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Abstract. Manganese-carrier magnetic exchange interactions in strongly quantum confined 

Mn2+-doped CdSe quantum dots (QDs) having dQD = 1.52, 2.08, and 2.54 nm have been 

investigated using a combination of density functional theory (DFT) and perturbation theory 

calculations. Established perturbation expressions have been tested by comparing the exchange 

energies predicted from these expressions (using DFT results as input parameters) with those 

calculated directly by DFT. These comparisons allow the dominant orbital pathways responsible 

for Mn2+-carrier exchange to be identified and analyzed. The Mn2+-valence-band-hole exchange 

interaction is described well using the long-accepted antiferromagnetic p-d kinetic exchange 

pathway. The Mn2+-conduction-band-electron interaction is described well using the recently 

proposed ferromagnetic kinetic s-s exchange pathway. Antiferromagnetic kinetic s-d exchange 

interactions previously proposed to become dominant in quantum confined diluted magnetic 

semiconductors (DMSs) have been evaluated quantitatively by both DFT and perturbation theory 

and are found to be weak compared to the ferromagnetic s-s interaction, even in these strongly 

confined QDs. The magnitudes of the mean-field exchange parameters are found to be nearly 

independent of quantum confinement over this range of QD diameters, and the dominant orbital 

pathways are not fundamentally altered by quantum confinement. 
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I. Introduction 

In diluted magnetic semiconductors (DMSs), exchange interactions between localized 

magnetic impurities and delocalized charge carriers give rise to various technologically 

important effects including giant spin splittings of the semiconductor band structure,1-3 exciton 

spin polarization,4-7 spin-polarized electrical currents,8,9 excitonic magnetic polarons,10-16 and 

carrier-controlled magnetism.17-20 Within the past decade, attention has turned to magnetically 

doped semiconductor nanostructures like colloidal or self-assembled DMS quantum dots 

(QDs),10,21-23 motivated in part by potential quantum optics or information processing 

technologies.24-26 DMSs quantum dots may enable versatile control of magnetism by means 

unavailable in their bulk counterparts, for example through lattice deformations 

(piezomagnetism),27 exchange interactions involving closed-shell QD configurations,28 and 

optical or electrical gating.29-31  

All of the potential spin-electronic and spin-photonic applications of DMSs are ultimately 

determined by their microscopic dopant-carrier (sp-d) magnetic exchange interactions. Most 

analyses of dopant-carrier magnetic exchange in quantum-confined DMSs have relied on 

methods developed to describe the corresponding bulk materials.1-3,32-36 Whereas the general 

features of sp-d exchange appear to translate across length scales, specific contrasts have been 

emphasized in some cases.12,13,36-40 Most prominently, a strong quantum-confinement-induced 

change in the fundamental nature of the conduction-band-electron ( eCB
− ) – Mn2+ exchange (s-d 

exchange) interaction has been described both theoretically36,37 and experimentally.37,41-45 

According to k·p-model descriptions of Mn2+- eCB
−  exchange, weak potential s-d exchange is the 

only coupling mechanism in bulk II-VI DMSs because kinetic s-d exchange is forbidden by 

symmetry at k = 0, but quantum confinement relaxes this symmetry constraint and allows mixing 

of valence-band character with p-like symmetry into the Bloch functions of the conduction band 

at finite k vectors.36,37 This mixing has been proposed to turn on strong antiferromagnetic kinetic 

s-d exchange coupling that dominates over the weaker ferromagnetic potential s-d exchange 

coupling in DMS QDs and quantum wells (QWs).36,37 The existence of strong kinetic s-d 

exchange in DMS QDs and QWs is not universally accepted, however. Tight binding 

calculations, which also show the appearance of kinetic s-d exchange with quantum confinement 

and inversion of the sign of this exchange interaction at large k, predict a smaller dependence on 

wavevector than derived from the k·p model because of smaller predicted s-d hybridization.46 
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Recent experimental47 and theoretical48 results for II-VI DMSs further challenge the notion that 

kinetic s-d exchange could ever become dominant in Mn2+-based DMSs by drawing attention to 

the fact that the ferromagnetic s-d exchange interaction also strengthens with quantum 

confinement, counterbalancing any increase in kinetic s-d exchange.48  

 Here, we describe the results of density functional theory (DFT) calculations designed to 

probe dopant-carrier exchange interactions in Cd1−xMnxSe QDs in the strong confinement 

regime. DFT calculations have been applied successfully in recent years to investigate the 

electronic structure of DMS nanostructures.31,49-55 In contrast with the highly successful mean-

field and virtual-crystal approximations (MFA and VCA) generally applied to interpret 

experimental data,1-3 the DFT calculations are atomistic and are therefore not subject to the 

constraints of ensemble averaging, averaging over dopant positioning within the nanocrystals, or 

analyses based on effective Hamiltonians. We show that these DFT results can be related to the 

extensive existing body of experimental literature that does employ the MFA and VCA by 

collective analysis of exchange energies calculated for the various possible dopant sites within 

the QDs, illustrating the relationship between atomistic and mean-field exchange energies. The 

microscopic origins of the s-d and p-d exchange energies are then examined in detail. The well-

known Mn2+(3d)-based p-d exchange pathway is confirmed to dominate Mn2+- hVB
+  exchange 

coupling, and a Mn2+(4s)-based s-s orbital pathway is found to dominate Mn2+- eCB
−  exchange 

coupling at all DMS length scales. The DFT results do not show the dominant kinetic s-d 

exchange postulated to arise in the strong confinement limit,36,37 suggesting that kinetic s-d 

exchange effects in quantum confined DMSs are not as substantial as previously thought. 

 

II. Methods 

Quasi-spherical Cdn−mMnmSen QDs (where n = 33, 84, and 153 and m = 1, 2, 3) were 

constructed using the bulk CdSe wurtzite crystal structure with lattice parameters a = 4.2985 Å 

and c = 7.0152 Å.56 Each QD has C3v symmetry in the absence of Mn2+. The effective diameters 

(dQD) of these three QDs are approximately 1.52, 2.08, and 2.54 nm, respectively. These 

diameters are similar to those of the smallest CdSe QDs obtainable from hot-injection 

syntheses57-59 and represent CdSe in the strong quantum confinement regime (CdSe exciton Bohr 

radius a0 = 5.6 nm).60 Pseudo-hydrogen atoms with nuclear charges of +1.5 and +0.5 were used 

to passivate uncompensated surface Cd2+ and Se2− ions (dangling bonds) by formation of fully 
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optimized Cd-H and Se-H bonds, according to the scheme described in recent literature.49,61,62 

This pseudo-hydrogen capping leads to a well-defined bandgap and stable QD geometry. 

