vanishes when (k+1) particles are
at the same position. Similar clustering conditions char-
acterize every ground-state of a pseudopotential Hamil-
tonian. This vanishing property must persist when we di-
vide the particles into two groups and re-write the model
state in Eq. (11) as:

ψ(z1, . . . , zN ) =∑
LAz

∑
i

e−ξi/2 〈z1, . . . , zNA |Ui〉 · 〈zNA+1, . . . , zN |Vi〉,

(14)

using Eq. (13) at each LAz . If we choose (k+ 1) particles
in group A, say z1, . . . , zk+1, to be at the same position
z, then the state must vanish at every LAz . Further, as
the singular vectors in B form an orthonormal basis:

ψ(z, . . . , z, zk+2, . . . , zN ) = 0

⇒ e−ξi/2〈z, . . . , z, zk+2, . . . , zNA |Ui〉 = 0, ∀i, LAz . (15)

A similar relation holds when A and B are interchanged.
We conclude that the singular vectors, 〈z1, . . . , zNA |Ui〉
and 〈zNA+1, . . . , zN |Vi〉, must also be clustering polyno-
mials that vanish when (k + 1) particles are at the same
position. A basis for clustering polynomials is the set of
Jack polynomials, Jαµ̃ , indexed by α = −(k + 1) and the

(k, 2)-admissible partition µ̃42,43,45. ψ can therefore be
expanded in the Jack basis as:

ψ(z1, . . . , zN ) =∑
i,j

(Mf )ijJ
α
µ̃i(z1, . . . , zNA)Jαν̃j (zNA+1, . . . , zN ), (16)

where µ̃i and ν̃j denote (k, 2)-admissible partitions of NA
and NB particles respectively. The matrix Mf is block-
diagonal in angular momentum LAz ; let M refer to the
block of Mf at fixed value of LAz . The row and column
dimensions of M are much smaller than those of P be-
cause the (k, 2)-admissible partitions of NA and NB form
a small subset of the set of all partitions of with fixed
LAz and LBz respectively. Nevertheless, as Eq. (14) and
(16) are equal, M and P must have the same rank. As
NA ≤ NB , the row dimension of M is smaller (or equal)
than the column dimension and bounds the rank of the
PEM block from above at each LAz .

Let us reformulate what we have just shown in a more
familiar language and argue for the saturation of the
bound. The row dimension of M is given by the num-
ber of (k, 2)-admissible configurations of NA particles in

Nφ orbitals, and thus is equal to the number of distinct
bulk quasi-hole excitations of the (k, 2)-clustering model
state of NA particles at angular momentum LAz on a
sphere pierced by the number of fluxes of the original
state, Nφ = 2/k(N − k)46,47. Hence, we find that the
rank of the PEM is bounded by the number of quasi-
hole states for all angular momenta LAz . Without fur-
ther symmetry-induced constraints on the reduced den-
sity matrices (we have already used all the symmetries
available in the state), we expect this bound to be sat-
urated. In the thermodynamic limit (NA, N → ∞ such
that NA/N > 0), we therefore argue that the level count-
ing of the entire PES is identical to the number of the
bulk quasi-hole excitations. This bound saturation can
be proved exactly for the Laughlin states48.

It is beneficial to identify a set of rows and columns
in P with the same rank as the full matrix. Consider
the rows and columns labeled by the (k, 2)-admissible

partitions. This sub-matrix of P is denoted by P̃ and
has the same dimensions as M. In Appendix B 1, we
show that P̃ and M have the same rank. P̃ will play
a prominent role in the proof establishing the bulk-edge
correspondence in the entanglement spectra.
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FIG. 4: A cartoon of the various sub-matrices in the PEM
block labeled by the angular momentum LAz . The block of
the OEM labeled by (NA, L

A
z )— C in the figure— is a sub-

matrix of the PEM block P at LAz . P̃ is a sub-matrix of P
containing all rows and columns that are labeled by (k, 2)-
admissible partitions of NA and NB particles subject to total
flux Nφ.

Let us summarize the most relevant results presented
in this section. We introduced the PES and argued that
the entanglement level counting is identical to counting
the number of quasihole states of the (k, 2)-clustering
model state with NA particles in Nφ orbitals. This sub-
stantiates the conjecture that the PES indeed gives us
information about the bulk excitations. Furthermore we
showed that the OEM block at fixed (NA, L

A
z ) is a sub-

matrix of the PEM block at LAz . Consequently, the level
counting of the OES at fixed NA is smaller or equal to
the PES counting for all angular momenta LAz . In the
following section we will derive ”clustering constraints”
that allow us to prove that the level counting of the OES
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and the PES are equal for a range of angular momenta
LAz that depends on lA and NA.

V. CLUSTERING CONSTRAINTS

In this section, we introduce the (k+1)-body clustering
constraints that relate the rank of the PEM and the OEM
of the clustering model states and establish the bulk-edge
correspondence in the entanglement spectra. The Read-
Rezayi model wavefunctions ψ(k,2)(z1, z2 . . . zN ) are sin-
gle Jack polynomials labeled by a root partition λ0

(Eq. (3)), and a parameter α = −(k + 1). They sat-
isfy (k, 2)-clustering — they are non-zero when a cluster
of k particles is at the same point in space z = z1 =
z2 = . . . zk, but vanish as the second power of the dis-
tance between the (k + 1)st particle and the cluster as
zk+1 → z. The clustering property imposes a rich struc-
ture on ψ(k,2)(z1, z2, . . . , zN ). All the partitions λ that
arise in the expansion of |ψ〉 in the many-body occupa-
tion basis (|ψ〉 =

∑
λ bλ|λ〉) are dominated by λ0. Fur-

thermore, all the coefficients bλ are known up to a multi-
plicative constant. In the Jacks, this constant is chosen so
that bλ0

= 1. In other words, the clustering property and
the requirement to be the densest possible wavefunction
determine ψ(k,2)(z1, z2, . . . , zN ) uniquely up to an overall
normalization constant. Here, we formulate the condi-
tions imposed by clustering on ψ(k,2)(z1, . . . , zN ) as lin-
ear, homogeneous equations on the coefficients bλ. These
are called clustering constraints in the following, and are
the main tool to proof the rank equality of the PEM and
OEM in Section VI.

A. Derivation

Let us introduce a ‘deletion’ operator di for orbital i
such that:

di|λ〉 =

{
0 , i /∈ λ

|λ\{i}〉 , i ∈ λ (17)

λ\{i} is the partition with a single occurrence of the or-
bital i removed from it. The ‘deletion’ operators com-
mute with each other. In Appendix C, we derive the
relation between these operators and the annihilation op-
erators in the normalized single-particle basis.

We now separate the coordinates of k+1 particles from
the rest and rewrite ψ(k,2)(z1, z2, . . . , zN ) as:

ψ(k,2)(z1, . . . , zN ) =

Nφ∑
l1...,lk+1=0

k+1∏
j=1

z
lj
j

 〈zk+2, . . . , zN |
k+1∏
j=1

dlj |ψ〉 , (18)

and form a cluster by bringing the k particles with coordi-
nates z1, . . . , zk to the same position z. When zk+1 = z,

the LHS vanishes and Eq.(18) becomes:

0 =

Nφ∑
l1,...,lk+1=0

z
∑k+1
j=1 lj 〈zk+2, . . . , zN |

k+1∏
i=1

dli |ψ〉. (19)

The right-hand-side is a polynomial in an arbitrary com-
plex number z, and has to vanish for every power β =∑k+1
j=1 lj of z to satisfy the above equation. Thus, the

constraints on |ψ〉 are: Nφ∑
l1,...lk=0

dβ−
∑k
j=1 lj

k∏
j=1

dlj

 |ψ〉 = Dβ |ψ〉 = 0. (20)

β is the z-angular momentum of (k + 1)-particles; it
ranges from 0 to Nφ(k + 1). The equation above re-
quires any clustering wavefunction |ψ〉 to be simultane-
ously annihilated by the destruction operators {Di , i =
0 . . . Nφ(k + 1)}.

B. Properties

Every value of β in Eq. (20) yields, in general, a large
number of linear relations between the coefficients of |ψ〉.
Let Sβ be the set of all partitions of N particles such that
the sum of the z-angular momentum of (k + 1) particles
is β. For every occupation configuration of N − (k + 1)
particles, Eq. (20) relates the coefficients of partitions λ ∈
Sβ in the expansion of |ψ〉. Examples of such relations
are given in Appendix D.

The set of linear, homogeneous equations in Eq.(20)
are linearly dependent. The dimension of the null-space
of the set is exactly one for the densest possible wavefunc-
tion, i.e. the vector of coefficients {bλ} is uniquely deter-
mined up to an overall multiplicative factor. Since the
solution to Eq.(20) causes ψ to vanish when any cluster
of size greater than k is formed in real space, we conclude
that the set in Eq.(20) includes all constraints imposed
on ψ(z1, . . . , zN ) due to clustering.

Equivalently, we are describing model FQH wavefunc-
tions that are the unique, highest density zero-modes of
the Haldane pseudopotentials or their generalization to
the k + 1-body interaction [39]. In fact, the destruc-
tion operators above are the fundamental clustering op-
erators from which the Haldane pseudopotentials can be
obtained as the translationally-invariant supersymmetric
form:

H =
∑
β

f(β)D†βDβ . (21)

f(β) can be derived at each k; in Appendix C, we work
through the k = 1 case.
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VI. RELATING THE OES AND PES
COUNTING

We now have all the ingredients necessary to relate the
level counting of the PES to that of the OES for a given
number of particles NA in A and cut lA in orbital space
and prove the bulk-edge correspondence in the entangle-
ment spectra. Let us first recap our findings so far. In
Sec. IV C, we constructed the full PEM Pf for (k, 2)-
clustering model states and argued that the PES level
counting is equal to the number of quasihole states of the
same model state with NA particles in Nφ orbitals. For
angular momenta LAz ≤ LAz,min + bNA/kc, the quasihole
state counting is universal, and identical to the counting
of modes of the edge CFT.

