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Topological band insulators which are dynamically generated by electron-electron interactions have been the-
oretically proposed in two and three dimensional lattice models. We present evidence that the two-dimensional
version can be stabilized in digital (111) heterostructures of transition-metal oxides as a result of purely local
interactions. The topological phases are accompanied by spontaneous ordering of complex orbitals and we
discuss their stability with respect to the Hund’s rule coupling, Jahn-Teller interaction and inversion symmetry
breaking terms. As main competitors we identify spin-nematic and magnetic phases.

I. INTRODUCTION

The search for new materials which realize a topological
insulator (TI) phase1–4 has dramatically increased, recently.
Thereby, the main focus has been on compounds involving
heavy elements with strong spin-orbit coupling.3,4 On the
other hand, it was pointed out that topological band proper-
ties can also arise from the spontaneous breaking of a sym-
metry in interacting systems where the spin-orbit coupling
is negligible.5 In principle, this scenario suggests that TIs
can be found in a much larger class of materials and sev-
eral theoretical investigations support the existence of such
interaction-driven TIs in two and three-dimensional interact-
ing lattice models.5–11 From the experimental point-of-view,
the situation is less satisfying and an experimental study of
an interaction-driven TI is still lacking. In fact, the num-
ber of possible experimental systems is rather limited, and
the most promising candidate so far is probably few-layer
graphene.12,13 In this work, we build on previous theoretical
investigations and show that a two-dimensional interaction-
driven TI phase may be stabilized from purely local interac-
tions in multi-orbital models for transition-metal oxides. This
result significantly extends the range of possible experimen-
tal systems. Using the conventional Hartree-Fock mean-field
theory in combination with the theoretical analysis of the k·p-
model we find that the TI phase is accompanied by the spon-
taneous ordering of complex orbitals.

Our starting point is a system which belongs to the recently
proposed class of digital oxide heterostructures14,15 grown in
the (111) direction16 and it is sketched in Fig. 1. More pre-
cisely, we focus on the d-electrons of a (111) bilayer of the
cubic transition-metal oxide ABO3 [see Fig. 1(b)] which is
embedded in a band insulator AB’O3. We assume that the
“active” compound (ABO3) is metallic in bulk with a low spin
d7 configuration of the transition-metal (TM) ions, i.e. we as-
sume filled t2g orbitals and one electron in the eg manifold.
A possible choice of materials satisfying these requirements
is a (111) bilayer of LaNiO3 embedded in the band insulator
LaAlO3.

The orbital degrees of freedom of the eg manifold are
described by the two real orbitals |a〉 = |dz2〉 and |b〉 =
|dx2−y2〉, see Fig. 1(c), which form a T = 1/2-pseudo-spin
~T . We will argue that topological phases can be stabilized
by a spontaneous (and possibly spin dependent) ferro-orbital
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FIG. 1. (Color online.) (a) The digital oxide heterostructure consid-
ered in this article is grown in the (111) direction and of the form
AB’O3/ABO3/AB’O3. (b) The “active” region consists of a (111)
bilayer of the metallic ABO3 perovskite. Shown are the locations of
the transition-metal ions (B). (c) The bilayer system forms a honey-
comb lattice when projected to the plane perpendicular to (111). We
assume that the relevant orbital degrees of freedom are the eg orbitals
of the transition-metal ions.

ordering of complex orbitals of the form

|d± id〉 =
(
|dz2〉 ± i|dx2−y2〉

)
/
√

2. (1)

These orbitals are eigenstates of T y . In most cases, the com-
plex orbitals Eq. (1) are energetically disfavored because both
super-exchange and lattice distortions prefer real orbitals in
stoichiometric compounds.17 However, the band structure of
the considered (111) bilayer features a quadratic band cross-
ing (QBC) point with a d-wave symmetry in orbital space
which favors ordering of complex orbitals in a range of pa-
rameters at weak interactions.6

II. BILAYER MODEL

As illustrated in Fig. 1(b) and (c), the transition-metal ions
of the (111) bilayer system form a honeycomb lattice. We
study the following effective Hamiltonian for the eg electrons
hopping on this honeycomb lattice

