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Rabi-vibronic resonance with large number of vibrational quanta

R. Glenn and M. E. Raikh
Department of Physics, University of Utah, Salt Lake City, UT 84112

We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly cou-
pled to a harmonic oscillator (vibrational mode) with frequency, ω0. We show that for weak coupling,
ωp ≪ ω0, where ωp is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of
the Rabi-vibronic resonance ΩR = ω0, where ΩR is the Rabi frequency. The width of the resonance

is (ΩR − ω0) ∼ ω
2/3
p ω

1/3
0

≫ ωp. Within this domain of ΩR the actual frequency of the Rabi oscil-
lations exhibits a bistable behavior as a function of ΩR. Importantly, within the resonant domain,
the oscillator is highly excited, which allows to treat it classically.

PACS numbers: 42.65.Pc, 42.50.Md, 78.47.D-, 85.85.+j

I. INTRODUCTION

Coupling to environment tends to damp the Rabi
oscillations1 of a resonantly driven two-level system.
Usually, the environment is viewed as medium with con-
tinuous spectrum of modes. Less common is the situa-
tion when environment possesses a single or several well-
defined frequencies. For concreteness we will consider
the situation depicted in Fig. 1 when the lower level of
the two-level system is coupled to an oscillator (a mass,
M , and a spring), which represents a single vibrational
mode. Obviously, coupling to the oscillator has a strong
effect on the Rabi oscillations in the regime of the vac-
uum Rabi splitting2 when the oscillator frequency, ω0, is
close to the transition frequency, ω12. It is less obvious
what effect the coupling to the oscillator will have on the
Rabi oscillations when ω0 is much smaller than ω12 and
is comparable to the Rabi frequency, ΩR. One can argue
on physical grounds that the effect of coupling on the
Rabi oscillations will be strong in the vicinity of the con-
dition, ω0 ≈ ΩR, which we dub Rabi-vibronic resonance.
Indeed, consider the Hamiltonian

H = µX̂n̂1, (1)

describing the linear coupling. Here X̂ = 1√
2Mω0

(b† +

b) is the operator of the oscillator displacement, b† is a
creation operator of the vibrational quantum, n̂1 is the

occupation of the level E1, and µ =
(

2Mω3
0

)1/2
λ, where

λ is a dimensionless coupling constant. In definition of
X̂, µ, and thereafter we set h̄ = 1. In the course of the
Rabi oscillations the average n̂1 changes with time as

n1(t) =
1

2

(

1 + cosΩRt
)

. (2)

Then at ΩR ≈ ω0, the second term in Eq. (2) gives
rise to a resonant driving force acting on the oscillator.

FIG. 1: A schematic illustration of the system under consid-
eration. Two-level system is driven by near-resonant light,
ω12 ≈ (E2 − E1). The level E1 is linearly coupled to a clas-
sical oscillator with frequency ω0. The Rabi oscillations are
strongly modified when ω0 is close to ΩR, where ΩR is the
Rabi frequency.

In turn, the strongly driven oscillator provides a reso-
nant feedback3,4 on the two-level system. Thus, as ΩR,
which is proportional to the ac field driving the two-level
system, increases, we expect the Rabi oscillations to be
strongly modified near the resonant condition.

Among possible experimental realizations of the situ-
ation Fig. 1 is a suspended carbon nanotube in inhomo-
geneous electric field, which creates a confinement for an
exciton5–8. Localized exciton can be viewed as a two-
level system. Bending modes having discrete frequencies
due to finite nanotube length, can be viewed as oscilla-
tors with very low friction. While a typical transition
frequency in such a system is9,10 ω12 ∼ 1015Hz, the oscil-
lator frequency7 is much smaller ω0 ∼ 109Hz. Resonant
condition can be achieved by adjusting the illumination
intensity.

Another area in which the situation Fig. 1 is relevant, is
the cavity QED11, where a two-level system is realized in
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the form of a superconducting qubit, while the oscillator
is a LC-circuit. Majority of experimental and theoret-
ical studies in this field are focused on the strong cou-
pling in the domain ω0 ≈ ω12. However, in experiments
Refs. [12,13] an ac driven superconducting qubit was cou-
pled to a ”slow” LC-oscillator tuned to ΩR. It was ob-
served that the noise spectrum of the oscillator exhibits
a Lorentzian peak14 as a function of ΩR − ω0. In the-
oretical papers15–17 initiated by the experiment Ref. 12
collective motion of the oscillator coupled to a qubit was
studied within the density matrix formalism, and both
subsystems were treated quantum-mechanically. In view
of complexity of this description, final results were ob-
tained numerically for particular values of a coupling pa-
rameter, λ. A notable finding of Refs. [15–17] is that, in
the vicinity of the condition ω0 ≈ ΩR, collective Rabi-
vibronic motion becomes bistable.
There are still several basic questions to be answered,

among which:
(i) how the frequency, s, of the collective oscillations

depends on λ?
(ii) what is the width of the resonance, i.e., the do-

main δ0 = ΩR − ω0 of the Rabi frequencies where Rabi
oscillations are modified due to coupling?
(iii) how the decay of the Rabi oscillations depends on

the oscillator friction?
The above questions are studied in the present paper.