Substitution of Mn2+ dopants for the Cd2+ ions retains the overall neutral charge of the QDs. DFT 

calculations were performed with the development version of the Gaussian program.63 Ground-

state energies and electronic structures were obtained by solving the Kohn-Sham equations self-

consistently using the PBE1PBE hybrid functional64-66 with the LanL2DZ basis set,67-69 in which 

core electrons are replaced by an effective core potential, and only Cd2+ (4d, 5s, 5p), Se2– (4s, 

4p), Mn2+ (3s, 3p, 4s, 3d) and H (1s) electrons are described with explicit basis functions. This 

computational scheme has been successful in describing the electronic structures of doped ZnO 

QDs (Zn1−xTMxO, where TM = Co2+, Mn2+).49,50 We note that spin-orbit coupling is not treated 

herein, and any effect arising purely from spin-orbit interactions is thus neglected. In CdSe, the 

spin-orbit splitting of the valence band is larger than the magnetic interactions modeled here 

(ΔESO ~ 0.4 eV). Because of this large spin-orbit splitting, the orbital angular momentum of the 

valence band is quenched and the spin splittings become anisotropic. Other sources of orbital 

angular momentum quenching (hexagonal lattice, magnetic impurity located away from the 

crystallite centers, etc.) suggest that the neglect of spin-orbit coupling would not lead to serious 

error aside from the inability to properly model the anisotropy of this exchange constant.  

 

III. Results of DFT calculations 

 A. Cd1−xMnxSe QD density of states. Figure 1 shows the density-of-states (DOS) 

diagram calculated for a Cd83MnSe84 QD (dQD ~ 2.08 nm), with the spin-up (majority) and spin-

down (minority) spin densities plotted as positive and negative values, respectively. This DOS 

diagram shows a filled valence band (VB) and an empty conduction band (CB) separated by a 

gap with energy Eg  ~ 4.3 eV. The calculated bandgap changes to 4.8 eV for Cd32MnSe33 and to 

3.8 eV for Cd152MnSe153 QDs,70 reflecting quantum confinement.71 These gaps are 

approximately 70% larger than the optical bandgaps measured for similarly sized CdSe QDs.58,72 

About half of this discrepancy can be ascribed to the exciton binding energy, which is important 

in optical studies but is not represented in the calculation of DOS diagrams (experimentally 

worth ~0.6 to 0.9 eV for the QD sizes studied here).73 The calculated gaps can be improved with 

the linear response time-dependent DFT (TDDFT)74 or GW75 methods, but the computational 

cost of these methods is impractical for the large systems studied here. 
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Figure 1. Density-of-states (DOS) diagram calculated for a Cd83MnSe84 QD with 
the Mn2+ ion placed at the cation site closest to the QD center. The total DOS is 
decomposed into its different components (note the 10× magnification of the 
Mn2+ 3d component). Spin up: positive density values. Spin down: negative 
density values. The vertical lines indicate the energy position of the valence band 
and of the conduction band. A zoomed-in view of the conduction band levels is 
provided in Fig. 7. 

 

Decomposition of the total densities of Fig. 1 into individual atomic orbital contributions 

shows that the VB is mostly built out of Se2− 4p orbitals, whereas the CB consists predominantly 

of a mixture of Cd2+ 5s and 5p orbitals. Analysis shows that 78% of the total VB density is 

located on selenides, a result that agrees well with the ionicity of bulk CdSe (fi = 78%) 

determined from Mn2+ hyperfine electron paramagnetic resonance (EPR) splittings.76 The Mn2+ 

3d orbitals are located well outside the gap, with the filled 3d levels ~4.5 eV below the top edge 

of the VB and the empty 3d levels ~0.9 eV above the bottom edge of the CB. Experimentally, the 

filled Mn2+ 3d orbitals in bulk Cd1−xMnxSe have been reported to lie ~3.5 eV below the VB 

edge,77-79 in reasonable agreement with the calculations. Both the filled and empty Mn2+ 3d 

bands are narrow, indicative of small covalent involvement of these orbitals in the Mn2+-Se2− 

bonds.77 Surface states occur well away from the band edges. 
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B. Electron and hole wavefunctions. To study Mn2+-carrier magnetic exchange 

interactions, charge carriers need to be introduced. Experimentally, this is most readily done by 

photoexcitation to generate both electrons and holes, although single charge carriers can also be 

introduced by electrical or chemical methods.31,80-82 Here, dopant-carrier exchange interactions in 

the CdSe QDs are studied by adding or removing one electron, followed by a full electronic 

wavefunction optimization.  

 The charge carrier orbitals calculated for a representative Cd83MnSe84 QD are presented 

in Fig. 2. Both carriers delocalize throughout the QD, with atomic contributions reflecting the 

orbital composition of the wavefunctions at each band edge as described by the DOS diagram of 

Fig. 1. Fig. 2(c),(d) shows that the eCB
−  resides in an orbital primarily composed of Cd2+ 5s 

atomic orbitals, and Fig. 2(e),(f) shows that the hVB
+  resides in an orbital primarily composed of 

Se2− 4p orbitals. The anisotropy of the hole wavefunction evident in Fig. 2(e) reflects the break 

in degeneracy of the hole wavefunctions that arises from loss of the C3 rotational symmetry 

element of the parent undoped CdSe QD upon introduction of Mn2+. The two carrier densities are 

also slightly displaced along the C3 axis, attributable to the polarity of the wurtzite lattice 

structure and the resulting large ground-state permanent electric dipole moments.83,84  
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Figure 2. Structure of a wurtzite Cd83MnSe84 QD, with the C3-axis of the parent 
crystal oriented (a) out of the page and (b) vertically in the plane of the page. The 
Mn2+ position is indicated with a purple sphere. (c) and (d): Electronic 
wavefunction of an added electron ( eCB

− ). (e) and (f): Electronic wavefunction of 
an added hole ( hVB

+ ).  
 
C. Mn2+- eCB

−  and Mn2+- hVB
+  exchange energies. We now address Mn2+-carrier magnetic 

exchange. Defining the spin-up configuration of the Mn2+ ground state as the reference point for 

the spin-space coordinates, the exchange coupling between the Mn2+ and an unpaired band-like 

electron is antiferromagnetic (AFM) when that electron has the spin-down orientation, and 

ferromagnetic (FM) when it has the spin-up orientation (for Mn2+- hVB
+  exchange, these spin 

orientations refer to those of the unpaired VB electron, which are opposite those of the VB hole). 

For any given dopant position ri, the energy differences between antiferromagnetic and 

ferromagnetic configurations that result from the Mn2+- eCB
−  and Mn2+- hVB

+  exchange interactions, 

ΔEe(ri) and ΔEh(ri) respectively, are calculated as described by eqs 1. 

 ΔEe ri( )= Ee
AFM ri( )− Ee

FM ri( )     (1a) 

ΔEh ri( )= Eh
AFM ri( )− Eh

FM ri( )      (1b) 

Under this convention, positive energy splittings correspond to net ferromagnetic interactions 

and negative splittings to net antiferromagnetic interactions.  