H = H0 +Hint +Hperp. (2)

The band HamiltonianH0 in the tight-binding approximation
has been derived in Ref. [16]. In momentum space it takes the
form

H0 =
∑
k,σ

~d†σ(k)H0(k)~dσ(k) (3)

where ~dσ = (d1aσ, d1bσ, d2aσ, d2bσ)T is a vector of fermionic
annihilation operators. Here, the bottom layer is labeled with



2

the subscript 1 and the top layer with the subscript 2. The
orbital labels are a and b and the spin is σ. The Bloch matrix
H0(k) is a 4× 4 matrix of the form

H0(k) =

 0 0 εak εabk
0 0 εabk εbk
ε∗ak ε∗abk 0 0
ε∗abk ε∗bk 0 0

 . (4)

Here, we kept only the dominant nearest-neighbor hop-
ping t and εak = −t[1 + 1

2 cos(
√

3
2 kx)e−i

3
2ky ], εbk =

− 3t
2 cos(

√
3

2 kx)e−i
3
2ky and εabk = −i

√
3

2 t sin(
√

3
2 kx)e−i

3
2ky .

[kx and ky directions refer to the (X,Y )-axes in Fig. 1(c).]
A more general form which also includes the second neigh-
bor hopping is reproduced in the supplemental materials.18,19

Our main conclusions remain valid as long as t is large com-
pared to other tight-binding parameters. The non-interacting
band structure of Eq. (4) has an interesting and for the fol-
lowing discussion crucial feature: the Fermi surface at quar-
ter filling consists of a single Fermi point k = 0 where two
bands touch quadratically.16,20 This QBC point has a d-wave
symmetry in orbital space and a six-fold rotation symmetry
in k-space which protects it from splitting into Dirac points.6

We note here that the angular momentum of the eg manifold
is quenched and spin-orbit coupling only enters as a higher-
order process via coupling to the t2g orbitals16 which is as-
sumed to be weak and neglected in the following. Further-
more, the linear coupling to the trigonal crystal field is also
absent16 and the QBC point in the non-interacting band struc-
ture is a rather generic feature of the considered heterostruc-
ture.

The electron-electron interaction is accounted for by the lo-
cal interaction between the d-electrons of the form

Hint=
∑
r

[
U
∑
α

nrα↑nrα↓ + (U ′ − J)
∑
α>β,σ

nrασnrβσ

+U ′
∑
α6=β

nrα↑nrβ↓ + J
∑
α 6=β

d†rα↑drβ↑d
†
rβ↓drα↓

+I
∑
α6=β

d†rα↑drβ↑d
†
rα↓drβ↓

]
. (5)

The intra-orbital repulsion is denoted by U , the inter-orbital
interaction by U ′, J parametrizes the Hund’s rule coupling
and I the pair-hopping term. We employ the standard relations
U = U ′+2J and J = I valid for an isolated ion which leaves
us with two independent interaction parameters U and J .

The ideal electronic model is perturbed by Hperp = HV +
HJT. Here, HV describes a sublattice potential which breaks
the inversion symmetry between top and bottom layer

HV =
V

2

∑
k,σα

[
d†1ασ(k)d1ασ(k)− d†2ασ(k)d2ασ(k)

]
. (6)

This term is present if the bilayer system is capped by a dif-
ferent insulator than the one beneath it. Finally,HJT accounts
for the cooperative Jahn-Teller effect which potentially drives
a structural phase transition with distorted oxygen octahedra.
The coupling of the electrons to the phonons of the oxygen
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FIG. 2. (a) Zero temperature mean-field phase diagram of the ideal
model as function of the repulsion U/t and Hund coupling J/U .
Topological phases are found in the small-U limit (QAH2/QSH) and
within the ferromagnetic phase (FM+QAH1). (b) Mean-field phase
diagram as function of an inversion-symmetry breaking field V/t and
a Jahn-Teller interaction of strength K/t for fixed interaction param-
eters [∗ in (a)]. We find a topological phase between a spin nematic
(SNz) and an antiferromagnetic (AFM) phase. More details about
the various phases are given in the main text.

displacements leads to an effective interaction between the
electrons of neighboring transition-metal ions and we adapt
the simple form17,21

HJT = K
∑
〈i,j〉

τ li τ
l
j . (7)

The suffix l = x, y, z denotes the direction of the bond be-
tween i and j and τ li = cos( 2πnl

3 )T zi − sin( 2πnl

3 )T zi with
(nx, ny, nz) = (1, 2, 3). K is positive and therefore favors a
staggered orbital order of real orbitals.