Our main finding is that the width of the Rabi-vibronic
resonance is small for weak coupling, namely,

δ0 = λ4/3ω0 = ω2/3
p ω

1/3
0 ≪ ω0, (3)

where ωp = λ2ω0 is the polaronic shift. Eq. (3) suggests
that, while δ0 is much smaller than ω0, it is much big-
ger than ωp. Most importantly, Eq. (3) guarantees that,
in the resonant domain (ΩR − ω0) ∼ δ0, the oscillator is
highly excited and can be treated as classical. This allows
the analytical description of the resonance. In this re-
gard, the situation we consider, two-level system coupled
to a classical oscillator, is similar to the Rabi resonance
considered in Refs. [18,19], where two-level system was
driven by two classical fields: one with frequency close to
ω12 and one with frequency close to ΩR.
We will see that in the domain (ΩR−ω0) ∼ δ0, the fre-

quency s of collective oscillations differs from ΩR also by
∼ δ0. Bistable behavior of the dependence s(ΩR) emerges
naturally within our approach; the frequency jump rate
between two stable regimes are also ∼ δ0. In addition, in
the present paper we study how the Rabi-vibronic reso-
nance depends on detuning, ∆, of the driving frequency
from ω12, on intrinsic anharmonicity of the oscillator, and
how the modified Rabi oscillations decay with time due
to relaxation of the two-level system and due to friction

in the oscillator.

II. BASIC EQUATIONS

We first assume that the displacement, X(t), is a clas-
sical variable and will later check this assumption. The
equation of motion for X(t) reads

Ẍ + γẊ + ω2
0X =

µ

2M

(

1− w
)

, (4)

where w = 1 − 2n1 is the population inversion, and γ is
the friction in the oscillator. The evolution of w with time
is described by the system of optical Bloch equations. We
write them for variables w(t), u(t), and v(t), where u(t)
and v(t) are the real and imaginary parts of the nondi-
agonal elements of the density matrix, respectively20,

ẇ(t) = −ΩRv − Γ
(

1 + w
)

, (5)

u̇(t) = −
(

∆− µX(t)
)

v −
Γ

2
u, (6)

v̇(t) =
(

∆− µX(t)
)

u+ΩRw −
Γ

2
v, (7)

where Γ is the relaxation rate of the excited state. Note
that, while the oscillator is driven by w(t), it exercises a
feedback on the two-level system via u(t) and v(t).
We require that the level E1 at t = 0 is occupied while

the level E2 is empty, i.e., w(0) = −1. We also assume
that the dipole moment and dipole current are initially
zero, leading to v(0) = 0 and u(0) = 0, respectively.
From Eq. (5), we see that the initial conditions for v and
w require that ẇ(0) = 0.

III. MODIFIED RABI OSCILLATIONS

A. Oscillation frequency

The system Eqs. (5)-(7) can be reduced to two coupled
equations by excluding v(t) and expressing u(t) in terms
of w(t). Then one gets

ẅ+
3

2
Γẇ+

(

Ω2
R +

Γ2

2

)

w+
Γ2

2
= −ΩR

(

∆− µX(t)
)

u(t),

(8)

u(t) = −

∫ t

0

dt′

ΩR
eΓ(t

′−t)/2
(

µX(t′)−∆
)

[

ẇ(t′)+Γ
(

1+w
)

]

.