In the C3v point group symmetry of the parent Cd84Se84 crystal, there are ten unique 

internal cation positions and eleven unique cation positions at the QD surfaces (defined as having 

at least one cation-H bond). Electronic wavefunction optimization with an added hole or electron 

was performed for Mn2+ at each unique cation position in the Cd83MnSe84 QD, and ΔEe(ri) and 

ΔEh(ri) were then calculated. These data can be plotted against a radial coordinate (r), 

ri = ri − R0       (2) 

where R0 defines the QD center of mass and i indexes the cation positions. Figure 3 plots ΔEe(ri) 

and ΔEh(ri) values calculated for the various Mn2+ positions of the Cd83MnSe84 QD, and Table 1 

summarizes these values for each unique cation position. 
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Figure 3.  ΔEe (squares) and ΔEh (circles) plotted as a function of distance 
between the Mn2+ and the QD center. The dashed lines show the trends expected 
from a particle-in-a-spherical-well model, eq 7, with a = 1.04 nm, n = 84, N0 = 
17.8 nm-3, ΔEe

avg  = 4.2 meV, ΔEh
avg  = −12.1 meV. The dotted horizontal lines 

show the position of the average energy splittings, ΔEe
avg  and ΔEh

avg . The dotted 
black curves are guides to the eye.  

 

 

The data in Table 1 yield site-probability-weighted average energy splittings of ΔEe
avg  = 

4.2 meV and ΔEh
avg  = −12.1 meV. These average values are close to the smallest calculated 

energy splittings, reflecting the very high surface-to-volume (S/V) ratios of such small QDs (S/V 

~ 3 for Cd83MnSe84), i.e., most cations are close to the QD surface, where the energy splitting 

approaches zero. 
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Table 1. Energy splittings resulting from addition of one electron or hole to a 
Cd83MnSe84 QD, computed for each unique cation substitution site.  

Position index, i Pi
a ri (nm) ΔEe (meV)b ΔEh (meV)b

 

1 1/28 0.69 6.8 −6.7 
2 1/28 0.54 12.4 −5.4 
3 1/14 0.67 6.6 −17.9 
4 1/28 0.51 10.3 −22.3 
5 1/28 0.28 17.9 −31.0 
6 1/14 0.69 4.5 −22.9 
7 1/28 0.54 8.2 −32.0 
8 1/28 0.33 13.1 −50.0 
9 1/28 0.76 2.8 −28.3 
10 1/28 0.62 5.8 −42.6 

11, Surfacec 4/7 − 1.2 −2.5 
 Average, ΔEavg   d. 4.2 −12.1 

 
a. P is the statistical weight, which is calculated via p/n, where n is the total number of 
cations in the QD and p is the cation site degeneracy arising from the C3v symmetry of the 
parent w-CdSe QD. 
b. ΔEe and ΔEh are computed using eqs 1a and 1b, respectively. 
c. Average values. 
d. ΔEe h( )

avg = Pi ⋅ ΔE ri( )
i
∑  

D. Mean-field exchange energies from DFT. In the perturbative limit, dopant-carrier 

magnetic exchange can be described using a simple Heisenberg-Dirac-Van Vleck (HDVV) spin-

Hamiltonian (eq 3), where Ŝi   and σ̂  are the spin operators for the dopant ion (located at ri) and 

for the charge carrier (located at r), respectively, and J(ri - r) is the distance-dependent exchange 

coupling constant.1-3  

ĤHDVV = −2J ri − r( )∑ Ŝi ⋅σ̂      (3) 

Experimentally, magnetic exchange energies in DMS QDs are frequently obtained from 

ensemble averages over dopant positions and distributions of QD shapes and sizes.1,2,22,85 Such 

data are best analyzed within the mean-field and virtual crystal approximations. In the MFA, 

both spin operators in eq 3 can be replaced by their thermodynamical averages Sz  and σz, 

where the Mn2+ magnetization is arbitrarily here assigned the spin-up saturation value of 

Sz = +2.5 ,86 and σz = +1/2 or −1/2 for spin-up and spin-down electrons, respectively. 

Introducing the mean-field exchange constants N0α and N0β for Mn2+- eCB
−  and Mn2+- hVB

+  

interactions, respectively, the mean-field analogs of eqs 1 can be written as in eqs 4 and 5, with 
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m as the number of Mn2+ dopants per QD and n the total number of cations (Mn2+ plus Cd2+) per 

QD.  

 N0α = n ⋅ ΔEe
avg

m Sz

     (4) 

N0β = 3n ⋅ ΔEh
avg

m Sz

     (5) 

Substituting the average exchange energies given in Table 1 (where m/n = 1/84) into eqs 4 and 5 

yields N0α = 0.141 ± 0.003 eV and N0β = −1.22 ± 0.01 eV. These values agree well in both sign 

and magnitude with the experimental values of +0.26 eV and −1.24 eV measured for bulk 

Cd1−xMnxSe.87 We note that spin-orbit coupling also influences N0β87-89 but is not accounted for 

here. Overall, the reasonable agreement between experimental and calculated mean-field 

exchange energies allows the conclusion that DFT captures the essential features of dopant-

carrier magnetic exchange in DMS nanostructures. 

E. Mn2+ position, concentration, and QD size. The dependence of ΔEe(h) on r in DMS 

QDs is commonly rationalized using a simple particle-in-a-spherical-well model.12,13,38 In this 

model, the particle's ground-state carrier density distribution is given by the square of a zeroth 

order spherical Bessel function of the first kind (eq 6), where a is the well radius, equated here 

with the QD radius. 

ψ r( )2
=

sin2 π r
a

⎛
⎝
⎜

⎞
⎠
⎟

2πar2      (6) 

The scaling of ΔEe (ΔEh) with the carrier probability density is then described in the simplest 

approximation by eq 7, where Ν0 is the cation density (N0 = 17.8 nm-3 for w-CdSe).90  

ΔEe h( ) r( )=
n ⋅ ΔEe h( )

avg

N
⋅ ψe h( ) r( )

2
    (7) 

 The dashed curve in Fig. 3 plots ψ r( )2
 for the Cd83MnSe84 QD estimated from eq 6 

using a = 1.04 nm and ΔEe
avg  or ΔEh

avg  from Table 1. The agreement between eq 7 and DFT is 

excellent for ΔEe, but only the general trend is reproduced for ΔEh. Instead of a smooth increase 

in ΔEh as Mn2+ approaches the QD center, the ΔEh values from DFT show considerable but 

systematic scatter. This scatter is interpreted as reflecting the anisotropy of the hole wavefunction 

shown in Figs. 2(c),(d), meaning the spherical potential model is not a good approximation for 
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off-center doping.91 Several studies have emphasized the role of hole density anisotropy in 

leading to interesting magnetic effects.11,15,88,89,92 A detailed analysis of these anisotropic effects 

is beyond the scope of this study and will be explored further in a future investigation.  