For given LAz , we identified the sub-matrix P̃ of the
PEM block P, with rows and columns labeled by (k, 2)
admissible partitions, which has the same rank as the
PEM block P. The block of the OEM C at (NA, L

A
z ) is a

sub-matrix of the PEM block, thus rank(P) ≥ rank(C)).
In order to show that the ranks are equal, we use the
clustering constraints derived in the previous section to
express the row/column vectors of P that constitute P̃ in
terms of those that constitute the OEM block. In the fol-
lowing, we will refer to this as ’expressing the row/column

vectors of P̃ in terms of the row/column vectors of C’
even though, strictly speaking, the two matrices have dif-
ferent row and column and cannot be expressed in terms
of each other. One should always think of the linear re-
lations we derive as linear relations between rows and
columns in the bigger matrix P, which contains both P̃
and C. For finite system sizes, we show that the ranks
are equal for a certain range of angular momenta, which
depends on NA and lA (see Eq. (25)). This proves that
the PES and the OES (at fixed NA) have the same level
counting for a finite range of angular momentum. In
the thermodynamic limit, this procedure establishes the
equality of the level counting of the entire PES and OES
when, roughly speaking, NA ≈ NA,nat, thus proving a
significant part of the Li-Haldane conjecture.

The argument below applies equally well to row and
column vectors. To keep the discussion concise, we for-
mulate it using row vectors alone.

A. Systemizing the constraints

The biggest challenge in relating the row vectors of
the PEM to those in the OEM for fixed (NA, L

A
z ) lies

in identifying a set of linearly independent equations in
the entire set of clustering constraints. To this end, we
introduce a few quantities characterizing a partition µ.
nm(µ) below refers to the occupation number of the mth
orbital in partition µ. The orbital cut is after lA orbitals.

The unit cell— We divide the single-particle orbital
space such that the jth unit cell contains the orbitals of z-
angular momentum 2j and 2j+1, and j ∈ [0, . . . , Nφ/2).

As the total number of single-particle orbitals is odd for
the bosonic (k, 2)-clustering states, the orbital with an-
gular momentum Nφ is its own unit cell with index Nφ/2.
Every orbital belongs to exactly one unit cell.

The intact unit cell— The jth unit cell of a partition
µ is said to be intact if the occupation numbers of the
orbitals with angular momentum 0, . . . , 2j + 1 are iden-
tical to those in the root configuration Eq. (3), i.e. if
ni(µ) = ni(λ0) for i = 0, ..., 2j + 1. Clearly, the jth unit
cell can only be intact if all unit cells 0, . . . , j − 1 are
intact.

The number of intact unit cells in part A— The num-
ber of intact unit cells in part A, ∆µ, is the number of
intact unit cells to the left of the orbital cut in n(µ).

Distance from the cut— If we were to number the or-
bitals to the right of the cut as 1, 2, . . ., then the distance
from the cut is defined as the sum of the indices of the
occupied orbitals to the right of the orbital cut in n(µ).
The distance from the cut, Kµ, is given by:

Kµ =

Nφ∑
m=lA

nm(µ)(m− lA + 1). (22)

K(µ) = 0 for a partition µ labeling a row of the OEM; for
a general partition, it represents the distance in orbital
units that all the particles to the right of the cut need to
traverse to cross the cut. In Fig. 5, we pick as an example
a generic partition µ and identify the number of intact
unit cells in A, ∆µ, and the distance from the cut, Kµ,
for two different orbital cuts.

Root configuration of part A— For given NA and LAz
there is a unique (k, 2)-admissible (root) configuration
n(µ̃0), with the property that µ̃0 dominates all the other
partitions at angular momentum LAz that label rows of
the PEM:

n(µ̃0) = { k0 . . . k0︸ ︷︷ ︸
2b(NA−1)/kc

x 0 . . . 0︸ ︷︷ ︸
`−1

10 . . . 0}. (23)

The value of x is fixed by the total particle number being
NA (x = (NA−1)−kb(NA−1)/kc). µ̃0 has the maximum
(total) number of intact unit cells possible, b(NA−1)/kc.

B. The method

Consider P̃ at LAz and the OEM block C at (NA, L
A
z )

with LAz = LAz,min + `. We can express all row vectors of

P̃ in terms of row vectors in the OEM block if the root
configuration of part A satisfies:

∆µ̃0
≥ Kµ̃0

. (24)

For fixed lA and NA, relation (24) is fulfilled for angular
momenta LAz − LAz,min = 0, . . . , `max with:



10

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

∆µ = 3

Kµ = k + 3, lA = 10

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

∆µ = 3 Kµ = 2k + 7
lA = 9

FIG. 5: The occupation configuration of a generic partition µ
with the unit cells, the number of intact unit cells ∆µ and the
distance from cuts after lA = 9 (top) and lA = 10 (bottom)
shown. Nφ = 12 here.

`max =

 ∆µ̃0 − k∆̄2
µ̃0
− (2∆̄µ̃0 + 1)(x+ 1) for lA even, lA ≤ 2b(NA − 1)/kc

∆µ̃0
− k∆̄µ̃0

(∆̄µ̃0
− 1)− 2(x+ 1)∆̄µ̃0

for lA odd, lA ≤ 2b(NA − 1)/kc
lA −∆µ̃0

− 1 for lA > 2b(NA − 1)/kc ,
(25)

where we abbreviated the difference of the total number
of unit cells and those only in A by ∆̄µ̃0

= b(NA−1)/kc−
∆µ̃0

. Note that ∆µ̃0
= min[blA/2c, b(NA − 1)/kc], ∆̄µ̃0

,
and x = (NA−1)−kb(NA−1)/kc depend only on NA and
lA. Thus, for all combinations (NA, lA), Eq. (25) gives
the range of angular momenta LAz = LAz,min, . . . , L

A
z,min+

`max for which all rows of the larger PEM block P can be
expressed as linear combinations of the rows of the OEM
block C only.

For values of ` ≤ `max, the proof can be broken into
two steps —

I If ∆µ̃0 ≥ Kµ̃0 , then ∆µ̃ ≥ Kµ̃ for all (k, 2)-admissible
partitions µ̃ < µ̃0.

II If ∆µ ≥ Kµ for a partition µ, then the row vector
labeled by µ in P can be expressed as a linear com-
bination of row vectors in the OEM C alone.

We prove these statements rigorously in the Appen-
dices E and F. The first step shows that the ∆µ̃ ≥ Kµ̃

for all partitions µ̃ labeling rows of P̃ ; the second assures
that all these rows can be written as linear combinations
of rows in the OEM alone.

To establish the rank equality between the PEM block
P and the OEM block C with labels (NA, L

A
z ), we have

to express both the rows and the columns of the PEM
block in terms of those of the OEM block. An identical
argument as shown above can be repeated for the column
vectors. Let ν̃0 be the (k, 2)-admissible partition that
dominates all partitions of LBz into NB parts. For values
of ` such that ∆µ̃0

≥ Kµ̃0
and ∆ν̃0 ≥ Kν̃0 , the OEM and

PEM have the same counting in finite-size and rank(P)
= rank(C).

The heart of the proof lies in the use of the (k + 1)-
clustering condition (20) at the z-angular momentum of
the k particles in the right-most intact unit cell in part
A and one particle occupying an orbital to the right of
the cut. This relates a single row vector belonging to
the PEM block with ∆µ and Kµ to row vectors with
∆µ′ = ∆µ−1 and Kµ′ ≤ Kµ−1. This relation is obtained
by using the clustering operator Dβ with

β = 2k(∆µ − 1) + µ1 (26)

where µ1 is the angular momentum of the rightmost par-
ticle to the right of the orbital cut. The clustering con-
straints thus allow us to replace a row vector whose par-
tition has distance Kµ with a linear combination of row
vectors whose partitions have distances reduced by at
least one at the cost of using a single intact unit cell. If
∆µ ≥ Kµ for a partition µ, then iterating this procedure
provides a linear relation between the row vector labeled
by partition µ and row vectors with distance zero, i.e.
row vectors of the OEM block C.

To clarify our statements, we consider the special case
of the natural spectrum, NA = NA,nat = kb(lA + 1)/2c,
for given lA. It is straightforward to see that lA >
2b(NA − 1)/kc and lB > 2b(NB − 1)/kc, so for both
the rows and columns `max is given by the third line in
Eq. (25). For the natural spectrum, the number of in-
tact unit cells in part A is ∆µ̃0

= NA/k − 1; for part
B it is ∆ν̃0 = NB/k − 1. Consequently, we can express
the rows of the PEM block in terms of rows of the OEM
block for values ` = 0, . . . , lA − b(lA + 1)/2c = blA/2c,
and the columns for ` = 0, . . . , blB/2c. Because we chose
lA ≤ lB , the bound from B is always larger or equal to
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that of A. For ` = 0, . . . , NA/k = b(lA+1)/2c, we argued
that the PES level counting is universal and equal to the
counting of modes of the edge CFT. Thus, we find that
rank(P) = rank(C) for LAz −LAz,min = 0, . . . , blA/2c and
both are identical to the CFT mode counting. We can
relate this range to the explicit examples given in Fig-
ures 1 and 2, where the OES and PES level counting is
indeed identical for ` = 0, . . . , b8/2c = 4. The range of
angular momenta, for which the ranks are equal, grows
linearly with system size, when the ratio lA/Nφ is kept
constant. Small deviations from the natural number of
particles does not change this picture qualitatively. In
general, increasing lA, while keeping NA fixed, tends to
raise `max, while decreasing lA tends to lower it.

To analyze how the finite size results carry over to the
thermodynamic limit, let us fix the ratios NA/N and
lA/Nφ and let N →∞. Because in that case NA and lA
scale with N , the number of intact unit cells in A (B)
in µ̃0 (ν̃0) denoted by ∆µ̃0

(∆ν̃0) scales with N as well.
There are two different scenarios: (I) If ∆̄µ̃0

and/or ∆̄ν̃0

grow faster than
√
N , then a closer look at Eq. (25) shows

that `max → −∞ in the thermodynamic limit, i.e. our
method is not applicable. (II) If both ∆̄µ̃0

and ∆̄ν̃0 grow

slower than
√
N , then `max grows linear with system size.