(9)
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We start from the simplest case, Γ → 0, ∆ → 0, γ → 0,
and search for a solution of the system Eqs. (4), (8), and
(9), in the form w(t) = − cos st. Substituting this form
into Eq. (4) we find the displacement

X(t) =
µ cos st

2M
(

ω2
0 − s2

) = X0 cos st. (10)

Static displacement, µ/2Mω2
0, can be neglected com-

pared to the oscillating part. Substituting X(t) into Eq.
(9), we find u(t)

u(t) = −
µ2 (1− cos 2st)

8MΩR

(

ω2
0 − s2

) . (11)

Substituting Eqs. (10), (11) into the right-hand side of
Eq. (8), and equating the terms ∝ cos st in both sides,
we find a closed equation for s

Ω2
R − s2 =

ω2
pω

4
0

8
(

ω2
0 − s2

)2 . (12)

Thus, coupling to the oscillator causes the shift of the
oscillation frequency from ΩR, as stated in the Introduc-
tion. Note that the term ∝ cos 2st in u(t) will also give
rise to nonresonant contribution ∝ cos 3st in w(t), caus-
ing a weak anharmonicity of the oscillations. Away from
resonance, we can substitute s = ΩR into the right-hand
side of Eq. (12). Then Eq. (12) yields a correction to
the Rabi frequency due to coupling to the oscillator

s = ΩR −
ω2
pω0

64
(

ω0 − ΩR

)2 . (13)

This expression is valid only if the correction on the
right-hand side is much smaller than

(

ω0−ΩR

)

. Equating

the correction to
(

ω0 − ΩR

)

, we find that the width of

the resonance,
(

ω0 − ΩR

)

∼δ0, is given by Eq. (3).

Recall now our basic assumption that the oscillator is
classical. We are now in position to verify this assump-
tion. In the resonant domain the amplitude, X(t), can
be estimated from Eq. (10) as X ∼ µ/Mω0δ0. Then for
the ratio of the energy of oscillations to the vibrational
quantum, ω0, we get the following estimate

MX2
0ω

2
0

ω0
∼

(

ω0

ωp

)1/3

= λ−2/3 ≫ 1. (14)

Thus, for weak coupling, the classical treatment of the
oscillator is justified.
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FIG. 2: Red line: Dimensionless frequency, z, defined by Eq.
(17), of Eq. (19) versus the dimensionless deviation, x, from
the ΩR = ω0. Unstable solution is shown with dashed line.
Blue line, corresponds to the absence of coupling to the oscil-
lator.

B. Vicinity of the resonance

To incorporate finite detuning, ∆, into Eq. (12) it is
convenient to rewrite Eq. (8) keeping all ∆-dependent
terms in the right-hand side

ẅ + Ω2
Rw + µ2X(t)

∫ t

0

dt′X(t′)ẇ(t′)

= ∆
(

µX(t)−∆
)[

w(t) + 1
]

+∆µ

∫ t

0

dt′X(t′)ẇ(t′).

(15)

The term ∝ ∆2 in the right-hand side leads to a standard

modification of the Rabi frequency to
(

Ω2
R+∆2

)1/2
. The

last term is proportional to sin2 st, and does not contain
the first harmonics. The term ∝ cos st comes from the
combination ∆µX(t) in the right-hand side. Emergence
of this term, which is odd in detuning, is the result of the
coupling of the vibronic mode only to the level E1. This
term results in the following modification of Eq. (12)

Ω2
R +∆2 − s2 =

ω2
pω

4
0

8
(

ω2
0 − s2

)2 −
ωpω

2
0∆

ω2
0 − s2

. (16)

Near the resonance
(

ΩR−ω0

)

≪ ω0 this equation can be
simplified. Upon introducing dimensionless variables,

z =
s− ω0

ω
2/3
p ω

1/3
0

, (17)

x = x′ + 8∆′2, x′ =
ΩR − ω0

ω
2/3
p ω

1/3
0

, (18)
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FIG. 3: Dimensionless frequency, z, of oscillations of driven
two-level system is plotted from Eq. (19) versus the dimen-
sionless deviation, x′, from the resonance for three positive
dimensionless detunings, ∆′, defined by Eq. (20). As detun-
ing increases, the unstable branch shifts from positive z to
negative z, and both stable values of z become positive (for
positive x′) or negative (for negative x′).

Eq. (16) assumes the form

(z − x)z2 +∆′z = −
1

64
, (19)

where dimensionless detuning, ∆′, is defined as

∆′ =
∆

4ω
1/3
p ω

2/3
0

. (20)

Note that characteristic detuning ∆ ∼ ω
1/3
p ω

2/3
0 is much

bigger than the width of the resonance, δ0, but much
smaller than ΩR. Solution of Eq. (19) for zero detuning
is plotted in Fig. 2. Blue line z = x corresponds to the
Rabi oscillations without coupling. We see that bista-
bility develops for x > 3 · 2−8/3. At x = 3 · 2−8/3, the
frequency s experiences a jump by 2−8/3δ0. Two values of
z corresponding to stable solutions define, via Eq. (17),
two frequencies of the modified Rabi oscillations. They
also define two corresponding amplitudes of the oscillator

X =
( 1

2λ1/3z

)