 For a fixed dopant position near the QD center, ΔEe and ΔEh can also be tuned by 

changing the confinement volume. Figure 4(a) plots ΔEe(h) as a function of QD diameter for 

Cd32MnSe33 (dQD = 1.52 nm), Cd83MnSe84 (dQD = 2.08 nm), and Cd152MnSe153 (dQD = 2.54 nm) 

QDs, with the dopant position chosen to be as near as possible to the center of each QD. As dQD 

decreases, ΔEe(h) increases because of increasing carrier density near the QD center. Importantly, 

the signs of the Mn2+- eCB
−  and Mn2+- hVB

+  exchange splittings remain the same for all QD sizes. 

Figure 4(b) shows that ΔEe
avg  and ΔEh

avg  scale with the inverse Cdn-1MnSen QD volume (given 

here as 1/n), which in turn indicates that N0α and N0β do not change significantly over this QD 

size range (see eqs 4, 5). 

 Figure 2 also shows that charge carriers are delocalized throughout the QDs, and hence 

can be exchange coupled to multiple Mn2+ ions simultaneously if the QD contains more than one 

dopant. This scenario can potentially lead to spontaneous ferromagnetic ordering of the Mn2+ 

spin sub-lattice, as observed experimentally in bound and excitonic magnetic polarons.10,11,14-

16,88,92 To explore this scenario computationally, CdSe QDs doped with two and three Mn2+ ions 

were also investigated. For these calculations, the dopants were positioned at second nearest 

neighbor sites to avoid the well-known Mn2+-Mn2+ antiferromagnetic superexchange 

interactions, which drop to a negligibly small value at this distance.2,34,93,94 The positions chosen 

were the three equivalent sites designated by the index 4 in Table 1 for the Cd84-mMnmSe84 QDs, 

and the same positions for the other two QD sizes. Figure 4(c) plots ΔEe(h) vs m for the three 

different QD sizes studied here. Both ΔEe and ΔEh increase linearly with m, showing that the 

Mn2+ ions contribute additively to the total exchange splittings. This result justifies application of 

the MFA for analysis of excitonic Zeeman splittings in excitonic magnetic polarons and 

magneto-optical measurements performed on DMS QD ensembles. 
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Figure 4. (a) Band-edge energy splittings resulting from addition of an electron 
(squares) or a hole (circles) to Cdn-1MnSen QDs, plotted vs QD diameter 
(Cd32MnSe33 (dQD = 1.52 nm), Cd83MnSe84 (dQD = 2.08 nm), and Cd152MnSe153 
(dQD = 2.54 nm)). The Mn2+ occupies the cation positions closest to the QD 
centers. The dashed lines are guides to the eye. (b) Position-averaged energy 
splittings of the same QDs plotted vs inverse QD volume (in number of cations 
unit, n). The dashed lines are from eqs 4 and 5, with m = 1, Sz  = 2.5, N0α = 
0.14 eV, and N0β = -1.22 eV. The energies for the biggest dot (red stars) were 
extrapolated from the data in Fig. 4(a) by assuming the density distribution given 
by eq 6. The other energies come from averaging over explicit calculations for 
each Mn2+ position. (c) Mn2+-carrier exchange splittings (circles: ΔEh; squares: 
ΔEe) plotted vs the number of Mn2+ per QD for three Cdn−mMnmSe QD sizes (n = 
33, 84, and 153), with the Mn2+ ions at position 4 (Table 1). The dashed lines are 
linear fits. 
 

 

 Overall, these results demonstrate the ability of DFT to describe exchange interactions 

between highly localized Mn2+ spins and delocalized charge carriers in semiconductor 

nanostructures. When analyzed collectively, the DFT results yield mean-field exchange energies 

that agree well with experimental values for bulk DMSs in both sign and magnitude. When 

analyzed individually, the DFT calculations show a dependence of the exchange splitting on 

Mn2+ position that maps the carrier probability density distribution within the QDs. We now turn 

to a more detailed analysis of the DFT results, with emphasis on description of the microscopic 

orbital pathways responsible for these exchange splittings. 

 

IV. Analysis 

 A. General aspects of magnetic exchange interactions. The DFT results presented 

above provide a window into the microscopic origins of dopant-carrier magnetic exchange in 

DMSs. Following Anderson,95,96 magnetic exchange interactions can be classified into two 
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distinct groups, potential exchange and kinetic exchange, with energies parameterized by the 

exchange coupling constants Jpot and Jkin. Potential exchange (or “direct exchange”) refers to the 

ubiquitous two-electron Coulomb exchange that arises from Pauli’s exclusion principle. Given 

two magnetic orbitals ψi and ψj, Jpot is described by eq 8, where r1 and r2 describe the spatial 

coordinates of each electron. 

J pot = ψi r1( )ψ j r2( ) r1 − r2( )−1 ψ j r1( )ψ r2( )     (8) 

Potential exchange energies are greatest when ψi and ψj are either orthogonal orbitals of the 

same center (intra-atomic exchange) or non-overlapping orbitals of neighboring centers.  

 Kinetic exchange is a two-center phenomenon involving partial transfer of spin density 

from one magnetic center onto the other. This transfer is generally treated using perturbation 

theory, leading to expressions such as eq 9,97,98 where Cij is an orbital-pathway-dependent 

constant, hij is the so-called “transfer-integral” (or “hybridization matrix element”, or “hopping 

integral”) that describes mixing between the two orbitals (ψi and ψj) participating in the transfer, 

and ΔEi→j is the energy associated with complete transfer of an electron from ψi into ψj. The sum 

is taken over all relevant orbital pathways but is most strongly influenced by the lowest energy 

pathways.  

Jkin = Cij

hij
2

ΔEi→ j
∑      (9) 

When allowed, kinetic exchange usually dominates the overall magnetic exchange interaction. 

Whereas potential exchange interactions are always ferromagnetic, kinetic exchange interactions 

can be either antiferromagnetic or ferromagnetic. In the special case of coupling between two 

half-filled orbitals, kinetic exchange leads to antiferromagnetic spin alignment because transfer 

can only occur when the two interacting spins are anti-parallel. In other cases, such as transfer of 

spin density from a half-occupied orbital of center a into an empty orbital of center b, or from a 

doubly occupied orbital of a into a half-occupied orbital of b, kinetic exchange can stabilize the 

ferromagnetic alignment of a and b spins.98 Below, we analyze the DFT results to identify the 

specific microscopic orbital pathways that make the dominant contributions to the Mn2+- eCB
−  and 

Mn2+- hVB
+  exchange energies reported above. 