III. PHASE DIAGRAM

We first focus on the ideal electronic model and assume
Hperp = 0. The mean-field phase diagram obtained by solv-
ing the self-consistency equations numerically is shown in
Fig. 2(a) as a function of the two dimensionless interaction
parameters U/t and J/U . We will understand the small-U
phases in this diagram qualitatively by analyzing the instabil-
ities of the QBC in the next section. The strongly interact-
ing limit is dominated by magnetic phases: If the Hund cou-
pling J/U is sufficiently small, we find an antiferromagnetic
(AFM) phase which is accompanied by a ferro-orbital (FO)
order. For larger ratios of J/U we find (fully polarized) ferro-
magnetic (FM) order. In the absence of orbital order, the FM
phase is gapless and has two Dirac nodes. Orbital order can
open a gap in the FM phase. In particular, a quantum anoma-
lous Hall state1 (QAH1) with Chern number n = ±1 is found
if complex orbitals are involved.22 The topological nature of
this phase can be understood in analogy to the small-U situa-
tion discussed below.

The weak to intermediate interaction regime is dominated
by phases which are characteristic of the underlying QBC
point.11 For small ratios J/U , we find an interaction-driven
topological phase. The topological state either breaks the
time-reversal symmetry and has a finite Chern number n =
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FIG. 3. Spin and charge densities in orbitally ordered phases of the
bilayer system as seen from the (111) direction. The bright and dark
orbitals in the spin nematic and AFM phase denote opposite major-
ity spin densities and the orbital ordering also breaks the three-fold
rotation symmetry. The relevant orbitals in the topological phase pre-
serves the three-fold rotation symmetry.

±2 (QAH2) or it preserves the time-reversal symmetry but
breaks the spin-rotation symmetry realizing the quantum spin
Hall (QSH) state.2 On the mean-field level, QAH and QSH
phases are degenerate (in fact, for I > J QAH and for I < J
QSH is favored).18 The topological phase is surrounded by a
spin nematic (SN) phase which also develops a weak FM or-
der (wFM) for increasing U/t. For U/t . 0.9 it is difficult to
numerically resolve the energy difference between the topo-
logical and the spin nematic phases because both energies are
exponentially small in U/t. The phase boundary shown in
Fig. 2(a) for U/t < 0.9 is an extrapolation to J/U = 0.2
for U/t → 0 which is the result obtained from the analy-
sis of a reduced model in the next section. Finally, we note
that charge nematic (CN) phases are absent for the considered
parameters.18

We now briefly discuss some aspects of perturbing the ideal
system withHperp = HV +HJT. In Fig. 2(b) we show the re-
sulting phase diagram for fixed interaction parameters U = 2t
and J = 0.1t which corresponds to the SN phase in the ideal
model. For finite K and V , the SN phase is accompanied by
weak ferri-magnetic order. Interestingly, because the Jahn-
Teller interaction favors staggered orbital order, it destabilizes
the SN phase with uniform orbital order, allowing the topolog-
ical phase to be energetically favored for some intermediate
values of K/t and small V/t. For even larger values of K/t,
we find an AFM phase with staggered orbital order (AFO).

