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Macroscopic quantum tunneling in nanoelectromechanical systems

Mika A. Sillanpää, Raphaël Khan, Tero T. Heikkilä and Pertti J. Hakonen
Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

The experimental observation of quantum phenomena in mechanical degrees of freedom is dif-
ficult, as the systems become linear towards low energies and the quantum limit, and thus reside
in the correspondence limit. Here we investigate how to access quantum phenomena in flexural
nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one
can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point
energy. The system can then escape from the metastable state via macroscopic quantum tunneling
(MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet,
and a carbon nanotube. We find that the experimental demonstration of the phenomenon is cur-
rently possible but demanding, since the MQT crossover temperatures fall in the millikelvin range.
A carbon nanotube is suggested as the most promising system.

I. INTRODUCTION

The quest towards experimental studies of quantum
behavior in nanomechanical systems1–3 has progressed
fast in recent years. A breakthrough took place last year,
when the quantum ground state was demonstrated by the
Cleland group4, using a 6 GHz piezoelectric mode in res-
onance with an electrical quantum system made out of
Josephson junctions. In general, the difficulty of bring-
ing mechanical degrees of freedom to the quantum limit is
due to the challenges posed by several issues. As usual,
for quantum-mechanical phenomena to become observ-
able, the thermal energy kbT has to be much lower than
the characteristic oscillation energy ~ω. The flexural
mode frequencies rarely exceed one GHz, and there are
no such strongly nonlinear mechanical phenomena anal-
ogous to the Josephson tunneling. Hence, nonlinearity
which helps to isolate quantum behavior becomes promi-
nent only by the means of reducing the linear energy,
with an accompanying reduction in frequency and strin-
gent requirements for temperature. Also, the mechani-
cal zero-point vibrations are orders of magnitude smaller
than the typical length scales encountered in solid-state
physics.

Macroscopic quantum tunneling (MQT) refers to
quantum tunneling in a degree of freedom involving a
macroscopic number of particles. This is how Joseph-
son junctions were shown to portray quantum behavior
more than 20 years ago, namely, by observing the phase
to escape from the metastable minimum via MQT5–7.
Josephson junctions display strong nonlinearity at the
zero-point energy scale, and the frequencies typically re-
side in the range of tens of GHz, and thus the quantum
limit is encountered at relatively easily attainable tem-
peratures below one Kelvin.

A possibility to induce nonlinearity into the mechani-
cal potential energy was suggested in Refs. 8–10. In their
setup, a mechanically induced longitudinal compression
in a clamped beam would induce a double-well potential,
and hence a possibility for macroscopic quantum tun-
neling of displacement of the beam buckling either left
or right. While measurably high tunneling rates were

predicted, the compression would have to be adjusted
with extreme accuracy, and the crossover temperatures
between thermal activation and MQT would fall in the
microkelvin regime for beams longer than L ∼ 100 nm.

In the present work, we discuss an alternative way of
inducing nonlinearity into the electromechanical poten-
tial at the scale of zero-point energy. We suggest to
use a dc voltage to displace a conductive, clamped beam
or membrane into a deflection close to the critical value
where it gets pulled in to the electrode. Near this pull-in
voltage, a metastable minimum appears in the electrome-
chanical potential. The pull-in event can thus occur via
a very fundamental physical process, that is, escape by
quantum tunneling from a metastable state. We see that
while the control of the deformation requires a high pre-
cision in the applied gate voltage, the crossover temper-
ature becomes of the order of mK, and hence is within
experimental reach.

In Sec. II we first study the behavior of the flexural
mode eigenfrequency when the beam is influenced by a
dc electric field from a nearby voltage gate. In Sec. III
we calculate in detail the possibility of escaping from the
metastable minimum via MQT, and consider in particu-
lar structures based on graphene, or carbon nanotubes.
Starting from a simplified model, we derive analytical
expressions for the quantities of interest in the limits of
very thin or thick beam or sheet. Numerics are used to
verify the results in a more general setting.

II. METASTABLE MINIMUM IN THE
ELECTROMECHANICAL POTENTIAL

We consider an electromechanical system modeled by a
doubly clamped beam or sheet, having a length L, width
W , thickness H, density ρ and mass m. It is attached
to the clamps by rigid boundary conditions. An electro-
static force created by a gate voltage Vg situated at a
distance d from the beam induces a deformation u(y) to
it, see Fig. (1). Note that we take the direction of the
thickness H along the direction of deformation.