 B. Mn2+- hVB
+  exchange coupling: p-d orbital pathways. Mn2+- hVB

+  exchange 

interactions in DMSs were recognized early on as arising from kinetic exchange involving 
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hybridization of the Mn2+ 3d orbitals with the semiconductor anion p orbitals, leading to the 

name “p-d exchange”.1,2,32-35 Two transfer processes contribute (Fig. 5): (1) transfer of a Mn2+ 

3d(↑) electron into the VB, and (2) transfer of a VB(↓) electron into a half-occupied Mn2+ 3d 

orbital. The relevant values of ΔEi→j are thus those of the Mn2+/3+ (donor) and Mn2+/+ (acceptor) 

transitions involving the VB edge. These energies can be estimated from the energy differences 

between the filled and empty 3d orbitals and the VB edge in Fig. 1, respectively. The exchange 

energy associated with this p-d orbital pathway is then given by eq 10, where Vpd(r) is the 

Mn2+(3d)-VB transfer integral.  

ΔEpd ri( )= −
mVpd

2 ri( )
3n

1
E3d↓ − EVB

+ 1
EVB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟    (10) 

 

 
Figure 5. Energy levels involved in Mn2+-carrier magnetic exchange in 
Cd1−xMnxSe DMSs. The alignment of the Mn2+ orbitals relative to the CdSe band 
edges is drawn to be consistent with the DOS obtained from DFT (Fig. 1), 
although this ordering is not known well from experiment. The Mn2+ 4s orbital 
may lie below the empty 3d orbitals.99-101 
 

 The importance of this p-d orbital pathway can be evaluated quantitatively by analysis of 

3d-VB hybridization. Using first-order perturbation theory, the Mn2+ 3d contribution to the VB-

edge wavefunction probability density ( f3d
h ) can be described by eq 11a. Equation 11b is 

CdSe Mn2+ 

VB 

CB 

4s↑ !

3d↑ !

4s↓ !

3d↓ !

Iintra!
E4s↓ !

E4s↑ !

E3d↑ !

E3d↓ !

ECB!

EVB!

Ueff!Eg!

Vsd! Vpd!

Vpd!

Vsd!

Vss!
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obtained from substitution of eq 10 into eq 11a. Importantly, perturbation theory thus predicts a 

linear relationship between ΔEpd and f3d
h . 

f3d
h ri( )= ψ3d r − ri( ) ψh r( )

2
=

mVpd
2 ri( )
3n

1
E3d↓ − EVB

+ 1
EVB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

  (11a)

= −ΔEpd ri( ) 1
E3d↓ − EVB

+ 1
EVB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   (11b) 

 In the limit where Mn2+- hVB
+  exchange is dominated by the p-d orbital pathway, ΔEh ≈ 

ΔEpd and hence proportional to f3d
h  according to eq 11b. DFT calculations allow evaluation of 

the relationship between ΔEh and f3d
h . For comparison with eq 11b, f3d

h  values were calculated 

from the DFT orbital descriptions of Cd83MnSe84 QDs for each unique Mn2+ position in Table 1 

using the Mulliken approach.102 ΔEh values were also calculated for each QD by DFT. 

Figure 6(a) plots f3d
h  vs ΔEh for each unique Mn2+ position. As anticipated by eq 11b, there is 

indeed a linear correlation, with f3d
h  decreasing to zero as ΔEh approaches zero. The hole 

wavefunction contains up to ~2% Mn2+ 3d character, despite the fact that the Mn2+ 3d levels are 

deep within the VB.  

 For quantitative comparison, the dashed blue line in Fig. 6(a) plots the relationship 

between ΔEh and f3d
h  predicted by perturbation theory for the Cd83MnSe84 QDs under the 

assumption that ΔEh ≈ ΔEpd, calculated from eq 11b using input parameters taken from the DFT 

DOS results (Table 2). A small horizontal offset of +3.3 meV has been included to fit the DFT 

data points. Whereas eq 11 assumes a specific orbital exchange pathway, the DFT calculations 

make no such assumption and include all possible orbital pathways. The overall excellent 

agreement between DFT and perturbation theory therefore validates the established description 

of Mn2+- f3d
h  magnetic exchange coupling as dominated by a kinetic p-d orbital exchange 

pathway (i.e., ΔEh ≅ ΔEpd).34 Although the positive x intercept is probably not significant within 

the precision of the Mulliken analysis used to determine f3d
h , it may possibly reflect other weak 

ferromagnetic kinetic exchange interactions involving higher-energy empty Mn2+ orbitals (for 

instance, the empty Mn2+ 4p orbitals possess the correct symmetry to hybridize with the VB 
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edge). Finally, from eq 10, ΔEh
avg  = −12.1 meV (Table 1), and the Mn2+ 3d orbital energies listed 

in Table 2, the average p-d transfer integral is Vpd
avg  = 2.72 eV. 

 

 
Figure 6. (a) The Mn2+ 3d contribution to the VB-edge wavefunction probability 
density ( f3d

h ) plotted vs the Mn2+- hVB
+  exchange splitting for a Cd83MnSe84 QD. 

The circles come from values of f3d
h  and ΔEh calculated by DFT via brute force. 

The dashed line shows the relationship calculated from perturbation theory (eq 
11b) using input parameters from DFT (Table 2) and assuming ΔEpd = ΔEh . The 

slope of the dashed line is -0.04 %·meV-1 and its x intercept is 3.3 meV. Surface 
positions are not included in this figure. (b) Fractional Mn2+ 4s density in the CB-
edge wavefunction probability density ( f4 s↑

e  and f4 s↓
e ) plotted vs the Mn2+- eCB

−  
exchange splitting for a Cd83MnSe84 QD, obtained from DFT. The dotted lines 
show the relationships obtained from perturbation theory (eq 14) using DFT input 
parameters (Table 2) and assuming ΔEss = ΔEe . Their slopes are 0.12 %·meV-1 
( f4 s↑

e ) and 0.06 %·meV-1 ( f4 s↓
e ). The dashed lines have the same slopes but are 

offset with x intercept values of -10.2 meV ( f4 s↑
e ) and -5.9 meV ( f4 s↓

e ), as 
indicated by the horizontal arrows. Surface positions are not included in this 
figure. 
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Table 2. Parameters extracted from DFT results for Cd83MnSe84 QDs.  