As:

∆̄µ̃0
∼ |NA −NA,nat| , ∆̄ν̃0 ∼ |NB −NB,nat| ,

|NA − NA,nat| must grow slower than
√
N . Thus, if we

choose NA (for fixed lA/Nφ) such that in the thermody-

namic limit |NA − NA,nat|/
√
N → 0— or equivalently

NA/NA,nat → 1— then Eq. (24) is satisfied for all angu-
lar momenta and the counting of the entire OES and PES
is identical. This proves the bulk edge correspondence in
the (NA, lA) sectors that are most relevant in the ther-
modynamic limit. In particular, this includes the usual
hemisphere cut (lA = bNφ/2c) with NA = k · bN/(2k)c
particles. For this choice of (NA, lA), the counting of the
OES and the PES is identical for angular momenta range
`max = N/k− bN/(2k)c − 1 ≈ N/(2k) for finite size sys-
tems. Thus, in the thermodynamic limit, `max → ∞,
and the counting of the OES and the PES are identical
for all angular momenta.

In this section, we outlined the main steps in the proof
relating the level counting of the PES and OES; the de-
tails of the proof can be found in the appendices. For
finite size systems, Eq. (25) (and its counterpart for the
column vectors) specifies the range of momenta at fixed
(NA, L

A
z ) for which the level counting of the PES and

OES are equal. For NA/NA,nat → 1, when N →∞, this
range grows linearly with system size. Hence, for this
choice of (NA, lA), the entire level counting of the PES
and OES are identical in the thermodynamic limit. For
Laughlin states one can prove that the counting of the
PES is equal to the mode counting of a chiral massless
boson, the CFT describing the edge48. Thus, the en-
tire natural spectrum simply counts the number of edge
excitations in the thermodynamic limit. We argued in

Sec. IV C that the same is true for the more complicated
(k > 1) Read-Rezayi model states; the PES counts the
number of modes of the CFT describing the edge. Be-
cause of the bulk-edge correspondence in the entangle-
ment spectra shown above, we conclude that the OES
counting is equal to the number of modes of the edge
CFT if we restrict NA to be the natural number of par-
ticles in A, as specified above. This proves a significant
part of the Li-Haldane conjecture14.

C. Illustrative examples

The proof of the full method is presented in the ap-
pendices; here we illustrate the more formal ideas with
examples of the general method at work for the k = 1, 2
wavefunctions.

1. At k = 1:

Consider the ν = 1/2 Laughlin state of N = 7 bosons
with Nφ = 12 and Ltotz = 42. Let lA = 6 and the number
of particles in A be the natural numberNA = NA,nat = 3.
We consider the entanglement level counting of the OES
and the PES at LAz = Lz,min + ` = Lz,min + 3. We first
verify that the conditions, ∆µ̃0

≥ Kµ̃0
and ∆ν̃0 ≥ Kν̃0 ,

are satisfied. The occupation configurations of µ̃0 and ν̃0

are:

n(µ̃0) = {101000 | 0100000} Kµ̃0
= 2,∆µ̃0

= 2

n(ν̃0) = {000100 | 0010101} Kν̃0 = 3,∆ν̃0 = 3

The cut in orbital space is indicated in the occupation
configurations by the ‘|’ symbol. Hence, the method dis-
cussed in the previous section should prove the equality
of the ranks of the OEM and the PEM at this LAz .

The occupation configurations of the (1, 2)-admissible

partitions labeling the rows of P̃ are:

n(µ̃0) = {101000 | 010 . . . 0} Kµ̃0
= 2,∆µ̃0

= 2

n(µ̃1) = {100100 | 100 . . . 0} Kµ̃1
= 1,∆µ̃1

= 1

n(µ̃2) = {010101 | 000 . . . 0} Kµ̃2
= 0,∆µ̃2

= 0 .

(27)

µ̃2 labels a row that already belongs to the OEM block
C. We now relate the row labeled by the partition µ̃1 to
rows of the OEM block. In n(µ̃1), only the 0th unit cell
is intact and the particle to the right of the cut occupies
the orbital with index 6. Following Eq. (26) we pick the
2-body clustering constraint at β = 6 (the sum of the
z-angular momenta of the particle in the intact unit cell
and the particle to the right of the cut) in Eq. (20):

(2(d0d6 + d1d5 + d2d4) + d3d3)|ψ〉 = 0 (28)

For every occupation number configuration of (N − 2)
bosons with angular momentum (Ltotz −β), Eq (28) gives
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one linear relation. The appropriate occupation number
configuration for our purpose is n([3] + νj), as:

d0d6 (|µ̃1 + νj〉) = |[3] + νj〉 . (29)

The partitions νj of LBz into NB = 4 parts label the
columns of the PEM P. Eq. (28) then relates the row
indexed by µ̃1 to row vectors indexed by following parti-
tions:

n(µ1) = {010101 | 000 . . . 0} Kµ1 = 0,∆µ1 = 0

n(µ2) = {001110 | 000 . . . 0} Kµ2 = 0,∆µ2 = 0

n(µ3) = {000300 | 000 . . . 0} Kµ3
= 0,∆µ3

= 0 .

(30)

At every column index j, the explicit relation from
Eq. (28) is:

2(P̃1j + P1j + P2j) + P3j = 0 , (31)

where Pij is the coefficient in P of the row labeled by µi
and column labeled by νj . We have thus related a row
indexed by a partition µ̃1 with Kµ̃1

= 1 and ∆µ̃1
= 1 to

rows indexed by partitions µ1, µ2, µ3 with distance from
the cut reduced by 1 and number of intact unit cells in A
reduced by 1. These partitions label rows in the OEM in
this example. A similar procedure, using the additional
clustering constraint at β = 9, involving the particles in
the orbitals of angular momenta 2 and 7, can be used to
relate the row of P̃ indexed by the partition µ̃0 to rows
in the OEM.

2. At k = 2:

Let us now consider the Moore-Read state with N =
18, Nφ = 16, and Ltotz = 144 and perform an orbital cut
after lA = 7 orbitals. Here, we are interested in relating
the rows of the PEM block to the rows of the OEM block
for NA = 8 at LAz = LAz,min + ` = LAz,min + 3. The
occupation number configurations of µ̃0 and ν̃0 are:

n(µ̃0) = {2020201 | 00100000} Kµ̃0
= 3,∆µ̃0

= 3

n(ν̃0) = {0000010 | 01020202} Kν̃0 = 2,∆ν̃0 = 3,

where we indicate the orbital cut by the ’|’ symbol. Thus,
∆µ̃0

≥ Kµ̃0
and ∆ν̃0 ≥ Kν̃0 , and we can relate all rows

and columns of the PEM to ones in the OEM.
The occupation configurations of the (2, 2)-admissible

partitions labeling the rows of P̃ are given by:

n(µ̃0) = {2020201 | 0010 . . . 0} Kµ̃0
= 3,∆µ̃0

= 3

n(µ̃1) = {2020200 | 1100 . . . 0} Kµ̃1
= 3,∆µ̃1

= 3

n(µ̃2) = {2020111 | 0100 . . . 0} Kµ̃2 = 2,∆µ̃2 = 2

n(µ̃3) = {2020110 | 2000 . . . 0} Kµ̃3 = 2,∆µ̃3 = 2

n(µ̃4) = {2011111 | 1000 . . . 0} Kµ̃4
= 1,∆µ̃4

= 1 .

(32)

The trailing 0′s in every occupation configuration indi-
cate that the orbitals with Lz = 10, . . . , 16 are unoccu-
pied in the partitions labeling the rows of P̃. ∆µ̃i ≥ Kµ̃i

is satisfied for all i = 0, . . . , 4, as required in step I in
Sec. VI B.

We illustrate the use of the 3−body clustering con-
straints by relating the row labeled by the partition µ̃3

to rows labeled by partitions µj with distance Kµj = 1
from the cut. The first unit cell is the rightmost intact
unit cell in A in n(µ̃3). Consider the 3-body clustering
condition at β equal to the z-angular momentum of the
2 particles in the rightmost intact unit cell and a parti-
cle to the right of the cut, i.e. at β = 11 = 2 × 2 + 7
(see Eq. (26)). It is beneficial to divide the clustering
condition (20) into two terms:

3
(
D

(1)
11 +D

(2)
11

)
|ψ〉 = 0 (33)

D
(1)
11 = d2d2d7 + 2d2d3d6 + 2d2d4d5 + d3d3d5 + d3d4d4

D
(2)
11 = d0d0d11 + 2d0d1d10 + 2d0d2d9 + . . . , (34)

where D
(2)
11 contains all terms involving angular momen-

tum orbitals 0 and/or 1.

The clustering constraints in Eq. (33) yield a linear re-
lation between certain coefficients in |ψ〉, for each occu-
pation number configuration of the remaining N −3 par-
ticles. We choose the configurations n([7, 5, 4, 0, 0] + νj),
as:

|[7, 5, 4, 0, 0] + νj〉 = d2d2d7(|µ̃3 + νj〉), (35)

where the |νj〉 label the column vectors of the PEM block.

Note that d2d2d7 is the only term in D
(1)
11 that contains

the angular momentum 7 orbital; all other terms have
highest angular momentum less or equal 6, and thus
smaller distance to the cut. Equivalently we can note
that as D1

11 annihilates any configuration with an occu-
pied orbital of z-angular momentum greater than 7, the
first term in Eq. (33) relates the row labeled by µ̃3 only
to rows labeled by partitions that are dominated by µ̃3:

n(µ1) = {2011111 | 1000 . . . 0} Kµ1
= 1,∆µ1

= 1

n(µ2) = {2010220 | 1000 . . . 0} Kµ2
= 1,∆µ2

= 1

n(µ3) = {2002120 | 1000 . . . 0} Kµ3
= 1,∆µ3

= 1

n(µ4) = {2001310 | 1000 . . . 0} Kµ4 = 1,∆µ4 = 1 .

(36)

All the partitions above have one less intact unit cell, and
smaller distance Kµj = Kµ̃3

−1 from the cut as compared
to µ̃3.