The mean-field analysis reveals various types of ordering
of the orbital degrees of freedom. In Fig. 3 we sketch the
charge and spin density distribution for some representative
examples. In the SN and the AFM phase the three-fold rota-
tion symmetry of the lattice is broken and the orbital ordering
involves real orbitals of the form

|θ〉 = cos
θ

2
|dz2〉 − sin

θ

2
|dx2−y2〉. (8)

The AFM phase orders in orbitals with θAFM = 0 (or±2π/3)
which are eigenstates of Tz (or the equivalent operators ob-
tained by rotating ~T by ±2π/3 around the y axis in orbital
space). The spin nematic phase is either ordered along the z
axis (SNz) or the x axis (SNx) in orbital space and electrons of
a given spin are predominantly in one of the two orbital eigen-

states. On the other hand, 〈~T 〉 points along the y direction for
topological phases and the ordering involves complex orbitals
of the form given in Eq. (1). As opposed to the real orbitals,
the charge distribution associated with the complex orbital of
the form Eq. (1) preserves the trigonal symmetry of the bilayer
system. We note here that a finite spin-dependent ordering in
the y-direction formally enters the mean-field Hamiltonian in
the same way as the intrinsic spin-orbit coupling would.16 The
relation between the topological band properties and the com-
plex orbitals is further discussed in the next section.

IV. REDUCED MODEL FOR QBC POINT

The competition among various weak coupling instabilities
can be discussed in a reduced model which focuses only on
the bands participating in the quadratic touching point and to
momenta within a radius Λ around the origin in k-space (k ·
p-expansion). The effective model for the QBC point at the
Fermi energy is found by expanding H0(k) to order k2 and
eliminating the coupling to the higher bands in the same order
by use of a canonical transformation. In polar coordinates the
reduced Hamiltonian takes the form

H̃0 =
∑
σ

∫ Λ

0

kdk

2π

∫ 2π

0

dφ

2π
|k, φ, σ〉〈k, φ, σ| ⊗Horb(φ, k). (9)

Horb acts on the two-dimensional orbital space defined by the
bonding orbitals of the bilayer system given by

|α̃〉 =
1√
2

(|α, 1〉+ |α, 2〉)

for k = 0 with α = a, b. Horb has the standard form of a
QBC point with d-wave symmetry6

Horb(φ, k)=k2
[
tII+tx sin(2φ)T̃x+tz cos(2φ)T̃z

]
. (10)

Here, I denotes the identity and we have introduced the

pseudo-spin operator ~̃T (with eigenvalues ±1) of the reduced
orbital space (|ã〉, |b̃〉). The parameters in Eq. (10) can be re-
lated to the hopping t entering the full Bloch matrix Eq. (4):
tI = tz = −tx = 3t/16. Diagonalizing Eq. (9) yields
two quadratically dispersing bands with different effective
masses which touch at k = 0: ε1,2(k) = ∓k2/(2m1,2), with
m1,2 = 1/[2(|tz| ∓ tI)]. (For tz = tI > 0 the lower band is
flat and m1 →∞.) The eigenfunctions of Eq. (10) depend on
the azimuth φ and have the simple form

|1〉φ = sinφ|ã〉+ cosφ|b̃〉, |2〉φ = cosφ|ã〉 − sinφ|b̃〉.

In other words, the orbital character changes twice when en-
circling the origin in k-space.

Lifting the degeneracy: The degeneracy of the spectrum at
k = 0 is lifted by a uniform “orbital field” ~oσ which couples

to the orbital pseudo-spin ~̃T . A finite y-component oy,σ yields
a φ-independent coupling between the two bands. Adding
a term oy,σT̃y to Eq. (10) opens an energy gap throughout
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k-space: ε±,σ(k) = tIk
2 ±

√
t2zk

4 + o2
y,σ. The resulting

bands are topologically non-trivial and one finds a finite Chern
number23,24

Cσ =
1

4π

∫
d2k n̂ ·

(
∂n̂

∂kx
× ∂n̂

∂ky

)
= −sign(oy,σ). (11)

Here, the limit oy,σ/(tzΛ2)→ 0 has been taken. The unit vec-
tor n̂ denotes the direction of the resulting field which couples

to the orbital pseudo-spin ~̃T :

n̂ =
[
−tzk2 sin(2φ), oy,σ, tzk

2 cos(2φ)
]T
/
√
t2zk

4 + o2
y,σ.