Let us write the potential energy of the system. For
small displacements from the un-stretched position, the
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FIG. 1. (Color online)(a) Schematic picture of the stud-
ied nanoelectromechanical system. A beam or membrane is
clamped from opposite ends, and its deformation is controlled
by an electrostatic force created by a dc gate voltage Vg. (b) A
metastable minimum in the potential energy near the pull-in
point is introduced due to the nonlinearities in both electri-
cal and mechanical energies. The system can escape from the
minimum via thermal activation (rate ΓT ), or by macroscopic
quantum tunneling (rate ΓQ).

mechanical energy is quadratic with displacement. Here,
however, we consider large displacements nearly of the or-
der d, and take into account the nonlinearity due to the
elongation of the beam11. This affects the results sub-
stantially for thin membranes which stretch easily. We
also include a built-in tension force T0 which exists with-
out the gate voltage and can be due to fabrication. In
addition to the mechanical energy, the total potential en-
ergy has also an electrical contribution due to the voltage
bias, given as Vel = − 1

2Cg[u(y)]V 2
g , where Cg is the ca-

pacitance between the beam and the gate. The sum of
all these is

Etotal =
EI

2

∫ L

0

[
d2u(y)

dy2

]2

dy +
T0

2

∫ L

0

[
du(y)

dy

]2

dy

+
ES

8L

(∫ L

0

[
du(y)

dy

]2

dy

)2

+ Vel,

(1)

where E is the Young modulus, I the bending moment,
S the cross section of the beam. We now write the de-
formation of the beam as u(y) = x0χ(y), with x0 the
amplitude and χ(y) the mode shape of the deformation.
Henceforth, we consider the lowest flexural eigenmode,
whose resonant frequency without the gate voltage is
ω2

0 = EIµ
mL3 , and the mode shape is given by a combi-

nation of trigonometric and hyberbolic functions12 (see
Eq. (3) for definition of µ). Scaling the amplitude of the
deformation with the beam-gate distance, x0 = x0/d, the
energy becomes

Etotal =
1

2
mω2

0d
2x2

0 +
1

2
mω2

T d
2x2

0

+
1

2
mω2

sd
2x4

0 −
V 2
g

2

∫ L

0

Cg[u(y)]dy,

(2)

with 1
2mω

2
0d

2 = EIµ
2L3 d

2 the bending energy of the beam

displaced by d, 1
2mω

2
sd

2 = ESd4ν2

8L3 the stress energy of
the beam displaced by d with respect to its equilibrium
position and 1

2mω
2
T d

2 = T0

2Ld
2ν the stress energy related

to initial tension. Here

µ =

∫ 1

0

[
d2χ(y)

dy2

]2

dy, (3)

ν =

∫ 1

0

[
dχ(y)

dy

]2

dy, (4)

depend on the shape of the deformation. When using
the approximation13 for the lowest flexural mode shape

χ(y) =
√

2
3 (1− cos(2πy)) we get µ = 16π4

3 and ν = 4π2

3 .

The pull-in phenomenon can be understood as follows.
The gate capacitance Cg(x), in general, increases towards
an increasing deflection x0 of the membrane. This causes
an attractive force F = −∂xo

Etotal to appear between
the membrane and the gate. The effective spring con-
stant ∂2

x0
Etotal thus contains a positive (three first terms

in Eq. (2)) and a negative part (last term of Eq. (2)).
Therefore it changes sign at a specific voltage Vc depen-
dent on the geometry, which corresponds to the mem-
brane getting pulled in to contact with the gate. For
example, in the simple plate capacitor model, the pull-in
occurs at a static displacement xc = 1

3 . In an energy
picture, the minimum of the energy becomes metastable
when increasing Vg and disappears when Vg = Vc as il-
lustrated in Fig. 2.

In order to specify our analysis, we have to choose a
model for the capacitance. Qualitatively, however, the
physics of the formation of the metastable minimum re-
mains model-independent. We consider two cases: (A)
the parallel plate capacitor, which is that of a membrane
suspended above a back gate, and (B) a conducting wire
parallel to a plane. We find carbon-based realizations as
the most promising, due to their purity, stiffness and low
mass. The cases A and B correspond, respectively, to
graphene14,15 and a single-wall carbon nanotube16,17.

First of all, in order to obtain simple analytical esti-
mates, we assume that the capacitance depends only on
the amplitude of the deformation x0. This approximation
is relaxed in the numerical analysis, which takes into ac-
count the true shape of the deformation (see Appendix).
Apart from the thick parallel plate model (section II A 1),
x0 needs to be computed numerically from the force bal-
ance equation −∇Etotal = 0.