The second operator in the clustering condition
Eq. (33) acts on states with occupation number configu-
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rations such as:

{4000110 | 100010 . . . 0}
{3100110 | 100100 . . . 0}
{3010110 | 101000 . . . 0}
{3001110 | 110000 . . . 0} .

...

All the above configurations have distance from the cut
larger than Kµ̃3

= 2, and more than 2 particles in an-
gular momentum orbitals 0 and 1. Hence, they are not
dominated by the root partition λ0, and have zero weight
in the model wavefunction (the corresponding row in the
PEM is identically 0).

Thus, the clustering condition at β = 11 for the config-
uration of the remaining particles being n([7, 5, 4, 0, 0] +
νj), yields a linear relation between the row labeled by
µ̃3 and the rows labeled by the partitions µ1, . . . , µ4:

P̃3j + 2P1j + 2P2j + P3j + P4j = 0 , (37)

where Pij is the coefficient in P in the row labeled by µi
and column labeled by νj . The rows labeled by µ1, . . . , µ4

can in turn be related to rows in the OEM by using the
clustering constraints at β = 7.

D. Beyond (k, 2)-clustering states

Until now, we have restricted our discussions to the
bosonic (k, 2)-clustering states ψ(k,2)(z1, . . . , zN ). In this
section, we generalize our results to other states with the
property of clustering – the states obtained by multiply-
ing (k, 2)-clustering states with M Jastrow factors and
the (2, 3)-clustering Gaffnian state. We believe that our
results hold for all highest-density states uniquely de-
fined by clustering, like, for instance, the Haffnian state.
For the non-unitary states, which are supposedly bulk
gapless49,50, the map relates the counting of the OES to
the number of bulk quasihole states (which is equal to the
counting of the PES); however, in this case the number
of bulk quasiholes is not equal to the number of the edge
modes, as the edge-bulk correspondence in the energy
spectrum does not hold for non-unitary states.

For the (k, 2)-clustering states, we identified a sub-

matrix of the PEM, P̃, with the same rank as the
PEM block with angular momentum label LAz and whose
smaller dimension was the number of distinct bulk quasi-
hole excitations. We then argued, based on the lack of
other symmetries in P̃, that its rank was equal to the
smaller dimension, and that the PES counted the num-
ber of bulk quasi-hole excitations at each angular mo-
mentum. To generalize this argument to other clustering
states, we need to first identify the special sub-matrix
P̃. We can then establish the bulk-edge correspondence
in their entanglement spectra by slightly modifying the
method used in Section VI B. Extending the ideas in

Sec. VI is quite straightforward – we re-define the no-
tion of unit cell and the intact unit cell, and identify Nc,
the number of linearly independent clustering constraints
that involve the k particles of an intact unit cell and one
particle to the right of the cut, for a fixed occupation con-
figuration of the remaining N − (k+ 1) particles. Nc = 1
for the (k, 2)-clustering model states. Using the Nc in-
dependent linear equations, we can relate a row labeled
by a partition µ with ∆µ intact unit cells and distance
to the cut Kµ to rows labeled by partitions µ′, such that
∆µ′ = ∆µ−1 and Kµ′ ≤ Kµ−Nc. Thus, in the notation
of Sec. VI, when ∆µ̃0 ≥ Kµ̃0/Nc and ∆ν̃0 ≥ Kν̃0/Nc, the
OES (at fixed NA) and the PES have the same counting.
In the thermodynamic limit, the arguments in the last
paragraph in Sec. VI show that the Li-Haldane conjec-
ture is true for these states as well when NA ≈ NA,nat.

1. The (k, 2)-clustering state multiplied by Jastrow factors

Let us consider the model wavefunction:

ψ(z1, . . . zN ) = ψ(k,2)(z1, . . . zN )
∏
i<j

(zi − zj)M , (38)

where ψ(k,2)(z1, . . . zN ) is the (k, 2)-clustering state. In

Appendix B 2, we show that P̃ is labeled by row and col-
umn occupation configurations that obey the generalized
Pauli principle: no more than 1 particle in M consec-
utive orbitals and no more than k particles in Mk + 2
consecutive orbitals. The unit cell has (Mk + 2) or-
bitals and the occupation configuration of the intact unit
cell is {1(0)M−11(0)M−1 . . . 1(0)M−100} with 1(0)M−1 re-
peated k times (we could succintly write the whole pat-
tern {(1(0)M−1)k00}). The exponent is the number of
times the pattern in the parenthesis is repeated. In Ap-
pendix G 2, we show that Nc = 1 for M = 1. More
generally, Nc = bM/2c+1 for k = 1 Laughlin states, and
Nc = 2bM/2c+ 1 for states with k > 1.

2. The Gaffnian state

The Gaffnian state is a (2, 3)-clustering state and is a
single Jack polynomial:

ψ(z1, . . . zN ) = Jαλ0
(z1, . . . zN ) (39)

where α = −3/2 and n(λ0) = {200200 . . . 2002}. It is de-
scribed by a non-unitary CFT, the W2(3, 5) model51,52.
It has been suggested that the fermionic Gaffnian state
is the critical state between a strong-pairing phase and
a Read-Rezayi phase53. Despite the Gaffnian being a
gapless state, we can determine the counting of the PES
and establish the correspondence in counting between the
orbital and particle entanglement spectrum. The dis-
cussion in Sec. IV C and Appendix B 1 applies to any
Jack polynomial with (k, r) clustering that is a unique
zero mode of a pseudopotential Hamiltonian (besides the
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(k, 2) Jacks, only one other Jack (2, 3) - the Gaffnian -

satisfies this constraint). P̃ is therefore the sub-matrix
of the PEM labeled by (2, 3)-admissible row and column
occupation number configurations for the Gaffnian state.
The unit cell has 3 orbitals and the occupation config-
uration of the intact unit cell is {200}. We derive the
clustering constraints in Appendix G 1 and show that
Nc = 2 for the Gaffnian.

3. The Haffnian state

The Haffnian state54 is a (2, 4)-clustering state, but is
not a single Jack polynomial. We cannot rigorously iden-
tify P̃ for the Haffnian state, although we expect, based
on our understanding of the other model states, that P̃
only contains the rows and columns labeled by partitions
obeying the generalized Pauli principle discussed in Ref.
[55]. We have verified this numerically. The occupation
configuration of the intact unit cell is {2000}. The clus-
tering constraints are derived along the same lines as for
the Gaffnian in Appendix G 1, giving Nc = 3 for the
Haffnian. Whenever ∆µ̃0

≥ Kµ̃0
/3 and ∆ν̃0 ≥ Kν̃0/3, we

numerically observe that the ranks of the PEM and the
OEM are equal.

VII. CONCLUSIONS

In this paper we have provided a proof that the Li
and Haldane natural entanglement spectrum in the ther-
modynamic limit is bounded from above by the number
of modes of the CFT describing the edge physics. Bar-
ring the presence of extra accidental symmetries in the
system, we argue that the bound should be saturated.
In addition, we showed that the two different entangle-
ment spectra we considered— the PES probing the bulk
excitations and the OES probing the edge excitations—
are related. In fact, they have the same entanglement
level counting for a range of angular momenta, specified
by Eq. (25). The universal counting is different for each
model state and provides valuable information about the
topological order in the FQH state. When restricting to
the natural spectrum, we have proved that in the thermo-
dynamic limit, the level counting of the entire OES and
PES are identical. Thus, we established the bulk-edge
correspondence in the entanglement spectra. The main
tool in proving this are the clustering constraints, which
enforce the defining clustering properties of the model
states in momentum space. Our method works for both
unitary and non-unitary states that are defined as unique
highest density zero-modes of Haldane pseudopotential
Hamiltonians. In particular, it can be applied to the en-
tire Read-Rezayi series, as well as the Gaffnian state.
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Appendix A: A simple example

Let us consider the bosonic Laughlin wavefunction of
N = 4 particles at filling ν = 1/2. The number of flux
quanta, Nφ is 6 and Ltotz = 12. The wavefunction |ψ〉 can
be expanded in the unnormalized basis as:

|ψ〉 ≡
∑
λ

bλ|λ〉

= |6, 4, 2, 0〉 − 2|6, 4, 1, 1〉 − 2|5, 5, 2, 0〉+ 4|5, 5, 1, 1〉
+ 2|6, 3, 2, 1〉 − 2|5, 4, 2, 1〉+ 4|5, 3, 2, 2〉+ 4|4, 4, 2, 2〉
− 2|6, 3, 3, 0〉+ 2|5, 4, 3, 0〉 − 6|4, 4, 4, 0〉 − 4|5, 3, 3, 1〉
− 6|6, 2, 2, 2〉+ 4|4, 4, 3, 1〉 − 6|4, 3, 3, 2〉+ 24|3, 3, 3, 3〉.

(A1)

We construct several orbital and particle entanglement
matrices, and use the clustering constraints to prove
the bulk-boundary correspondence in the following sub-
sections.

1. The orbital cut

Let us cut the single-particle orbital space after lA = 3
orbitals. Consider the blocks of the OEM at the natu-
ral number of particles in A, NA = NA,nat = 2. From
the above decomposition, the minimum possible angular
momentum, Eq. (9) for 2 particles in A is LAz,min = 2.

At this NA and LAz , the Hilbert spaces of A and B are
spanned by |µ1〉 = |2, 0〉, |µ2〉 = |1, 1〉 and |ν1〉 = |6, 4〉,
|ν2〉 = |5, 5〉 respectively. The block C at NA = 2 and
LAz = 2 is then given by:

( |6, 4〉 |5, 5〉
|2, 0〉 1 −2
|1, 1〉 −2 4

)
, (A2)
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where we have indicated the states labeling the rows and
columns. Cij = bµi+νj ( ‘+’ as defined in Section II) and
rank(C)=1.