E3d↓ − EVB  5.3 eV  E4s↑ − ECB 3.1 eV  E3d↓ – ECB 0.9 eV 
EVB − E3d↑

 4.5 eV  E4s↓ − ECB 4.3 eV  ECB – E3d↑ 8.9 eV 
        

Ueff 9.8 eV  Iintra 1.2 eV  Eg 4.3 eV 
        

ΔEpd
avg  −12.1 meV  ΔEss

avg  6.7 meV  ΔEsd
avg  −2.5 meV 

Vpd
avg  2.72 eV  Vss

avg  2.74 eV  Vsd
avg  0.41 eV 

N0β −1.22 eV  N0α 0.141 eV    
 

 

C. Mn2+- eCB
−  exchange coupling. We now examine the microscopic origins of Mn2+- eCB

−  

exchange. As introduced above, the ferromagnetic Mn2+- eCB
−  coupling observed in bulk DMSs is 

generally described as arising from potential exchange between k-like CB electrons and Mn2+ d 

electrons.1,2 It was recently proposed that this interaction could alternatively be described in an 

explicit two-center formulation as a ferromagnetic kinetic s-s exchange process involving partial 

spin transfer from the CB to the empty Mn2+ 4s orbital.48 Although the traditional k-vector 

description of "potential" s-d exchange in bulk DMSs implicitly assumes this interaction, the 

two-center description allows Mn2+- eCB
−  exchange to be parameterized explicitly using the same 

perturbation approach that is already so successfully used to describe Mn2+- hVB
+  p-d exchange 

(vide supra). 

In quantum confined DMSs, a second kinetic exchange process is widely believed to 

become important.36,37,41-45 Although formally forbidden by symmetry in the bulk limit, Mn2+ 3d 

hybridization with the CB-edge wavefunction is allowed in quantum confined DMSs and has 

been predicted to yield strong antiferromagnetic kinetic s-d exchange coupling in the strong 

confinement regime.36,37 Assuming no other orbital pathways are involved, the overall Mn2+- eCB
−  

exchange splitting ΔEe can thus be written as the sum of these two competing contributions as 

shown in eq 12, with the sign of ΔEe ultimately determined by the relative magnitudes of ΔEss 

and ΔEsd. 

ΔEe
 = ΔEss + ΔEsd     (12) 

The DFT results presented here allow ΔEss and ΔEsd to be determined individually, 

providing quantitative assessments of the magnitudes of each in strongly confined DMSs, 
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independent of the assumptions of the k·p or tight-binding electronic-structure models and also 

independent of any models of magnetic-exchange coupling. The results of these DFT 

calculations are compared with those of perturbation theory. 

(i) s-s orbital pathway. Figure 7 plots the CB portion of the DOS diagram from Fig. 1 on 

an expanded energy scale, along with the fractional contributions of the Mn2+ 3d and 4s orbitals. 

Sizable hybridization of the Mn2+ 4s orbital with the CB is evident. The Mn2+ 4s orbital is 

distributed over ~8 eV in the CB, with an average energy of ~4 eV above the CB edge. 

Importantly, Fig. 7 shows that the 4s(↑) components are on average ~1.2 eV closer to the CB 

edge than the 4s(↓) components are. This spin splitting arises from ferromagnetic intra-ion 

exchange coupling with the orthogonal half-filled 3d orbitals (Iintra), which is the same exchange 

interaction that leads to the Mn+ free ion having a 7S (3d54s1) ground state.101 The calculated 

4s(↑)–4s(↓) splitting of 1.2 eV compares well with the experimental 5S2–7S3 energy splitting of 

the Mn+ free ion ( Iintra
free ion = 1.2 eV).101 Electron delocalization from the CB into this spin-split 

Mn2+ 4s orbital is the primary microscopic process responsible for N0α in bulk DMSs.48  

 

 
Figure 7. DOS diagram of the CB levels of a Cd83MnSe84 QD (Mn2+ closest to 
the QD center), and Mn2+ 3d and 4s contributions (expanded for clarity).  
 

To describe this interaction using perturbation theory, transfer of the eCB
−  into the empty 

Mn2+ 4s(↑) orbital (ferromagnetic contribution) and into the empty Mn2+ 4s(↓) orbital 

(antiferromagnetic contribution) must both be considered. Assuming both transfer integrals are 
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the same (Vss), these interactions yield a net ferromagnetic alignment because of the smaller 

energy gap separating the CB from the Mn2+ 4s(↑) orbital. The energy associated with this 

kinetic s-s exchange pathway is, in second-order, given by eq 13.48 

ΔEss ri( )=
m Sz

n SMn +1 2( )
Vss

2 ri( ) 1
E4 s↑ − ECB

− 1
E4 s↓ − ECB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
m Sz

n SMn +1 2( )
Vss

2 ri( ) Iintra

E4 s↑ − ECB( ) E4 s↓ − ECB( )

   (13) 

Paralleling eq 11, the Mn2+ 4s character in the eCB
−  density is given by eq 14, which predicts 

linear relationships between f4 s
e  and ΔEss for each spin. 

f4 s
e ri( )= ψ4 s↑ ri − r( ) ψe r( )

2
=

m Sz

n SMn +1 2( )
Vss

2

E4 s↑ − ECB( )2

=
ΔEss ri( )

Iintra

E4 s↓ − ECB

E4 s↑ − ECB

  (14a) 

f4 s↓
e = ψ4 s↓ r − ri( ) ψe r( )

2
=

m Sz

n SMn +1 2( )
Vss

2 ri( )
E4 s↓ − ECB( )2

=
ΔEss ri( )

Iintra

E4 s↑ − ECB

E4 s↓ − ECB

  (14b) 

Equation 13 predicts ΔEss to depend on both Vss and the Mn2+(4s)- eCB
−  energy spacings. 

For a given QD, the impact of the Mn2+(4s)- eCB
−  energy spacing can be explored by artificially 

scaling the LANL2DZ core pseudo-potential of the Mn2+ ion, which selectively shifts the energy 

of the Mn2+ 4s orbital relative to the CB edge.70 Figure 8(a) plots ΔEe for Cd83MnSe84 as a 

function of Mn2+ position, calculated for three different Mn2+ core pseudo-potentials. The Mn2+ 

4s energy is tuned by over 270 meV across this series. As anticipated from eq 13, a smaller 

energy spacing between the CB and the Mn2+ 4s orbital increases ΔEe, and vice versa. Following 

eq 14, Fig. 8(b) replots these results as f4 s↑
e − f4 s↓

e  vs ΔEe (with f4 s↑
e  and f4 s↓

e  calculated using the 

Mulliken approach102 and ΔEe calculated as in eq 1a), yielding the important conclusion that ΔEe 

is linearly correlated with the differential spin density in the Mn2+ 4s orbital, largely independent 

of the actual Mn2+ 4s energies. These results provide strong evidence that Mn2+- eCB
−  coupling is 

dominated by the kinetic s-s exchange pathway, even in these strongly quantum confined QDs.48 

From Fig. 8(b), a ~1% difference between spin-up and spin-down eCB
−  density in the Mn2+ 4s 
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orbital is ultimately responsible for the observed Mn2+- eCB
−  exchange energies. Figure 8(b) thus 

illustrates that a spin-dependent hybridization of band and local wavefunctions is responsible for 

what is usually referred to as potential s-d exchange. 