(2Mω0)
−1/2. (21)

The last factor in Eq. (21) is the amplitude of a zero-
point motion of the oscillator. As the dimensionless de-
viation, x, from resonance increases, the upper branch
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FIG. 4: The same as in Fig. 3 for three negative detunings.
Note that negative ∆′ broadens the range of bistability.

approaches z = x. For this branch the frequency of the
Rabi oscillations is close to ΩR and the amplitude of os-
cillator is small. For the lower branch z is small, i.e., the
frequency of the oscillations approaches ω0 with increas-
ing x. For this branch the oscillator is highly excited.
Figs. 3 and 4 illustrate the effect of detuning on the

frequency of oscillations, s. Note that there is a quali-
tative difference between Fig. 2 for zero detuning, and
Figs. 3 and 4 for positive and negative detunings, respec-
tively. For zero detuning, the domain of bistability exists
only when ΩR > ω0, whereas for finite detuning, bistable
regions emerge both to the left and the right from the res-
onance. As one changes the dimensionless deviation, x′,
from the resonance, from negative to positive, for ∆′ = 0,
bistability corresponds to x′ > 3 · 2−8/3. For finite pos-
itive detuning, ∆′ > 0, the first domain of bistability
occurs at x′ < 0, then disappears, and reemerges at pos-
itive x′ greater than 3 · 2−8/3. Conversely, finite negative
detuning simply broadens the domain of bistability as
compared to ∆ = 0. Bistable region starts for x′ < 0.
Peculiar dependence of s on the deviation from resonance
is also reflected in the amplitude of the oscillator. This
effect is discussed in the Sect. V.

C. Effect of intrinsic anharmonicity of the oscillator

Suppose that in addition to the harmonic part of
the oscillator energy, Mω2

0X
2/2, a weak intrinsic anhar-
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monicity, κX4/4, is present. Then Eq. (10) will assume
the form

3

4
κX3

a +
(

ω2
0 − s2

)

Xa =
µ

2M
. (22)

The second relation, s2 = Ω2
R − µ2X2

a/8, between the
amplitude, Xa, and the frequency, s, which follows from
Eq. (8) remains unchanged. It is now more convenient
to express s from this relation and substitute it into Eq.
(22). This yields a cubic equation for Xa

2ω0

(

ω0 − ΩR

)

Xa +
6κ+ µ2

8
X3

a =
µ

2M
. (23)

If we now set κ = 0, then Eq. (23) will have multiple real
solutions for Xa in the domain

(

ΩR−ω0

)

< −3 ·2−8/3δ0,
i.e., the same as determined from Eq. (19) with ∆′ = 0.
We see from Eq. (23) that, depending on the sign of
κ, intrinsic anharmonicity can either shift the thresh-
old of bistability to the left (for positive κ) or to the
right (for negative κ). Anharmonicity will also affect the
magnitude of the jump of the frequency, s, of the oscil-
lations. This magnitude will get modified from 2−8/3δ0

to 2−8/3δ0
(

1 + 6κ/µ2
)−2/3

, i.e., the jump will become
smaller for κ < 0.

IV. DECAY OF THE OSCILLATIONS

Up to now we disregarded both mechanisms of dissi-
pation: finite relaxation, Γ, and the friction in the os-
cillator, γ. Rabi oscillations will decay with the rate Υ,
which is determined by Γ, in the regime Γ ≫ γ, or by
friction in the regime Γ ≪ γ. We will consider both
cases separately. We emphasize that, as the oscillations
decay, so does the coupling between the oscillator and
two-level system. Thus the decay will be accompanied
by the change of frequency back to ΩR. We cannot cap-
ture this evolution of frequency with time analytically.
To find the decay rate, Υ, only, we will adopt the ap-
proach based on the energy conservation.

A. Friction-dominated regime, γ ≫ Γ

Upon neglecting Γ in Eq. (8) and setting ∆ = 0 we
have

ẅ +Ω2
Rw = −µ2X(t)

∫ t

0

dt′X(t′)ẇ(t′). (24)

Multiplying both sides by ẇ and integrating from 0 to t,
we arrive to the following conservation law

ẇ2

2
+

Ω2
R

2
(w2 − 1) = −

µ2

2

(
∫ t

0

dt′X(t′)ẇ(t′)

)2

. (25)

The right-hand side describes the energy exchange be-
tween the two-level system and the oscillator.
As a next step we multiply the equation of motion of

the oscillator Eq. (4), by Ẋ and integrate from 0 to t.
Then we arrive at the second conservation law

Ẋ2

2
+

ω2
0X

2

2
+ γ

∫ t

0

dt′Ẋ2(t′) = −
µ

2M

∫ t

0

dt′w(t′)Ẋ(t′).