The block C with NA = 2, LAz = LAz,min + 1 = 3, of
rank 1, is:

( |6, 3〉 |5, 4〉
|2, 1〉 2 −2

)
(A3)

The block C at NA = 2, LAz = LAz,min + 2 = 4, also of
rank 1, is given by:

( |5, 3〉 |4, 4〉
|2, 2〉 4 4

)
(A4)

Fig. 6(a) shows the numerically generated OES for the
4 particle Laughlin state in the sphere geometry at 1/2
filling with NA = 2 and lA = 3. The counting of the
entanglement levels in the spectrum equals the ranks of
C at each LAz .

2. The particle cut

Let us construct the entanglement matrices for the par-
ticle cut with NA = 2 by considering the real space ver-
sion of Eq. (A1), ψ(z1, . . . , z4) = 〈z1, . . . , z4|ψ〉 in the
unnormalized real space basis. Let us illustrate the par-
ticle cut using the basis state 〈z1, . . . , z4|6, 4, 1, 1〉 as an
example. For simplicity, part A consists of particles at
positions z1 and z2. We can write the unnormalized,
symmetric polynomial as:

〈z1, . . . , z4|6, 4, 1, 1〉 = S[z6
1z

4
2z

1
3z

1
4 ]

= S[z6
1z

4
2 ] · S[z1

3z
1
4 ] + S[z6

1z
1
2 ] · S[z4

3z
1
4 ]

+ S[z4
1z

1
2 ] · S[z6

3z
1
4 ] + S[z1

1z
1
2 ] · S[z6

3z
4
4 ]

(A5)

Thus, the coefficient of the PEM block P2(2) in the row
labeled by |1, 1〉 and column labeled by |6, 4〉 is given by
b[1,1]+[6,4] = −2. Doing the same procedure for every ba-
sis state occuring in ψ(z1, . . . , z4) allows us to determine
the PEM blocks P2(LAz ) at the various allowed angular
momenta, LAz . At the smallest possible angular momen-
tum LAz = LAz,min = 2, the PEM and OEM are identical:

( |6, 4〉 |5, 5〉
|2, 0〉 1 −2
|1, 1〉 −2 4

)
. (A6)

The Hilbert space of A at LAz = LAz,min + 1 = 3 is
spanned by the occupation number states |3, 0〉 and |2, 1〉.
|3, 0〉 was not a member of the Hilbert space of A for the
orbital cut after lA = 3 orbitals (discussed in the previous
section), because the orbital with index 3 belonged to B.
The PEM at LAz = 3 is given by:

( |6, 3〉 |5, 4〉
|3, 0〉 −2 2
|2, 1〉 2 −2

)
. (A7)

We see that the OEM (A3) for NA = 2, LAz = 2 is indeed
a sub-matrix of the PEM, as discussed in Section IV A.

As the last example, consider LAz = LAz,min + 2 = 4.
The row and the column dimension of the PEM is larger
than that of the OEM in (A4):


|6, 2〉 |5, 3〉 |4, 4〉

|4, 0〉 1 2 −6
|3, 1〉 2 −4 4
|2, 2〉 −6 4 4

. (A8)

By inspection, we see that the OEM (A4) is the sub-
matrix consisting only of the first row and the first two
columns. The rank of the PEM at LAz = 4 is equal to
two and greater than that of the corresponding OEM.

Fig. 6(b) shows the numerically generated PES for the
4 particle 1/2 Laughlin state for NA = 2. The counting
of the spectrum agrees with the ranks calculated above.
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FIG. 6: (a) Orbital entanglement spectrum of the ν = 1/2
Laughlin state with N = 4, NA = 2, and orbital cut after
lA = 3 orbitals. The entanglement level counting is equal to
the rank of the OEM at each angular momentum. (b) Particle
entanglement spectrum of the ν = 1/2 Laughlin state with
particle cut NA = 2. The entanglement level counting at all
angular momenta LAz is equal to the rank of the PEM. LAz,min
defined in the text is LAz = 4 in the plots.

3. Relating the OES and PES counting

At LAz = 2, C (Eq. (A2)) and P (Eq. (A6)) are seen
to be identical. There is precisely one element with a
(1, 2)-admissible occupation configuration in the Hilbert
spaces of A and B — |2, 0〉 and |6, 4〉 respectively. Thus,

P̃ = (1) and the three matrices P, P̃ and C are all of
rank one.

At LAz = 3, P̃ = (−2), and is not a sub-matrix of C

(Eq. (A3)). The matrix elements P̃11 and C11 are the
coefficients of |6, 3, 3, 0〉 and |6, 3, 2, 1〉 in the wavefunc-
tion |ψ〉. The 2-body clustering constraints (20) at β = 3
relate these coefficients by:

(d3d0 + d2d1)|ψ〉 = 0

⇒ (P̃11 + C11)|6, 3〉 = 0.

This relation between the single element in P̃ and C
proves that they have the same rank.
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The LAz = 4 case is interesting. Here P̃ is:

( |6, 2〉 |5, 3〉
|4, 0〉 1 2
|3, 1〉 2 −4

)
.

P̃ and C share the column index |5, 3〉, but have no row
index configurations in common. A single relation be-
tween the row vectors of P̃ and the row labeled by the
partition [2, 2] in C is provided by the 2-body clustering
constraints at β = 4. Without another relation, we can-
not relate the ranks of P and C at LAz = 4. Our proof
establishing the equality of ranks of the PEM and the
OEM should not and is not applicable at this angular
momentum, as Kµ̃0

= 2 and ∆µ̃0
= 1 with µ̃0 = [4, 0].

Appendix B: Rank of P̃

1. (k, 2)-clustering states

The matrices P̃ and M were defined in Sec. IV C as
the particle entanglement matrices with label LAz in the
(k, 2)-admissible occupation configuration basis and the
Jack basis. In Sec. IV C, we showed that the PEM and
M have the same counting; in this appendix, we show
that P̃ and M have the same rank. This proves that the
counting of the PEM equals the rank of P̃.

Suppose we are able to show that P̃ = DMD′, where
DT and D′ are square triangular matrices with 1’s on
the diagonal and as such they have nonzero determi-
nant. A theorem in linear algebra states that pre/post
multiplying a matrix by one of triangular form with
nonzero determinant leaves its rank unchanged. Thus,
we only need to prove that P̃ = DMD′ to conclude that
rank(P̃)=rank(M).

The row and column dimensions of P̃ and M are identi-
cal because every (k, 2)-admissible partition µ labels the
Jack Jαµ . We may use partial ordering by dominance
to order the (k, 2)-admissible row and column configura-
tions such that if µ̃k > µ̃i, then k ≤ i.

Consider a particular (k, 2)-admissible partition µ̃i (ν̃j)

labeling the ith row (jth column) of P̃ and M. Let the
coefficient of |µ̃i〉 in |Jαµ̃k〉 be Dik and the coefficient of

|ν̃j〉 in |Jαν̃l〉 be D′lj . The partial ordering implies that:

Dik = 0 if k > i (B1)

Dii = 1 (B2)

D′lj = 0 if l > j (B3)

D′jj = 1. (B4)

In other normalizations of Jack polynomials, Dii is not
necessarily one, but is always non-zero. By the definition
of a matrix with row-echelon form, DT and D′ in row-
echelon form. Recall that:∑

i,j

Mij |Jαµ̃i〉 ⊗ |J
α
ν̃j 〉 =

∑
i,j

Pij |µi〉 ⊗ |νj〉 (B5)

in every block of the full PEM. |µi〉 and |νj〉 are the gen-
eral occupation-basis states, not just the (k, 2)-admissible

configurations. P̃ is the sub-matrix of P labeled by (k, 2)-
admissible partitions; therefore:

P̃ij =
∑
k,l

Mkl〈µ̃i|Jαµ̃k〉〈ν̃j |J
α
ν̃l
〉 (B6)

i.e. P̃ij =
∑
k,l

DikMklD
′
lj

⇒ P̃ = DMD′ , (B7)

which proves our statement that the rank of the PEM is
given by the rank of the matrix of the coefficients indexed
by the (k, 2)-admissible partitions.

2. (k, 2)-clustering states multiplied by Jastrow
factors

We consider the PEM of states that are (k, 2)-
clustering polynomials multiplied by Jastrow factors,∏
i<j(zi − zj)

M , see Eq. (38). Here we identify P̃, a
sub-matrix of the PEM with the same rank, and find
that it contains only rows (columns) that are labeled by
partitions γ̃i (η̃j) of NA (NB) particles and angular mo-
mentum LAz (LBz ) that obey the generalized Pauli princi-
ple: there is no more than one particle in M consecutive
orbitals and no more than k particles in Mk+2 consecu-
tive orbitals. The total flux Nφ of the partitions γ̃i, η̃j is
equal to the total flux of the ground state |ψ〉 being cut.

Instead of expanding |ψ〉 in terms of monomials, we can
choose a different basis that incorporates all the vanishing
properties of the NA (NB) particles among themselves:

〈{zj}|ψ〉 =
∑
i,j

Mi,j

Jαµ̃i ∏
k<k′
k,k′∈A

(zk − zk′)M


·

Jαν̃j ∏
l,l′

l,l′∈B

(zl − zl′)M

 , (B8)

where the Jastrow factors include only particles in part
A and B, respectively. µ̃i (ν̃j) are (k, 2)-admissible
partitions of NA (NB) particles with angular momen-
tum LAz (LBz ) in 2(N − 1) + MNB + 1 (for µ̃i) and
2(N − 1) + MNA + 1 (for ν̃j) orbitals. The matrix
M = (Mij) has the same rank as the PEM.

Let us, for simplicity, focus on the basis states labeling
the rows of M. The Jastrow factor can be written as
a (1,M)-clustering Jack polynomial. Hence, both the
Jack and the Jastrow state obey a dominance property.
They have a root configuration with coefficient one that
dominates any other configuration in the expansion in
terms of occupation number states. This implies that
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also their product:

Jαµ̃i ·
∏
k<k′

(zk − zk′)M (B9)

has a root configuration γ̃i with expansion coefficient 1,
where (γ̃i)j = (µ̃i)j + M(N − j). Note that the γ̃i’s
are precisely the configurations that label the rows of
P̃. In addition, the partitions γ̃i have the same par-
tial ordering as the µi, ie. if µ̃i < µ̃j , then γ̃i < γ̃j .
Thus, all arguments from the previous section are ap-
plicable here as well: There are row-echelon matrices
DT and D′ such that P̃ = DMD′, which proves that
rank(P̃)=rank(M)=rank(P).