 

 
Figure 8. (a) ΔEe as a function of distance (r) between Mn2+ and the center of the 
Cd83MnSe84 QD, for three different Mn2+ core pseudo-potentials. The relative 
shifts in Mn2+ 4s energy are indicated. The dashed lines are guides to the eye. The 
surface positions are not included in this figure. (b) The data from (a) re-plotted 
as ΔEe vs the difference between f4 s↑

e  and f4 s↓
e . The dashed line is a global linear 

fit. 
 

To test eq 14 more directly, f4 s↑
e  and f4 s↓

e  from DFT are plotted individually vs ΔEe in 

Fig. 6(b). Linear relationships between f4 s
e  and ΔEe are indeed observed. f4 s↑

e  and f4 s↓
e  were also 

calculated by the perturbation approach: Substituting the relevant energy parameters from Table 

2 into eq 14 yields f4 s↑
e  and f4 s↓

e  for each Mn2+ position in the Cd83MnSe84 QD, and the 

relationships between these parameters and ΔEe are plotted as dotted lines in Fig. 6(b). The 

slopes of these dotted lines agree well with those from DFT, confirming that the s-s interaction 

makes the primary contribution to Mn2+- eCB
−  exchange coupling. Unlike the perturbation result, 

however, ΔEe from DFT does not go to zero when f4 s↑
e  and f4 s↓

e  equal zero, suggesting that ΔEe 

cannot be associated exclusively with ΔEss. Another orbital pathway must be considered. 
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Allowing the x intercept to float yields offsets of ~−5 to −10 meV. As described below and by eq 

12, this negative x intercept comes from kinetic s-d exchange coupling. 

 (ii) s-d orbital pathways. Kinetic s-d exchange is formally analogous to the kinetic p-d 

exchange described above, with the CB electron wavefunction replacing that of the VB hole. It 

can be described using the perturbation expression shown in eq 15. 

ΔEsd ri( )= − m
n

Vsd
2 ri( ) 1

E3d↓ − ECB

+ 1
ECB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟    (15) 

Following the same approach used in the preceding sections, the fraction of Mn2+ 3d character in 

the eCB
−  density is given by eq 16, which predicts a linear relationship between f3d

e  and ΔEsd. 

f3d
e ri( )= ψ3d r − ri( ) ψe r( ) 2

= m
n

Vsd
2 ri( ) 1

E3d↓ − ECB

+ 1
ECB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

= −ΔEsd ri( ) 1
E3d↓ − ECB

+ 1
ECB − E3d↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  (16) 

Equation 16 thus allows the contribution of ΔEsd to ΔEe in eq 12 to be evaluated quantitatively. 

To test this relationship by DFT, f3d
e  values were calculated for the various Mn2+ positions in 

both Cd83MnSe84 and Cd32MnSe33 QDs using the Mulliken approach102 and the results are 

plotted in Fig. 9(a) vs ΔEe, which was calculated as in eq 1a. From these results, the eCB
−  

wavefunction density in the Cd83MnSe84 QDs has ~0.3% Mn2+ 3d character, roughly 

independent of the Mn2+ position. Using eq 16 and energies from Table 2, this hybridization 

corresponds to ΔEsd = −2.5 meV, again roughly independent of Mn2+ position. From Fig. 9(a), we 

conclude that f3d
e  is largely independent of ΔEe in these QDs, indicating that kinetic s-d 

exchange does not determine Mn2+- eCB
−  magnetic exchange coupling in strongly quantum 

confined Cd1−xMnxSe QDs. 

 With these results, ΔEe in this QD can be fully characterized. Figure 9(b) re-plots f4 s↑
e  

and f4 s↓
e  vs ΔEe from Fig. 6(b). The dashed lines now represent ΔEe as the sum of ΔEss (Fig 6(b)) 

and ΔEsd (= −2.5 meV, position independent) predicted by perturbation theory. The difference 

between the DFT results and the perturbation theory predictions is relatively small and 

systematic, and can be attributed in large measure to the challenge of accurately estimating the 

relevant excited-state energies needed for the perturbation calculations from the output of the 



Beaulac et al. 
October 17, 2011 

 22

DFT calculations. We conclude that the perturbation description successfully captures the 

essence of the Mn2+- eCB
−  magnetic exchange coupling, and even reproduces the DFT results to a 

reasonable quantitative extent. Excellent quantitative reproduction of the DFT results can be 

achieved with only small changes to the 4s energies used above.70 

 

 

Figure 9. (a) Fractional Mn2+ 3d density in the CB electron orbital ( f3d
e ) as a 

function of the Mn2+-CB exchange splitting for Cd83MnSe84 QD (red circles) and 
Cd32MnSe33 QD (green diamonds). The blue dashed lines intercept the ordinate 
axis at 0.9 % (Cd32MnSe33 QD), and 0.3 % (Cd83MnSe84 QD). The surface 
positions are not included in this figure. (b) Fractional Mn2+ 4s density in both CB 
electron spin-orbitals of Cd83MnSe84 QD, corrected for the s-d exchange energy 
extracted from panel (a), ΔEsd = -2.5 meV. The surface positions are not included 
in this figure. 
 

Although not surpassing ΔEss, ΔEsd is also not negligibly small. For the Cd83MnSe84 QDs, 

ΔEsd
avg  = −2.5 meV and ΔEss

avg  = +6.7 meV, resulting in an overall splitting of ΔEe = +4.2 meV 

(Table 1). Kinetic s-d exchange is thus nearly 35% as effective as kinetic s-s exchange, and even 

~20% as effective as kinetic p-d exchange (Table 2). At first glance, the increase of f3d
e  with 

decreasing QD diameter seen in Fig. 9(a) is suggestive of the increases in ΔEsd with quantum 

confinement predicted from k·p theory.36,37 From eq 16, the value of f3d
e  for Cd32MnSe33 QDs 

shown in Fig. 9(a) corresponds to ΔEsd
avg  = −5.2 meV, which is indeed bigger than in the 
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Cd83MnSe84 QDs (−2.5 meV). However, eq 15 gives Vsd
avg  = 0.31 eV for the Cd32MnSe33 QD,70 

which is smaller than for the Cd83MnSe84 QD ( Vsd
avg  = 0.41 eV, Table 2). We thus conclude that 

the increase in ΔEsd
avg  with decreasing QD diameter seen in Fig. 9(a) is not related to the 

influence of quantum confinement on the spatial part of the eCB
−  wavefunction, i.e., is not from 

introduction of finite k vectors, but instead arises solely from the confinement-induced decrease 

in the energy spacing between CB edge and the empty Mn2+(3d) orbitals (E3d↓–ECB in eq 15). 