(26)

At long time, t ≫ Υ−1 we have, ẇ, w → 0 and also Ẋ,
X → 0. Then the left-hand side of Eq. (25) for w turns
to −Ω2

R/2. Combining Eqs. (25) and (26), we arrive to
the relation

ΩR = 2Mγ

∫ ∞

0

dt′Ẋ2(t′). (27)

This relation is convenient to find the decay rate, Υ, be-
cause it contains only Ẋ2, which is insensitive to the
change of frequency in the course of decay. Substituting
Ẋ2 ∝ exp[−2Υt], we find the following relation between
Υ and the amplitude of the oscillations at time <

∼ 1/Υ

Υ = γ(MX2
0ΩR). (28)

In fact, Eq. (28) does not prove that decay is exponen-
tial. In the next subsection we will see that it becomes
exponential only for long times, Υt ≫ 1. Note that the
second factor in the right-hand side can be rewritten as
(MX2

0Ω
2
R)/ΩR. The oscillator is classical when this ra-

tio is big. Thus we conclude that Υ ≫ γ, i.e., the Rabi
oscillations in the region of resonance decay faster than
undriven oscillator. As a next step, we distinguish two
cases of weak and strong friction. In the first case, to
find X that should be substituted into Eq. (28) one can
use Eq. (10) obtained without friction. Then one gets

Υ =
γωpΩR

(ω0 − s)2
, (29)

where s is determined from the cubic equation Eq (13).
In the region of resonance, the difference ω0 − s is ∼ δ0,
which yields

Υ ∼ γ

(

ω0

ωp

)1/3

=
γ

λ2/3
. (30)

Weak friction requires that |ω0 − s| ∼ δ0 ≫ Υ, i.e., γ ≪
ωp.
In the region of strong friction the difference ω0 − s

should be replaced by Υ. Then Eq. (29) contains Υ in
both sides. Upon solving this equation, we get

Υ ∼

(

γ

ωp

)1/3

δ0, (31)
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for γ ≫ ωp. Equations (30), (31) match when γ ∼ ωp.
The validity of this expression is limited from above by
the condition that the oscillator is classical. As we re-
place ω0−s by Υ, the estimate for X is X ∼ µ/(Mω0Υ).
Then the kinetic energy can be estimated as

Mω2
0

[ µ

Mω0Υ

]2

∼
ω
1/3
p ω

4/3
0

γ2/3
. (32)

The condition that it is bigger than ω0 limits γ in Eq.
(31) to γ ≪ (ω0ωp)

1/2 = λω0, and correspondingly limits

Υ to Υ ≪ δ0(ω0/ωp)
1/6 = δ0/λ

1/3.
From Eqs. (30), (31) we see that, upon increasing fric-

tion, the decay rate, Υ, first grows linearly with γ, and
then sublinearly, as γ1/3. At the boundary of applica-
bility of the classical description we have Υ = γ. For
even bigger γ classical treatment of the oscillator is not
justified, but we expect that the oscillator will eventually
decouple from the two-level system, and Rabi oscillations
will proceed as they do in the absence of the oscillator.
It is convenient to reformulate the above results in

terms of number, m = ω0/Υ, of the oscillation cycles
after which the collective motion effective stops. From
Eqs. (30), (31) we have

m =







λ2/3
(

ω0

γ

)

, γ < λ2ω0

1
λ2/3

(

ω0

γ

)1/3

, λω0 > γ > λ2ω0

(33)

In the crossover between weak and strong friction regimes
we have m ∼ λ−4/3. For γ > λω0 the assumption of clas-
sical motion of the oscillator is violated. The boundary
value of m at γ ∼ λω0 is still large, m ∼ λ−1.

B. The form of the decay

For more quantitative analysis of the decay of oscilla-
tions, it is convenient to rewrite the energy conservation
law Eq. (25) in terms of the displacement, X(t). Ex-
pressing w(t) from Eq. (4) and substituting it into Eq.
(25) we get

[ d

dt

(

Ẍ + γẊ + ω2
0X
)

]2

+Ω2
R

(

Ẍ + γẊ + ω2
0X
)2

=
µ2Ω2

R

4M2
− µ2

(

∫ t

0

dt′
[

X
...
X + ω2

0XẊ + γXẌ
])2

.