Appendix C: The model Hamiltonian expressed as
clustering operators

We re-write the rotationally invariant, 2-body Hal-
dane pseudopotential Hamiltonian, whose zero modes are
(1, 2)-clustering states, in terms of the clustering opera-
tors introduced in Sec. V. Recall that the single-particle
orbitals in the lowest Landau level form the multiplet of
L = Nφ/2. In the L̂z basis, any 2-body interaction V̂
can be expanded as:

H =
∑
mi

〈m1, Nφ/2;m2, Nφ/2| V̂ |m3, Nφ/2;m4, Nφ/2〉

c†m1
c†m2

cm3
cm4

. (C1)

c†m1
is the creation operator of a single particle state of

Lz = m1, L = NΦ/2; c†m1
|0〉 = |m1, Nφ/2〉. We first

change basis as follows:

|m1, Nφ/2;m2, Nφ/2〉 =
∑Nφ
`=0 |m1 +m2, `〉 ×

×〈m1 +m2, `|m1, Nφ/2;m2, Nφ/2〉

where 〈m1 + m2, `|m1, Nφ/2;m2, Nφ/2〉 in the RHS are
Clebsch-Gordon coefficients. For brevity of notation, we
drop the label Nφ/2 in the superscript. To determine the
components of the model pseudopotential in the new ba-
sis, we recall that V̂ is rotationally invariant (commutes

with |L̂2| and L̂z) and penalizes only the relative angular
momentum of 0, thus:

〈n1, `1|V̂ |n2, `2〉 = δn1,n2δ`1,`2δ`,Nφ .

The hamiltonian in Eq. (C1) can therefore be written as:

H =
∑Nφ
β=−Nφ

∑
m1,m3

〈β,Nφ|m1, Nφ/2;β −m1, Nφ/2〉? ×
×〈β,Nφ|m3, Nφ/2;β −m3, Nφ/2〉 ×

×c†m1
c†β−m1

cm3
cβ−m3

. (C2)

The creation and annihilation operators above create
and destroy particles in the normalized single-particle

orbitals. Let us denote the normalization of the single-
particle orbital with Lz = m by N (m). To move to the
unnormalized basis, we make the transformation:

dm = N (m)cm. (C3)

This set of operators is identical to the ‘deletion’ opera-
tors defined in Sec. V A. In spinor coordinates (u, v), the
wavefunction of the unnormalized orbital is:

〈u, v|d†m|0〉 = uNφ/2+mvNφ/2−m. (C4)

The Clebsch-Gordan coefficients appearing in Eq. (C2)
have the form:

〈β,Nφ|m1, Nφ/2;β −m1, Nφ/2〉 =

= KN (m1)N (β −m1)
√

(Nφ − β)!(Nφ + β)!. (C5)

K is independent of β and m1:

K =

((
4π

Nφ + 1

)2
π1/4√

Nφ!2Nφ
√

(Nφ − 1/2)!

)2

(C6)

Substituting Eq. (C5) and (C3) in Eq. (C2):

H =

Nφ∑
β=−Nφ

∑
m1,m3

K2(Nφ − β)!

(Nφ + β)!d†m1
d†β−m1

dm3
dβ−m3

. (C7)

Comparing the equation above with the one in the text
Eq. (21), we see that f(β) = (Nφ − β)!(Nφ + β)!.

Appendix D: Two examples of clustering constraints

We write down the explicit relations imposed by the
(k+1)-body clustering constraints discussed in Sec. V on
the coefficients of small wavefunctions at k = 1, 2. Let us
first consider an example at k = 1, i.e. the 1/2 Laughlin
states. The clustering constraints are 2-body:

β∑
i=0

dβ−idi|ψ〉 = 0 , for β = 0, 1, . . . , Ltotz . (D1)

Consider theN = 3 , Ltotz = 6 wavefunction in the infinite
plane geometry in which the number of orbitals is not
restricted to Nφ + 1 = 5 as in the case of the sphere .
The Hilbert space is spanned by 7 partitions, {λi, i =
. . . 7}. Their corresponding coefficients in |ψ〉 are {bi, i =
1 . . . 7}:

|ψ〉 = b1|6, 0, 0〉+ b2|5, 1, 0〉+ b3|4, 2, 0〉+ b4|3, 3, 0〉
+b5|4, 1, 1〉+ b6|3, 2, 1〉+ b7|2, 2, 2〉 .

The relations at β = 0, 1 respectively are:

b1|6, 0, 0〉 = 0 ⇒ b1 = 0

b2|5, 1, 0〉 = 0 ⇒ b2 = 0 .
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Thus, the clustering constraints assign zero weight to
λ1 and λ2, which are not dominated by the root par-
tition λ3 = [4, 2, 0] (n(λ3) = {10101}). The val-
ues of β from 2 to 6 generate a set of 5 linearly
dependent equations that fix 4 out of the 5 remain-
ing coefficients. All the relations obtained are shown
in Table I. The solution in terms of the coefficient
of the root partition b3 is {b1, b2, b3, b4, b5, b6, b7} =
{0, 0, b3,−2b3,−2b3, 2b3,−6b3}.

TABLE I: Possible occupation configurations and the clus-
tering constraints for the N = 3, ν = 1/2 Laughlin state at
Ltotz = 6 on the infinite plane (no restriction to the number of
orbitals. On the sphere the first two configurations have zero
weight and the last two orbitals are missing as Nφ = 4

Coefficient of mµ n(µ) Constraint
b1 {2000001} β = 0: b1 = 0
b2 {1100010} β = 1: b2 = 0
b3 {1010100} β = 2: 2b3 + b5 = 0
b4 {1002000} β = 3: b4 + b6 = 0
b5 {0200100} β = 4: 2b6 + 2b3 + b7 = 0
b6 {0111000} β = 5: b5 + b6 = 0
b7 {0030000} β = 6: 2b3 + b4 = 0

The bosonic Moore-Read state is the clustering poly-
nomial at k = 2. The clustering constraints involve 3
particles:

β∑
i,j=0

dβ−i−jdidj |ψ〉 = 0 , for β = 0, 1, . . . , Ltotz . (D2)

Consider the 6-particle wavefunction with Ltotz = 12.
Eq. (D2) for β = 0 ensures that the weight of the par-
titions [4, 4, 4, 0, 0, 0], [5, 4, 3, 0, 0, 0] . . . [12, 0, 0, 0, 0, 0] not
dominated by [4, 4, 2, 2, 0, 0] is zero in the wavefunction.
The number of such partitions whose coefficients are set
to zero at β = 0 is the number of partitions of 12 into at
most 3 parts. Similarly, the constraints at β = 1 set the
weights of the partitions [4, 4, 3, 1, 0, 0], [5, 4, 2, 1, 0, 0], . . .
[11, 1, 0, 0, 0, 0] (the number of such partitions is the num-
ber of partitions of 11 into at most 3 parts) in the wave-
function to zero. The linear dependence of the set of
constraints in Eq. (D2) is apparent in the fact that the
coefficient of the partition [7, 4, 1, 0, 0, 0] is set to zero by
a constraint at β = 0 and one at β = 1. The constraints
at β = 11, 12 are also seen to give identical relations
to those at β = 0, 1 for this example. The configura-
tions [5, 4, 3, 0, 0, 0] . . . [12, 0, 0, 0, 0, 0] are only allowed in
an infinite plane geometry. On the sphere, they would
involve more orbitals than Nφ + 1 = 5 existent ones and
would not appear in the Hilbert space of the decom-
position of the Moore-Read ground-state. The config-
urations [4, 4, 4, 0, 0, 0] and [4, 4, 3, 1, 0, 0] appear on the
sphere but, due to the same reason as on the infinite
plane – that they are not squeezed from the root parti-
tion – have zero weight.

The 16 partitions dominated by the root partition
[4, 4, 2, 2, 0, 0] and their corresponding coefficients in ψ

are shown in the second and first column of Table II re-
spectively. Let us discuss the 3-body clustering at β = 4
in more detail:

3(d4d0d0 + 2d3d1d0 + d2d2d0 + d2d1d1)|ψ〉 = 0 . (D3)

The four terms in Eq. (D3) individually are:

d4d0d0|ψ〉 = b1|4, 2, 2〉+ b3|3, 3, 2〉
d3d1d0|ψ〉 = b6|4, 3, 1〉+ b7|4, 2, 2〉+ b8|3, 3, 2〉
d2d2d0|ψ〉 = b1|4, 4, 0〉+ b7|4, 3, 1〉+ b12|4, 2, 2〉

+ b11|3, 3, 2〉
d2d1d1|ψ〉 = b2|4, 4, 0〉+ b9|4, 3, 1〉+ b10|4, 2, 2〉

+ b14|3, 3, 2〉 . (D4)

The right-hand-side of each of the four terms above is a
linear combination of different occupation configurations
of 3 bosons with total angular momentum Ltotz − β = 8.
Since different occupation configuration states are or-
thogonal to each other, Eq. (D3) can only be satisfied
if the coefficient in front of every non-interacting many-
body state is zero. Thus, we obtain four constraints on
the coefficients from each of the four occupation config-
urations in Eq. (D4):

|4, 2, 2〉 : b1 + 2b7 + b12 + b10 = 0

|3, 3, 2〉 : b3 + 2b8 + b11 + b14 = 0

|4, 3, 1〉 : 2b6 + b7 + b9 = 0

|4, 4, 0〉 : b1 + b2 = 0. (D5)

The last relation also arises from the clustering constraint
at β = 2.