Cσ measures the winding number of the vector n̂ around the
sphere. From Eq. (11) we conclude that a finite orbital field in
the y-direction results in a topological phase: If oy,↑ = oy,↓,
the two electrons occupy the same complex orbital realizing
a QAH state with a total Chern number n =

∑
σ Cσ = ±2

and Hall conductivity σxy = −ne2/h. If oy,↑ = −oy,↓, time-
reversal symmetry is preserved and n = 0. However, this
phase has a non-trivial Z2-invariant and the QSH state is real-
ized.

An orbital field which couples to T̃x and/or T̃z leads to a φ-
dependent coupling between the non-interacting bands.18 As
a result, the rotation symmetry of the spectrum in k-space is
broken and the QBC point splits into Dirac points with Berry
phases ±π. Therefore, a orbital field in the (x, z)-plane cor-
responds to a nematic phase.6,9

Mean-field instabilities: We have analyzed the mean-field
theory in the reduced space of the model Eq. (9) and have
found that the order parameters of the nematic and topolog-
ical phases enter through an orbital field which couples to
~̃T . The CN and QAH order parameters enter through a spin-
independent field while the SN and the QSH order parameters
enter through a spin-dependent field with opposite values for
↑ and ↓ spins.18 In either case, the linearized self-consistency
equations can be solved and we find that the condensation
energies depend exponentially on the interaction parameters.
For the nematic phases (ν = SN, CN) we find

∆Eν ≈ −2γt2zΛ
4/uν exp (−8πtz/uν) , (12)

where γ ≈ 10.8 is a numerical factor.18 The interaction pa-
rameters enter through the combinations uSN = (U − J)/8
and uCN = (U − 5J)/8 and Eq. (12) holds for uν > 0. Be-
cause uSN > uCN for J > 0 the spin nematic is favored over
the charge nematic phase. For the topological phases we find
the following condensation energy:

∆Eϑ ≈ −2t2zΛ
4/uϑ exp (−4πtz/uϑ) . (13)

The effective interactions for QAH and QSH are equal and
given by uϑ = (U − 3J)/8. There is a factor of two dif-
ferent in the exponent of Eq. (12) and Eq. (13). This differ-
ence can be traced back to the angular averaging in momen-
tum space which for the nematic phases effectively reduces
the interaction parameter in the exponent. The phase bound-
ary between the topological and nematic phase is obtained by

equating the condensation energies Eqs. (12) and (13). In the
limit U/t → 0, it suffices to compare the exponents which
yields a critical ratio (J/U)c = 1/5. If J/U < 1/5 the topo-
logical phase is preferred over the SN phase and if J/U > 1/5
SN is preferred. For small but finite U/t we find a monoton-
ically decreasing phase boundary consistent with the numeri-
cal results of the full model presented in Fig. 2(a).

V. CONCLUSION

In summary, we have discussed a mechanism for sponta-
neous quantum Hall states in interacting multi-orbital models
for a class of transition-metal oxide heterostructures. These
topological phases are stabilized from purely local interac-
tions and are accompanied by an orbital ordering of complex
orbitals. In the weak coupling limit, the topological aspects
can be understood qualitatively within a reduced model ad-
dressing the instabilities of the QBC point. Our results sug-
gest that in the weakly interacting limit topological phases are
most likely found for small Hund coupling in an inversion
symmetric bilayer. Notably, we find that weak to interme-
diate Jahn-Teller interaction can help stabilizing a topological
phase by suppressing its main competitor, the spin nematic
phase. Furthermore, the mean-field calculations also suggest
a topological phase at larger interaction strength within the
strongly ferromagnetic regime.22

The (111) oxide heterostructures discussed in the present
work offer a large freedom to design the electronic prop-
erties by suitable material combinations. Besides the two-
dimensional spin-orbit16 or interaction-driven topological in-
sulators one might also engineer more exotic topological
phases such as the spin-charge separated QSH∗ phase25–27 or
fractional quantum Hall states.16,28–35 An important future di-
rection is to incorporate first-principle calculations to study
the validity of the tight-binding approximation and to identify
possible candidate materials.
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