A. Parallel plate model

Using the parallel plate capacitance model Cg =
ε0W

d(1−x0) , the energy becomes
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FIG. 2. (Color online) Schematic picture of the pull-in phe-
nomenon in a suspended membrane or beam: when increas-
ing the dc voltage, the amplitude of the deformation increases
until the beam pulls into contact with the gate at a certain
critical voltage Vc.

Etotal =
1

2
mω2

0d
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0 +
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2
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1
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(5)

Expanding Eq. (5) up to the third order for small varia-
tions x around the equilibrium amplitude x0(Vg) we ob-
tain

Etotal =
1

2
mω2

xd
2x2 + αx3 (6)

with

ω2
x = ω2

0 + ω2
T

+ 6ω2
sx

2
0 − V 2

g

ε0WL

md3

1

(1− x0)3
(7)

α = 2mω2
sd

2x0 − V 2
g

ε0WL

2d

1

(1− x0)4
. (8)

An inspection of Eq. (7) reveals how the frequency de-
pends on the gate voltage. The third term on the rhs, the
mechanical nonlinearity, tends to increase the frequency

with an increasing voltage, whereas the fourth term, elec-
trical nonlinearity, has the opposite effect. In experi-
ments with carbon nanotubes16,17 or graphene14,15, the
frequency has typically been observed to go up, but for
microfabricated metallic resonators, the frequency has
decreased18,19. We now study the behavior of the fre-
quency when we get close to the pull-in for two different
regimes. In the first regime, we consider the case where
the bending energy is large compared to the stress en-
ergy, i.e ω0

ωs
� 1 ⇔ d

H = β � 1. This is the case when
the variation of the frequency coming from the induced
deformation is small, e.g., when the beam is close to the
gate or when the beam is thick. We then consider the
opposite regime where it is the first term of Eq. (7) which
can be neglected, e.g., for a thin beam or a beam far from
the gate ( dH � 1).

1. Thick membrane, β = d
H
� 1

For a beam close to the gate, the electrical potential is
dominant, and the third term on the rhs of Eq. (7) can
be ignored. This also holds if the built-in tension is large,
since a larger voltage is then needed in order to obtain a
certain x0. Scaling the energy with the bending energy
we define εthick ≡ Etotal/(

1
2mω

2
0d

2):

εthick =

(
ωx
ω0

)2

x2 −
V 2
g

V̄ 2

1

(1− x0)4
x3, (9)

with V̄ 2 =
mω2

0d
3

ε0WL . The critical displacement at which

pull-in point occurs is given by xc = 1/3,20 and the

critical voltage is Vc/V̄ =
√

8
27

[
1 +

(
ωT

ω0

)2
]
. Using the

plate-capacitor model, the position-dependent frequency
and the third-order coefficient near the pull-in point are(

ωx
ω0

)2

=
√

3

[
1 +

(
ωT
ω0

)2
]2
√

1−
(
Vg
Vc

)2

(10)

α

mω2
0d

2
= −3

4

[
1 +

(
ωT
ω0

)2
]2

. (11)

For example, a graphite resonator with ρ = 2 g/cm3,
L = W = 0.5 µm, H = 100 nm, d = 10 nm and E = 30
GPa, would have Vc = 25.9 V and ω0/2π = 1.6 GHz.
A numerical calculation of the behavior of the frequency
with respect to the gate voltage is shown in Fig. 3. In
this figure and Figs. 4-7, d has been chosen so that the
accumulated strain in the pull-in position is at most half
of the tensile strength.21

2. Thin membrane, β = d
H
� 1

The electrical potential term in Eq. (1) is insignificant
at small deflections, if the beam is thin or far from the
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FIG. 3. (Color online) Behavior of the first flexural mode fre-
quency with respect to the applied gate voltage scaled with

V̄ =

√
mω2

0d
3

ε0WL
for a thick membrane having T0 = 0, L = W

and β = 0.85. (a) Black solid curve: analytical calculation
supposing a constant mode shape, red dashed curve: full nu-
merical calculation with the exact mode shape. (b) Behavior
of the frequency close to the pull-in point.

gate. The beam then becomes stiffer and the frequency
goes up with the gate voltage as shown in Fig 4.