All the relations imposed by the clustering constraints
at β = 2, . . . , 6 are shown in Table II. Although not
obvious, in this case as in the previous, the dimension
of the null space of Eq. (D2) is 1. This can be analyt-
ically proved by realizing that the Moore-Read state is
the densest unique ground-state of a Haldane pseudopo-
tential Hamiltonian which can be written in terms of the
clustering operators

Appendix E: Proof of step I in Sec. VI B

We now prove the statement in Step I of Section VI B–
Kµ̃0 ≤ ∆µ̃0 implies thatKµ̃ ≤ ∆µ̃ for all (k, 2)-admissible
partitions µ̃ that are dominated by µ̃0. We defined µ̃0 to
be the partition that dominates all other (k, 2)-admissible
partitions at given NA, LAz , (Eq. (23)):

n(µ̃0) = k0 . . . k0︸ ︷︷ ︸
2b(NA−1)/kc

x 0 . . . 01︸ ︷︷ ︸
`

0 . . . 0, (E1)

where 0 ≤ x < k is fixed by the total particle number
being NA. We are given that ∆µ̃0

≥ Kµ̃0
.

The main idea how to prove this statement is to re-
duce the distance from the cut by squeezing particles
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TABLE II: Possible occupation configurations and the clus-
tering constraints for the N = 6 MR state at Ltotz = 12

n(µ) Constraint
b1 {20202}

β = 2:
b1 + b2 = 0

b2 {12102} b3 + b6 = 0
b3 {20121}

β = 3:
3b3 + 6b7 + b9 = 0

b4 {20040} 3b4 + 6b8 + b13 = 0
b5 {04002} 6b2 + b5 = 0
b6 {12021}

β = 4:
b1 + 2b7 + b10 + b12 = 0

b7 {11211} b3 + 2b8 + b11 + b14 = 0
b8 {11130} 2b6 + b7 + b9 = 0
b9 {03111}

β = 5:
2b2 + 2b7 + b9 + b10 = 0

b10 {02301} 2b7 + 2b11 + b14 + b15 = 0
b11 {10320} 2b6 + 2b8 + b13 + b14 = 0
b12 {10401} 2b3 + b6 + b7 = 0
b13 {03030}

β = 6:

6b1 + 3b2 + 6b7 + 3b3 + b12 = 0
b14 {02220} 6b2 + 3b5 + 6b9 + 3b6 + b10 = 0
b15 {01410} 6b3 + 3b6 + 6b8 + 3b4 + b11 = 0
b16 {00600} 6b7 + 3b9 + 6b14 + 3b8 + b15 = 0

6b12 + 3b10 + 6b15 + 3b11 + b16 = 0

across the cut. Squeezing with the particle just left to
the cut— at angular momentum (lA−1)— cannot reduce
the distance, but squeezing with any other particle to the
left of the cut does. Let us in the following only consider
squeezing operations from orbitals with index m1 ≥ lA
and m2 < lA − 1 to orbitals with index m′1 = m1 − 1
and m′2 = m2 + 1. Starting from a (k, 2)-admissible par-
tition, there are two choices to reduce the distance to
the cut by one and still retain (k, 2)-admissibility: either
one squeezes with a particle of the rightmost unit cell,
which reduces the number of unit cells by one, or one
squeezes with a particle that is not in an intact unit cell.
The latter may retain (k, 2)-admissibility, depending on
the occupation configuration of the remaining particles,
and does not change the number of intact unit cells. All
(k, 2)-admissible configurations µ̃′ < µ̃0 can be obtained
from µ̃0 by such a series of squeezings. As Kµ̃0

≤ ∆µ̃0
,

they obey Kµ̃′ ≤ ∆µ̃′ . Let us make this argument more
rigorous in the following paragraphs.

The case when Kµ̃0
= 0 is trivial. All (k, 2)-admissible

partitions have distance from the cut 0 and at least 0 in-
tact unit cells; thereforeKµ̃ ≤ ∆µ̃ for all (k, 2)-admissible
partitions µ̃.

In order to prove the required statement for Kµ̃0 > 0,
we consider all (k, 2)-admissible partitions µ̃ < µ̃0 at
given, but arbitrary Kµ̃ < Kµ̃0 . Let us construct the par-
tition µ (not necessarily (k, 2)-admissible) at the given
distance Kµ̃ = Kµ > 0 that is dominated by all the
(k, 2)-admissible partitions. This partition can always
be obtained by first reducing the distance to the cut
Kµ̃0

− Kµ̃ times, by squeezing each time with a parti-
cle from the rightmost intact unit cell, and afterwards
squeezing all the particles at angular momenta ≥ (lA−1)
to their maximally dense configuration. The latter oper-
ation does not change the distance from the cut. Assume
that the orbital to the left of the cut is unoccupied, i.e.
nlA−1(µ̃0) = 0. If the number of particles to the right of
the cut in µ̃0, Nr(µ̃0), is equal to one then the occupation

number configuration of µ is given by:

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

x0 . . . 0︸ ︷︷ ︸
lA−2∆µ̃0

| 0 . . . 01︸ ︷︷ ︸
Kµ

,

(E2)

where we denote the orbital cut by ‘|’ in the occupation
configuration. For Nr(µ̃0) > 1, n(µ) is:

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1(k − 1)0︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

|X . . .X,

(E3)

where the sequence X . . .X denotes the occupation con-
figuration of (Nr(µ̃0) + 1) particles at distance Kµ that
is maximally squeezed.

The configurations in Eq. (E2) and (E3) are such that
the particles on the left of the cut form the densest possi-
ble (k, 2)-admissible configuration, ie. squeezing any two
particles on the left of the cut yields a configurations that
is not (k, 2)-admissible. As the particles to the right are
in their most squeezed configuration, we conclude that
any (k, 2)-admissible partition with distance to the cut
Kµ dominates µ.

As compared to n(µ̃0), the z-angular momentum of
the particles to the left of the cut in n(µ) is increased by
∆µ̃0
−∆µ, while that of the particles to the right of the

cut is reduced by Kµ̃0
− Kµ̃. Since n(µ) has the same

total z-angular momentum as n(µ̃0):

∆µ̃0
−∆µ = Kµ̃0

−Kµ

∆µ̃0
≥ Kµ̃0

⇒ ∆µ ≥ Kµ.

As every (k, 2)-admissible partition µ̃ with distance Kµ̃ =
Kµ that dominates µ has at least ∆µ intact unit cells:

∆µ̃ ≥ ∆µ, Kµ̃ = Kµ ⇒ ∆µ̃ ≥ Kµ̃ (E4)

at every distance from the cut.
The argument for nlA−1(µ̃0) 6= 0 is identical to the one

described above. The only difference lies in the form of
n(µ):

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

0|X . . .X, (E5)

where the sequence X . . .X is the maximally squeezed
configuration of x + 1 particles (for Nr(µ̃0) = 1) respec-
tively k +Nr(µ̃0) (for Nr(µ̃0) > 1) at distance Kµ.

Appendix F: Proof of step II in Sec. VI B

1. Effect of dominance on the distance from the cut

We show that dominance, i.e. µ > µ′ implies that
the distance to the cut Kµ ≥ Kµ′ , or that squeezing
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cannot increase the distance from the cut. The property
of dominance is defined by:

µ > µ′ ⇒
n∑
i=1

µi ≥
n∑
i=1

µ′i (F1)

for all n ≤ N . Recall that µi ≥ µj for i < j, where µi
and µj are the components of the partition µ. Let us
denote the number of particles to the right of the cut for
any partition µ by Nr(µ). The distance from the cut Kµ

can then be rewritten as:

Kµ =

Nφ∑
m=lA

nm(µ)(m− lA + 1)

=

Nr(µ)∑
i=1

(µi − lA + 1) . (F2)

When comparing the total distances for two partitions,
µ and µ′, there are three possibilities, Nr(µ) = Nr(µ

′),
Nr(µ) > Nr(µ

′) and Nr(µ) < Nr(µ
′). We will discuss

them in that order:

• Nr(µ) = Nr(µ
′):

µ > µ′ ⇒
Nr(µ)∑
i=1

µi ≥
Nr(µ)∑
i=1

µ′i

⇒
Nr(µ)∑
i=1

(µi − lA + 1)︸ ︷︷ ︸
=Kµ

≥
Nr(µ)∑
i=1

(µ′i − lA + 1)︸ ︷︷ ︸
=Kµ′

(F3)

Thus, Kµ ≥ Kµ′ .

• Nr(µ) > Nr(µ
′):

µ > µ′ ⇒
Nr(µ′)∑
i=1

µi ≥
Nr(µ′)∑
i=1

µ′i

⇒
Nr(µ′)∑
i=1

(µi − lA + 1) ≥
Nr(µ′)∑
i=1

(µ′i − lA + 1)︸ ︷︷ ︸
=Kµ′

. (F4)

As µi ≥ lA for all particles to the right of the cut,

Kµ =
∑Nr(µ)
i=1 (µi − lA + 1) >

∑Nr(µ′)
i=1 (µi − lA + 1).

This shows that Kµ > Kµ′ .

• Nr(µ) < Nr(µ
′):

µ > µ′ ⇒
Nr(µ′)∑
i=1

µi ≥
Nr(µ′)∑
i=1

µ′i

⇒
Nr(µ)∑
i=1

(µi − lA + 1)︸ ︷︷ ︸
=Kµ

+

Nr(µ′)∑
i=Nr(µ)+1

(µi − lA + 1)

︸ ︷︷ ︸
≤0

≥
Nr(µ′)∑
i=1

(µ′i − lA + 1) = Kµ′ . (F5)

The second term must be ≤ 0, as the particles to
the left of the cut have angular momentum µi < lA.
It is strictly negative if at least one of the µi for
Nr(µ) < i ≤ Nr(µ′) is smaller that (lA − 1).

Thus, Kµ ≥ Kµ′ for every µ′ that is dominated by µ.

2. Effect of clustering constraints

We show that the (k + 1)-body clustering constraints
presented in the body of the paper (Eq. (20)) relate par-
titions µ with ∆µ > 0 intact unit cells and distance
Kµ > 0 from the cut to partitions µ′ with number of
intact unit cells given by ∆µ − 1 and distance from the
cut by Kµ′ < Kµ.