(34)

The first two terms in the integrand can be presented in
the form

X
...
X + ω2

0XẊ =
d

dt

[

XẌ −
Ẍ2

2
+

ω2
0X

2

2

]

, (35)

so that the integral from this terms is equal to 1
2 (ω

2
0 −

s2)X2(t). At the same time, the integral from the third

term can be rewritten as 1
2γs

2
∫ t

0
dt′X2(t′), and estimated

at γs2X2
0/Υ. One can check using Eqs. (30), (31) that

both in the strong-friction and weak-friction regimes the
integral from the last term is bigger than the contribution
from the first two terms. Neglecting this contribution, we
can cast Eq. (34) in the form of an integral equation for

the slow decaying amplitude, X̃, of the oscillations.
Since γ ≪ |ω0 − s| in both regimes, the non-oscillating

part of the left-hand side of Eq. (34) can presented as

1

2
(ω2

0 − s2)2(s2 +Ω2
R)X̃

2 ≈
µ2ω2

0X̃
2

4M2X2
0

, (36)

where we used the definition Eq. (10) of the initial ampli-
tude, X0. Upon substituting Eq. (36) into Eq. (34) and

introducing a dimensionless function F (t) = X̃(t)/X0,
we arrive at the integral equation

F 2(t) = 1−Υ2
[

∫ t

0

dt′F 2(t′)
]2

, (37)

where Υ = γMX2
0ω0 is introduced according to Eq. (29).

It is easy to check that this equation has a simple solution

F (t) =
1

coshΥt
. (38)

We see that the decay of amplitude X̃(t) becomes expo-
nential in the limit Υt >∼ 1, as mentioned in the previous
subsection.

C. Initial stage of the oscillations

After the ac driving field is switched on, the popula-
tion inversion starts to oscillate with frequency ΩR. After
some number, m′, of the oscillation cycles the frequency
crosses over to s. The question of interest is how m′

depends on the coupling strength, λ. We will estimate
m′ using the fact that at initial stage the system Eqs.
(4), (24) can be solved perturbatively in small parame-
ter ωp/ω0. To find the perturbative solution, we substi-

tute the ”bare” Rabi oscillations w(0) = − cos(ΩRt) into
Eq. (4) and find X(t) with initial conditions X(0) = 0,

Ẋ(0) = 0. The obtained X(t) together with w(0)(t) is
then substituted into the right-hand side of Eq. (24).
Solving this second-order differential equation with a
given right-hand side, we find that the amplitude of os-
cillations becomes 1 − w(1)(t), i.e., it acquires a time-
dependent correction with w(1)(t) given by the following
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expression

w(1)(t) =
2ω2

pω
2
0

(γ2 + 4δ2)2

[

γt

2
−

4γδ

(γ2 + δ2)
e−γt/2 sin δt

−
γ2 − 4δ2

γ2 + 4δ2

(

1− e−γt/2 cos δt
)

]2

, (39)

where δ = ω0 −ΩR. We can now estimate m′ as ΩRtc ≈
ω0tc, where tc is the time after which w(1)(t) becomes
∼ 1. Consider first the limit δ → 0. Then w(1)(t) grows

with time as
(

ωpω0t/γ
)2
. This yields

m′ ∼
γ

ω0λ2
. (40)

Condition that m′ ≫ 1 should be consistent with the
condition that the oscillator is classical. The latter con-
dition reads: ωpω0 ≫ γ2, which is equivalent to γ ≪ λω0.
In the domain when both conditions are met we have
1 ≪ m′ ≪ 1

λ .
Consider now the limit γ → 0. For δt ≪ 1, Eq. (39)

yields w(1)(t) ∼
(

ωpω0t
2
)2
. This leads to the estimate

tc ∼
(

ωpω0

)−1/2
and m′ ∼ λ−1. Small-t expansion of

Eq. (39) is valid if the product δtc is small. With tc
found above, this product can rewritten in the form

δtc ∼

(

δ2

ωpω0

)1/2

. (41)

On the other hand, the oscillator can be treated as clas-
sical when the ratio in the right-hand side of Eq. (41)
is small. Thus, taking the limit δt ≪ 1 in Eq. (39)
is justified, and the frequency of the Rabi oscillations
crosses over from ΩR to s after m′ ∼ λ−1 cycles. Corre-
spondingly, after ∼ λ−1 cycles, the oscillator will ”forget”
about initial phase, imposed by the initial conditions, and
will execute a forced harmonic motion with frequency, s.

In conclusion of this subsection we note that for the en-
tire scenario of the collective oscillations to be consistent
the time during which the collective motion is established
must be shorter than the time during which these oscil-
lations decay. The corresponding condition is m′ < m.
It follows from Eqs. (33), (40) that this condition is sat-
isfied in the the entire interval γ < λω0, namely, m is
always bigger than λ−1, while m′ is always smaller than
λ−1.