At larger deflections, however, the electrical term be-
comes dominant and the metastable potential minimum
becomes shallow and eventually disappears. In this
case we may neglect the small constants ω2

0 and ω2
T in

Eq. (7). The pull-in point is obtained when the elec-
trical and mechanical terms in Eq. (7) cancel one an-
other. Scaling the energy with the stress energy we define
εthin ≡ Etotal/(

1
2mω

2
sd

2):

εthin =
1

2

[
12x2

0 − 2

(
Vg
V ∗

)2
1

(1− x0)3

]
x2

+

[
4x0 −

(
Vg
V ∗

)2
1

(1− x0)4

]
x3,

(12)

with (V ∗)2 =
mω2

sd
3

ε0WL . We obtain the critical displace-
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FIG. 4. (Color online) As Fig. 3, but for a thin membrane

with (V ∗)2 =
mω2

sd
3

ε0WL
, L = W and β = 283. (a) Full numerical

calculation using the exact mode shape, with two different
built-in tensions. The blue dashed curve: the initial tension
is T0 = 0 while for the red solid curve it is T0 = 2 ·105 EI

L2 . (b)
Fit of the numerical result close to the pull-in point with the
equation aβ2

√
3
[
1− (Vg/Vc)

2
]m

. The fit gives a = 0.7 and
m = 0.5 which confirm the power law in Eq. (13).

ment xc = 3/5, and the critical voltage22 Vc/V
∗ =

12
25

√
3
5 . Near the pull-in point, we obtain from Eqs. (7,8)

(
ωx
ω0

)2

=
54
√

3
5

5
β2 ν

2

µ

√
1−

(
Vg
Vc

)2

α

mω2
0d

2
= −9

2
β2 ν

2

µ
.

(13)

Contrary to a thick membrane, Eq. (11), the nonlinearity
α depends on β2. Therefore the nonlinearity is linked to
the elongation of the beam. For example, taking a single-
layer graphene sheet with ρ = 2 g/cm3, L = W = 0.5
µm, H = 0.3 nm, d = 85 nm and E = 1 TPa, we get
Vc = 17.8 V and ω0/2π = 27.6 MHz.
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B. Wire parallel to a plate

The parallel plate capacitor model is a good approxi-
mation for membrane resonators, but another interesting
case to consider is a suspended beam, such as a thin car-
bon nanotube. With the capacitance Cg = 2πε0L

ln[2d/H(1−x0)] ,

H being in this case the radius of the beam, the energy
of the system is

Etotal =
1

2
md2(ω2

0+ω2
T )x2

0+
1

2
md2ω2

sx
4
0−V 2

g

πε0L

ln [2β (1− x0)]
.

(14)
As in the previous section we make an expansion of
Eq. (14) up to the third order for small variation x around
the equilibrium amplitude x0(Vg) and obtain

Etotal =
1

2
mω2

xd
2x2 + αx3, (15)

with

ω2
x = ω2

0 + ω2
T + 6ω2

sx
2
0

−
V 2
g

md2

πε0L{ln[−2(x0 − 1)β] + 2}
(x0 − 1)2 ln3[2(1− x0)β]

(16)

α = 2mω2
sd

2x0 (17)

−
V 2
g πε0

(
ln2(2(1− x0)β) + 3 ln(2(1− x0)β) + 3

)
3(x0 − 1)3 ln4(2(1− x0)β)

.

The behavior of the frequency is similar to the one
found in the previous section. Below we only consider
the case of a thin tube d

H � 1 which best corresponds to

carbon nanotubes23.

1. Thin tube, β = d
H
� 1

As in the previous section, we may neglect the small
constant ω2

0 term in Eq. (16). The pull-in point is
obtained when the electrical and mechanical terms in
Eq. (16) cancel one another. Neglecting in the derivatives
the x0 dependence in the logarithms, we obtain the criti-
cal displacement xc = 3 ln 2β

2(1+2 ln 2β) and the critical voltage

(Vc/Ṽ )2 = 27β2 ln 2β5(2+ln 2β)
4(1+ln 4+2 ln β)4 with Ṽ 2 =

mω2
sd

3

2πε0L
. Near the

pull-in point, we obtain from Eqs. (16,17):(
ωx
ω0

)2

=
9β2ν2 ln 2β2

2µ(1 + ln 4 + 2 lnβ)

(
1− Vg

Vc

)
α

mω2
0d

2
=

3β2ν2 ln(2β)

8µ2
C,

(18)

where

C =
4µ

ln(β)
− 81β2ν2 ln7(2β)

32 ln6(β)
.

Similarly to the thin membrane, the nonlinearity is
due to the elongation of the beam, but there is a differ-
ence in the behavior of the frequency close to the pull-in.