Let us consider an arbitrary partition µ with ∆µ intact
unit cells (2∆µ orbitals) and distance Kµ:

n(µ) ={k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|x . . . x︸ ︷︷ ︸
≤Kµ

0 . . . 0} , (F6)

where we placed the orbital cut after lA orbitals. In order
to keep the discussion general, we denote an arbitrary oc-
cupation number configuration by the sequence x . . . x.58

For the orbitals to the right of the cut (with angular mo-
mentum ≥ lA) two examples of such configurations with
distance from the cut, Kµ, are:

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0︸ ︷︷ ︸
Kµ−1

10 . . . 0}

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|Kµ 0 . . . 0} . (F7)

Let us now analyze the clustering condition that in-
volve the k particles of the (∆µ − 1)-th unit cell and the
rightmost particle to the right of the cut in the partition
µ (F6). Remember that we chose to number the intact
unit cells starting from 0. We choose β = 2k(∆µ−1)+µ1

for the clustering operator (20) and require the remain-
ing NA− (k+ 1) particles to occupy the same orbitals as
in n(µ). For instance, for the configuration in the first
line of (F7), we choose β = 2k(∆µ − 1) + (lA − 1 +Kµ)
and require the remaining NA − (k + 1) particle to have
the occupation configuration:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0} . (F8)

While for the second line we choose β = 2k(∆µ− 1) + lA
and the occupation number configuration of the remain-
ing NA − (k + 1) particles to be:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

| (Kµ − 1) 0 . . . 0} . (F9)

In particular, the occupation configurations of the re-
maining particles have ∆µ − 1 intact unit cells.
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The clustering condition relates µ only to partitions
that are dominated by a partition µ′ of the form59:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

|x̃ . . . x̃0 . . . 0} (F10)

where x̃ . . . x̃ is used to indicate an occupation number
configuration where the rightmost particle to the right of
the cut is moved to the left by one orbital. The distance
from the cut is reduced by one: Kµ′ = Kµ − 1. For our
examples in Eq. (F7), the dominating partition is given
by:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0︸ ︷︷ ︸
Kµ−2

10 . . . 0} (F11)

for the configuration of the first line of Eq. (F7), and:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

| (Kµ − 1) 0 . . . 0}

(F12)

for the configuration in the second line of Eq. (F7).
Using the results from Appendix F 1, we conclude that

all partitions µ′ 6= µ involved in the clustering condition
have ∆µ′ = ∆µ − 1 intact unit cells and distance from
the cut Kµ′ ≤ Kµ − 1. The (k + 1)-body clustering
condition yields one constraint on the rows labeled by all
the involved partitions. Thus we have shown that the
row labeled by µ can be written as a linear combination
of the rows labeled by partitions µ′ with Kµ′ < Kµ and
one less intact unit cell.

3. Relating PEM rows to OEM rows

Let us assemble the results of the previous appendices
to prove the following statement: any PEM row labeled
by a partition µ with Kµ ≤ ∆µ is linearly dependent on
rows labeled by partitions µ̂j with Kµ̂j = 0. The latter
are partitions that label the rows of the OEM. We prove
this statement by induction, starting with a row partition
µ with Kµ = 1 and ∆µ ≥ 1. Such a row partition is
necessarily of the form:

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|10 . . . 0} . (F13)

Using the (k, 2) clustering constraint for β = 2k(∆µ −
1) + lA and fixing the occupation configuration of the
remaining N − (k + 1) particles to be:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

|0 . . . 0} (F14)

the row partition (F13) can be related to rows labeled by
µ̂j , which satisfying Kµ̂j = 0. This result is independent
on ∆µ as long as ∆µ ≥ 1.

For the induction hypothesis let us now assume that
all row partitions λj with Kλj ≤ Kλ (for given Kλ > 1)

and ∆λj ≥ Kλj can be written as linear combinations of
rows labeled by partitions µ̂j with Kµ̂j = 0.

Now consider a row partition µ with Kµ = Kλ + 1
and Kµ ≤ ∆µ. In Appendix F 2 we have showed that
a clustering condition involving any of the particles to
the right of the cut and the k particles of the rightmost
intact unit cell (to the left of the OEM cut) relates this
partition to partitions µ′ with Kµ′ < Kµ and ∆µ′ =
∆µ − 1. This implies that the row partition µ is a linear
combination of the row partitions λj . Using the induction
hypothesis yields that all partitions µ with distance to the
cut Kµ ≤ Kλ + 1 fulfilling Kµ ≤ ∆µ can be written as
linear combinations of rows of the OEM. This shows that
any row partition µ fulfilling Kµ ≤ ∆µ can be written
as a linear combination of rows labeled by partitions µ̂j
that have distance to the cut Kµ̂j = 0. These are the
partitions that label the rows of the OEM.

Appendix G: More clustering constraints

We derive the clustering constraints of two particular
states that are uniquely defined by vanishing properties
distinct from (k, 2). It should be possible to extend the
general ideas here to other model states. For r > 3, or
for r = 3 and k > 2, the clustering constraints derived by
requiring that the polynomial wavefunction dies with the
r’th power of the difference between the coordinates of
k+1 particles do not uniquely define the wavefunction39.

1. Gaffnian state

The bosonic Gaffnian state is a (2, 3)-clustering
state53,56. It vanishes as the third power between the co-
ordinate of a cluster of two particles and that of a third
particle approaching the cluster:

ψ(2,3)(z1, z1, z3, . . . , zN ) ∝ (z1,3)3, for z1,3 → 0 , (G1)

where we define zi,j = zi − zj . Therefore:

lim
z1,2,z1,3→0

(z1,3)−αψ(2,3)(z1, z2, z3, . . . , zN ) = 0, (G2)

for α = 0, 1 and 2. Exactly as we did in Sec. V, we
separate the coordinates z1, z2 and z3 from the rest and
rewrite the Gaffnian wavefunction as:

ψ(2,3)(z1, . . . , zN )

=
∑
l1,...,l3

 3∏
j=1

z
lj
j

 〈z4, . . . , zN |
3∏
j=1

dlj |ψ〉 (G3)

where the dlj ’s are the destruction operators defined in

Section V. Expanding zl33 as:

zl33 = (z1 − (z1,3))l3

=

l3∑
j=0

(
l3
j

)
zl3−j1 (−z1,3)j (G4)
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and inserting (G3) into Eq. (G2), we obtain the cluster-
ing constraints:∑

l2,l3

(
l3
α

)
dβ−l2−l3dl2dl3 |ψ〉 = 0, ∀β ≥ α (G5)

for α = 0, 1, 2. The clustering constraints at α = 0 are
identical to the ones we derived for the Moore-Read state
in Sec. V, as a (2, 3)-clustering state also satisfies (2, 2)-
clustering. The set of clustering constraints at each value
of β are linearly dependent; in fact, for each β > 2, the
number of linearly independent clustering constraints is
Nc = 2.

2. Fermionic (k, 2)-clustering states

The fermionic counterpart of the (k, 2)-clustered
bosonic state is:

ψ(z1, . . . , zN ) = ψ(k,2)(z1, . . . , zN ) ·
∏
i<j

(zi − zj) . (G6)

Let us start with the simplest example, the Laughlin
state for k = 1. From the form of the wavefunction,
ψ =

∏
i<j(zi − zj)3, we see that:

lim
z1,2→0

z−α1,2 ψ(z1, . . . , zN ) = 0, for α = 0, 1, 2 (G7)

with zi,j = zi− zj . Let us introduce a fermionic deletion
operator di that destroys a fermion in angular momentum
orbital i, analogous to the bosonic case Eq. (17). We can
rewrite the wavefunction as:

ψ(z1, . . . , zN ) =
∑
l1,l2

zl11 z
l2
2 〈z3, . . . , zN |dl1dl2 |ψ〉 (G8)

and expand zl22 as:

zl22 = (z1 − z1,2)l2

=

l2∑
j=0

(
l2
j

)
zl2−j1 (−z1,2)j . (G9)

Inserting this expression of ψ into Eq. (G6) and taking
the limit z1,2 → 0, the only non-vanishing contribution
is for j = α(= 0, 1, 2)— all others vanish trivially— and
we arrive at the clustering constraints:

0 =
∑
l1,l2

(
l2
α

)
dl1dl2 |ψ〉 (G10)

The condition at α = 0 is identically zero due to the
anti-commutation relations of the fermionic operators.

For α = 1, we find — using β = l1 + l2:

0 =

β∑
l=0

ldβ−ldl|ψ〉, for β ≥ 1. (G11)

When applying the above conditions, one must account
for the anti-commutation of the fermionic deletion oper-
ators dl. Choosing α = 2 yields clustering constraints
that are identical to those at α = 1, up to an overall
multiplicative constant. Thus, for the fermionic model
state at ν = 1/3 we find only one clustering condition,
Eq. (G11), as in the bosonic case.

For k > 1 a very similar picture emerges. The two-
body clustering constraints that originates from requir-
ing:

lim
z1,2→0

ψ(z1, . . . , zN ) ≡ 0 (G12)

is equivalent to Pauli exclusion statistics. In order to
find the relevant (k+ 1)-particle clustering condition, we
divide the wavefunction by a full Jastrow factor of the
particles z1, . . . , zk+1:

0 ≡ lim
z1,2,...,z1,k+1→0

k+1∏
i<j

z−1
i,j

 ψ(z1, . . . , zN ) . (G13)

Following the same steps as in the previous subsection
we find the clustering constraints:

0 =
∑

l1,...,lk+1

k+1∏
j=1

(
lj
j

)
dlj |ψ〉 (G14)

with l1 + l2 + . . . lk+1 = β.

In principle, one can also analyze variants of Eq. (G13),
where not a full Jastrow factor is divided out, and derive
clustering constraints from them. However, the resulting
conditions are identical zero due to the anti-commuting
operators. The only non-trivial relation is the one given
in Eq. (G14).

In general, when multiplying the (k, 2)-clustering
model state with M Jastrow factors (M > 1), we find
bM/2c 2-body clustering constraints, and (for k > 1)
bM/2c 3-body clustering constraints, in addition to the
original (k+1)-body clustering constraint from the model
state. Thus, the total number, Nc, of clustering con-
straints is Nc = 2bM/2c+ 1.
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