D. Relaxation-dominated regime, Γ ≫ γ

At finite relaxation rate of the two-level system Eq.
(26) assumes the form

ẇ2

2
+
1

2

(

Ω2
R +

Γ2

2

)

(

w2 − 1
)

+
Γ2

2
(w + 1)+

3

2
Γ

∫ t

0

dt′ẇ2 = −µ2

∫ t

0

dt′X(t′)ẇ(t′)

∫ t′

0

dt′′eΓ(t
′′−t′)/2X(t′′) [ẇ(t′′) + Γ(1 + w)].

(42)

Without coupling to the oscillator the right-hand side
is zero, and Eq. (42) describes the decay of the Rabi
oscillations due to relaxation. Indeed, upon substitut-
ing ẇ = ΩR sin

(

ΩRt
′) exp(−Υt′) and taking the limit

t → ∞, the last term in the left-hand side takes the
value 3ΓΩ2

R/8Υ, which leads to Υ = 3Γ/4. Natu-
rally, this value of Υ follows directly from Eqs. (5),
(7). Finite coupling to the oscillator would increase
the decay rate only if at t → ∞ the integral in the
right-hand side exceeds Ω2

R. Contribution of the second
term in the square brackets to the integral can be esti-
mated upon noticing that the product X(t′′)w(t′′) is a
slow function. Assuming that X and w both decay as
exp(−Υt′′) and that Υ ≫ Γ, the integral over t′ reduces
to
∫∞
0

dt′t′ sin(2st′) exp(−2Υt′) = Υ/s3 ≈ Υ/ω3
0. Then

one gets the estimate ω2
pΥΓ/

(

ω0 − s
)2

for this contribu-
tion. Since ω0 − s cannot be smaller than Υ, this con-
tribution cannot exceed ω2

p which is much smaller than

Ω2
R. The contribution from the first term in the square

brackets also cannot exceed Ω2
R. This becomes appar-

ent upon performing integration by parts after which the
contribution from the first term assumes the form

−Γµ2

∫ ∞

0

dt′e−Γt′

(

∫ t′

0

dt′′eΓt
′′/2X(t′′)ẇ(t′′)

)2

. (43)

If X and ẇ decay much faster than exp(−Γt′′/4), the in-
ner integral saturates at times t′ ≪ Γ. Then the contribu-

tion Eq. (43) can be estimated as Ω2
Rω

2
p/
(

ω0−s
)2
, which

is again much smaller than Ω2
R. We thus conclude that,
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FIG. 5: Excitation level of the oscillator, N = 16Nλ2/3,
where N is the number of vibrational quanta, is plotted from
Eq. (19) vs. dimensionless detuning and dimensionless de-

viation from the resonance, x′ =
(

ΩR − ω0)/(ω0ω
2

p

)

1/3
. The

thick black line of bifurcations separates the ”inner” domain
of parameters (blue domain where bistability is absent) and
outer domain (yellow domain where bistability is present). In
the outer domain the ratio of N - values corresponding to the
two stable solutions grows rapidly away from the boundary.

while coupling to the oscillator modifies the frequency,
the decay of the Rabi oscillations in the relaxation-
dominated regime is always dominated by the relaxation
rate.

V. NUMBER OF VIBRATIONAL QUANTA

We studied the behavior of the frequency the Rabi os-
cillations near the the resonance ΩR = ω0. The number
of vibrational quanta, N , is also sensitive to the devia-
tion, ΩR − ω0, from the resonance and to the detuning,
∆. Since N = Mω2

0X
2/ω0 (we set h̄ = 1) it can be

expressed using Eq. (21), as the following

N =

(

1

λ2

)1/3
1

16z2
=

(

ω0

ωp

)1/3
1

16z2
, (44)

where z is the solution of Eq. (19). The dependence
of N on dimensionless deviation, x′, and dimensionless
detuning, ∆′, is plotted in Fig. 5. The values of N shown
correspond only to stable regimes of oscillations. The
line of bifurcation points separates the (x′,∆′) domains
with and without bistability in Fig. 5. In the domain
of bistability the higher and lower values of N coincide

along the red line. Away from the red line the high-N
and the low-N values differ very strongly. High-N values
correspond to the regime of oscillations with frequency
close to ω0, see Fig. 3, whereas low N -values correspond
to the frequency of oscillations close to ΩR.
At x′ < 0.5 and to the right from the bifurcation line