Here, ω2
x decreases linearly with the voltage, instead of

being proportional to a square root of Vg as in Eq. (10).
Therefore, the pull-in for a beam is expected to occur in
a “smoother” way than for a membrane. The results for
the frequency are summarized in Fig 5. Although the
qualitative behavior of the frequency is mostly captured
by the analytical calculation, very close to the pull-in we
again capture the square root behavior (Fig. 5b). For
example, with a single-wall carbon nanotube resonator
with ρ = 2 g/cm3, L = 0.5 µm, H = 1 nm, d = 85 nm
and E = 1 TPa, we have Vc = 6.2 V and ω0 = 23 MHz.
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FIG. 5. (Color online) The fundamental flexural mode fre-

quency with respect to the applied gate voltage with Ṽ 2 =
mω2

sd
3

πε0L
for a single-wall carbon nanotube with β = 85. (a)

The blue dashed curve is without an initial tension (T0 = 0),
while the red solid curve is with T0 = 3.1 · 103 EI

L2 . (b) Fit

of the numerical result with the equation aβ2(1− (Vg/Vc)
2)m

indicates a power law with a = 0.32 and m = 0.5.
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III. PROSPECTS OF OBSERVING MQT

At a temperature T , the rate of thermally activated es-
cape from the metastable minimum in Fig. 3 is given by
the usual Arrhenius law ΓT = ωx/(2π) exp (−∆V/kBT )
where ωx is the frequency of the resonator. The tun-
neling rate from the ground state is given by24 ΓQ =

ωQ exp
(
− 36

5
N
2π

)
, where N = ∆V

~ωx
is the number of states

in the potential with height ∆V , and ωQ = 6ωx
√

6N/π.
The crossover temperature TQ below which quantum tun-
neling from the ground state dominates over thermal es-
cape is given by equating the Arrhenius law with the
quantum tunneling rate,

TQ =
5

36

~ωx
kb

1

1− 5
36

1
N ln

(
12
√

6
πN
) . (19)

In addition to giving the crossover between the ground-
state tunneling and thermal activation, this is also a good
criterion for the system to be in the quantum limit in
the sense that thermal population becomes negligible.
Another important quantity is the number N of bound
states in the metastable minimum. From Eq. (6) we ob-
tain

N ' ∆V

~ωx
=

1

54

d6m3ω5
x

~α2
. (20)

In order to maximize the quantum tunneling rate we need
to have N ∼ 1. For a membrane in the case where β � 1
the frequency at which the number of states is close to 1
satisfies (

ωx
ω0

)5

=
35

8

1

N0
, (21)

while when β � 1 it is(
ωx
ω0

)5

≈ 1100
ν4

µ2

β4

N0
, (22)

with N0 = mω0d
2/~. From these equations we can see

that the mass of the resonator has to be the lowest pos-
sible in order to maximize the frequency, which would
then lead to the highest crossover temperature, and hence
the best experimental prospect of observing MQT. Also
Eq. (22) shows that a system having a large β is favor-
able since it yields a higher frequency when the num-
ber of states is close to 1. The most suitable materials
from both of these points of view, having a low mass and
possibility for a high d

H ratio, are graphene and carbon
nanotubes. In Figs. 6 and 7 we plot a full numerical cal-
culation of the crossover temperature and the MQT rate
for graphene and CNT resonators, which show the con-
flicting requirements of attaining a high frequency and
simultaneously having a measurable tunneling rate.

MQT could be verified by measuring the reduction
of the escape rate as a function of temperature, and
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FIG. 6. (Color online) Macroscopic quantum tunneling
(MQT) in a thin membrane, β � 1. Right hand axis in
green: the quantum-classical crossover temperature, plotted
as a function of departure of the dc gate voltage from the crit-

ical voltage with V ∗2 =
mω2

sd
3

ε0WL4 . Left hand axis in blue: the

rate of MQT of the displacement out of the metastable min-
imum. The plots are for a representative sample consisting
of a single-layer graphene sheet with H = 0.3 nm, L = 5µm,
W = 2µm, E = 1 TPa, ρ = 2 g/cm3, and d = 85 nm. The
lowest number of states is N ∼ 2.
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FIG. 7. (Color online) As Fig. 6, but for a carbon nanotube,
with H = 1 nm, L = 0.5µm, E = 103 GPa, ρ = 2 g/cm3, and

d = 85 nm. Here Ṽ 2 =
mω2

sd
3

2πε0L
.

observing its saturation at the crossover temperatures
predicted above. An escape event would easily be de-
tected as a large change of capacitance once the mem-
brane gets pulled in, for instance, by using the dispersive
methods19,25–28 which do not otherwise excessively dis-
turb the system. In order to repeat the experiment, the
gate voltage would be reset to zero, and another gate on
the opposite side could be used to pull the membrane
from the Van der Waals attraction.

A possible experimental verification is challenged by
the fact that reaching a small number of states requires
a high precision on the applied gate voltage, and a small
change in the applied gate voltage leads to a large varia-
tion in the frequency in this regime. The wire parallel to
a plate model shows that the variation close to the pull-
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in point is smoother than for the parallel plate model,
and in this respect, carbon nanotubes seem to be good
candidates for observing MQT.

IV. CONCLUSIONS

Macroscopic quantum tunneling (MQT) is a fascinat-
ing topic which allows one to investigate the quantum-
classical transition regime, where frequencies of collective
degrees of freedom become comparable to temperature.
We have introduced a model system of a mechanical de-
gree of freedom trapped into a metastable state formed
by a conductive beam or membrane suspended on a volt-
age biased back gate. Via MQT, the fictitious particle
can escape from the metastable state and thereby be
pulled into contact with the gate. The setup might serve
as a means of observing mechanical MQT, in a fashion
analogous to how quantum behavior in Josephson sys-
tems was first observed5–7.

Here we discuss the possibility of observing MQT in
nanomechanical resonators for two capacitance models,
those of a parallel plate capacitor, and the wire paral-
lel to a plate, corresponding, for example, to suspended
graphene or carbon nanotube. One should have the num-
ber of states in the metastable minimum close to one in
order to obtain a sufficient quantum tunneling rate, and
at the same time, maintain a high frequency to maxi-
mize the crossover temperature. The highest crossover
temperatures are obtained in a system with low mass,
low density, high Young’s modulus, and a high ratio
d/H which allows to increase the frequency by increased
strain. These criteria point towards carbon-based real-
izations.

We conclude that while the predicted crossover tem-
peratures in the mK-range are several orders of mag-
nitude higher than for the buckled beam studied pre-
viously, they are still experimentally demanding, and
barely within reach of standard dilution refrigerator tech-
niques. However, one may use electrical cooling tech-
niques where the nanoresonator is coupled to higher-
frequency electrical resonator in order to cool the lowest
mode in question down to temperatures much lower than
the environment26,29. We thus foresee the experimental
verification challenging, but possible in the future.
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APPENDIX

For the numerical calculations, we assume that there
is a small deviation δu(y, t) = u1(y)eiωt from the static
deformation u0(y) such that the total deformation can
be written in the form

u(y, t) = u0(y) + δu(y, t). (23)

Introducing these expressions in the Euler-Bernoulli
equation, neglecting the terms which are O(ω2) and tak-
ing the parallel plate capacitance model leads to the
equation for DC deflection u0

∂4u0(y)

∂y4
−
(
α+ 6β2

∫ 1

0

u′0(z)2dz

)
∂2u0(y)

∂y2

− Ṽ 2 1

(1− u0)2
= 0. (24)

The AC part u1(y, t) satisfies an eigenvalue equation for
u1

∂4u1(y)

∂y4
−
(
α+ 6β2

∫ 1

0

u′0(z)2dz

)
∂2u1(y)

∂y2

− 2Ṽ 2 u1

(1− u0)3
− 12β2 ~u′′0(y)⊗ ~u′0(y)

∂u1(y)

∂y
=
ω2

ω2
0

u1.

(25)

Here,

α =
L2

EI
T0 (26)

β =
d

H
(27)

Ṽ 2 = V 2
g 6

(
d

H

)3
ε0L

4

d6
(28)

ω2
0 =

EI

mL3
. (29)

Writing u0 =
∑n
i aiχi(y) with χi(y) the ith flexural

eigenmode,12 we solve (24) using the Galerkin method,
rewriting (25) in the eigenmode space (χi-space) and use
the solution found for u0 to compute ω and u1. This
first step allows us to find the behavior of the frequency
with respect to the applied gate voltage. This is shown
in Figs. 3 and 4 in the thick and thin membrane regime
limits, for β < 1 and β > 1, respectively. We then use
u0(y) and u1(y, t) and use Eq. (1) to plot ε(u0 + x0u1)
for a particular gate voltage, x0 being the amplitude of
the AC deformation. This step allows us to compute
the height of the metastable potential ∆V . From these
results it is possible to compute the number of states and
thus the quantum tunneling rate as discussed in Sec. III.
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