there is no bistability. The value of N is low in this
domain around ∆′ = 0. As ∆′ increases, N grows for
both signs of detuning, ∆′. However, for ∆′ > 0 (blue
detuning) the growth of N is monotonical. At the same
time, for ∆′ < 0 (red detuning) the bistability sets in
at certain critical ∆′. Upon further increase of |∆′| the
low-N value does not grow, while the high-N value grows
rapidly.
It is instructive to compare the results shown in Fig. 5

to the results of Refs. [15,16]. The curves N(∆′,ΩR)
were obtained in Refs. [15,16] by numerical solution of
the system of master equations for the density matrix
describing both the two-level system and the oscillator.
Firstly, there is a qualitative agreement in the shape of
the boundary of bistability. In Refs. [15,16] only the
low-N values are plotted. The prime observation made
in Refs. [15,16] was that there is a strong difference be-
tween these low-N values for blue and red detunings,
namely, for blue detuning N is much higher. Our an-
alytical results in Fig. 5 agree qualitatively with this
observation.

VI. CONCLUDING REMARKS

Frequency, ΩR, of the Rabi oscillations is proportional
to the square root of the excitation power. This linearity
has been demonstrated in many experiments. Even when
Rabi oscillations are damped, the dependence s(ΩR) can
be extracted from the position of maximum in the Fourier
transform21 of the signal, w(t). We predict that, for a
two-level system coupled to a vibrational mode, the po-
sition of maximum of the Fourier transform will deviate
from the linear behavior near the resonance ΩR = ω0.
Both to the left and to the right from the resonance the
position of maxim corresponds to s < ΩR. The relative
width of the resonant region depends on the coupling, λ,
to the vibrational mode as λ4/3. We also predict that,
in the vicinity of the resonance, the dependence s(ΩR)
exhibits a hysteretic behavior with two stable values of s
corresponding to two stable regimes of the Rabi oscilla-
tions.
The underlying physics of the Rabi-vibronic resonance

is the following. Without coupling, population inversion,
w, and displacement, X , satisfy the harmonic oscillator
equations with frequencies ΩR and ω0, respectively. With
coupling, two-level system acts as a driving force ∝ w on
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the oscillator, while the back-action of the oscillator on
w is peculiar. The structure of back-action force is wX2,
as can be seen from Eqs. (8), (9). This structure im-
plies that back-action is of a parametrical type, i.e., X2

adds to Ω2
R. Thus, at ΩR ≈ ω0, it appears that ΩR is

modulated with frequency ≈ 2ΩR. This, however, does
not lead to a parametric instability. Instead, the oscilla-
tor motion gets synchronized with the Rabi oscillations.
In this regard, there is certain analogy to the synchro-
nization of the Rabi oscillations to a sequence of pulses22

applied to the detector with repetition period chosen to
be 2π/ΩR.
As it was pointed out in Introduction, the situation

when a two-level system undergoing the Rabi oscillations
is coupled to the oscillator is actively studied in connec-
tion to the circuit QED11. The most common situation in
circuit QED is when the oscillator frequency, ω0, is tuned
to the transition frequency, ω12, of the two-level system.
Among physical effects predicted for this domain is that
two or multiple qubits can get strongly coupled to each
other via coupling to a common oscillator23,24. Rabi-
vibronic resonance corresponds to the domain ω0 ≪ ω12.
Still the effects similar to those discussed in Refs. [23,24]
(see also recent experiments Refs. [25,26]) will take place

under the conditions of the Rabi-vibronic resonance. In
particular, we anticipate that Rabi oscillations in two
driven two-level systems with ΩR = ω0, coupled to the
same oscillator will get synchronized.

As a final remark, classical treatment of the vibrational
mode adopted in the present paper does not allow one to
capture the quantum jumps17 between the stable regimes
of collective motion of the two-level system coupled to the
oscillator. We also did not consider the effect of thermal
noise which leads to the activated switching27 between
the steady regimes even within a classical description of
the oscillator.
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We are grateful to C. Böhme for a discussion which
initiated this study. We thank J. Koch and F. von Op-
pen for bringing Refs. [15,16] to our attention. We also
acknowledge discussions with E. G. Mishchenko, O. A.
Starykh, B. Spivak, and L. Tian, and the support of the
Grant DMR-0808842 (R.G).

1 I. I. Rabi, Phys. Rev. 51, 652 (1937).
2 E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).

3 L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo,
R. I. Shekhter, and M. Jonson, Phys. Rev. Lett. 80, 4526
(1998).

4 Ya. M. Blanter, O. Usmani, and Yu. V. Nazarov, Phys.
Rev. Lett. 93, 136802 (2004).

5 C. Galland and A. Imamoglu, Phys. Rev. Lett. 101, 157404
(2008).
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