This energy gap is 0.6 eV for Cd32MnSe33 QDs, compared to 0.9 eV for Cd83MnSe84 QDs.70 

Quantum confinement can thus modulate ΔEsd by tuning E3d↓–ECB, but other bandgap 

engineering processes such as alloying will also lead to the same effect, as would shifting from 

Mn2+ to a more easily reduced dopant such as Co2+.47 Importantly, ΔEss also increases when the 

CB edge energy increases. It therefore does not appear possible to increase ΔEsd without 

concomitantly increasing ΔEss, with the overall result that ΔEe does not depend strongly on 

quantum confinement (see Fig. 4(b) and related text).48 This conclusion contrasts sharply with 

the trends predicted from the k·p approach36,37 and claimed in some experimental reports,36,37,41-

45 but is consistent with the trends predicted from tight-binding calculations,46 previous DFT 

calculations,31,51 and other experimental results.47  

In summary, these DFT and perturbation theory results predict that bulk-like kinetic s-s 

exchange dominates over kinetic s-d exchange in Cd1−xMnxSe, even in QDs that are more 

strongly quantum confined than can be achieved experimentally. Although this analysis has 

focused on Cd1−xMnxSe, the conclusions are readily generalized. 

 

V. Discussion 

 The above analysis identifies the two orbital pathways that dominate all Mn2+-carrier 

magnetic exchange coupling in DMSs, regardless of quantum confinement. Mn2+- hVB
+  exchange 

is dominated by a p-d orbital pathway, and Mn2+- eCB
−  exchange is dominated by an s-s orbital 

pathway. To illustrate these orbital interactions, Fig. 10 shows the eCB
−  and hVB

+  wavefunctions of 

Fig. 2 in the immediate vicinity of the Mn2+ ion. Substantial Mn2+ 3d character is evident in the 

hVB
+  wavefunction (Fig. 10(a)), reflecting the orbital pathway for kinetic p-d exchange 

responsible for N0β. Contributions from the Cd2+ 4d orbitals are also evident, as detailed 



Beaulac et al. 
October 17, 2011 

 24

previously.103 Figure 10(b) depicts this wavefunction schematically, showing a Mn2+ 3d orbital 

of t2 symmetry (in the idealized Td point symmetry of the cation site) hybridizing with a 

symmetry adapted linear combination (SALC) of Se2− 5p orbitals also having t2 symmetry, in an 

antibonding interaction. Regarding N0α, substantial Mn2+ 4s character is seen in the eCB
−  

wavefunction (Fig. 10(c)). This wavefunction is illustrated schematically in Fig. 10(d), which 

shows the Mn2+ 4s atomic orbital of a1 symmetry hybridizing with the a1 SALC of Se2− 5p 

orbitals in an antibonding interaction. The microscopic exchange processes described in the 

analysis section are thus readily visualized in the carrier wavefunctions themselves. We 

emphasize that the DFT calculations are not biased a priori toward any particular orbital 

pathway, in contrast with perturbation approaches. 

 

 
Figure 10. Dominant orbital pathways governing Mn2+-carrier magnetic exchange 
in Cd1−xMnxSe QDs. (a) Close-up view of the hVB

+  wavefunction of Fig. 2 in the c-
plane around the Mn2+ ion (center position). (b) Schematic depiction of the hVB

+  
wavefunction shown in (a). The blue transparent plane is the c-plane containing 
the Mn2+ ion. The Mn2+ 3d orbital of t2 symmetry hybridizes with the t2 SALC of 
Se2− 5p orbitals in an antibonding interaction. This interaction represents the 
orbital pathway for kinetic p-d exchange. (c) Close-up view of the eCB

−  
wavefunction of Fig. 2 in the c-plane around the Mn2+ ion (center position). The 

t2!

! " #$%&! "
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green lobes are s orbitals of Mn2+ (center) and the surrounding Cd2+ ions located 
in the same plane. The red lobes are the tops of neighboring Se2− 5p orbitals. (d) 
Schematic depiction of the eCB

−  wavefunction shown in (c). The blue plane 
represents the c-plane containing the Mn2+ ion, rotated relative to (c) for clarity. 
The Mn2+ 4s orbital of a1 symmetry hybridizes with the a1 SALC of Se2− 5p 
orbitals in an antibonding interaction. This interaction represents the orbital 
pathway for kinetic s-s exchange.  
Importantly, even in the smallest QD studied here (dQD = 1 nm, Fig. 4(b)), the Mn2+- eCB

−  

exchange interaction is ferromagnetic, which indicates that antiferromagnetic kinetic s-d 

exchange does not become more important than ferromagnetic kinetic s-s exchange even in such 

strongly confined DMSs. A threshold criterion for N0α sign inversion was recently proposed on 

the basis of perturbation expressions and is summarized in eq 17.48 

ΔEe < 0 ⇔ Vsd >
Vss

2
     (17) 

From Table 2, the DFT calculations yield Vsd
avg  ≈ 0.2 Vss

avg  for the Cd83MnSe84 QD, failing to 

meet the criterion expressed by eq 17. Although changes in energy denominators may alter the 

specific threshold conditions relative to eq 17, the results above have shown that these transfer 

integrals are independent of QD diameter.   

 The balance between competing pathways is illustrated in Figure 11, which plots ΔEss, 

ΔEsd, and ΔEe vs the energy parameter E4s↑ − ECB (a surrogate for confinement energy), 

calculated by eqs 13 and 15 using the DFT electronic structure as input. The three Cd1−xMnxSe 

QDs calculated by DFT are indicated as vertical lines. From this plot, ΔEss and ΔEsd both 

increase as E4s↑ − ECB decreases, with the result that ΔEe remains relatively constant. Only when 

E3d↓ – ECB approaches zero does ΔEe begin to change significantly, but this resonance occurs at 

extremely small QD diameters (<1.5 nm). Of course, the nature of these curves relies heavily on 

the relative energies of the 3d(↓) and 4s(↑) levels. An important feature of the electronic structure 

of Mn+ is that its 3d54s1 configuration appears to be lower in energy than the 3d6 configuration in 

several experimentally documented cases.99-101 If the level ordering observed in other crystals 

were maintained in DMSs, then E4s↑ − ECB (eq 13) would be smaller than E3d↓ – ECB (eq 15), and 

ΔEe would actually increase with quantum confinement.70 Despite the uncertain positions of the 

3d(↓) and 4s(↑) levels, both scenarios predict a relatively small dependence of ΔEe on quantum 

confinement until extremely small QD diameters.  
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Figure 11. Quantum confinement effect on the total eCB
− -Mn2+ magnetic exchange 

energy (ΔEe) and on the kinetic s-s and s-d components (ΔEss and ΔEsd). The 
energies of the Mn2+ 3d and 4s orbitals are pinned, and only the energy of the 
conduction band is allowed to change with confinement. The positions of the three 
Cd1−xMnxSe QDs calculated by DFT are given as vertical dashed lines. These 
calculations use E4s↑ − E3d↓ = 2.2 eV as calculated by DFT (Table 2). 

 

VI. Conclusion 

 DFT calculations have been performed on Cd1−xMnxSe QDs to evaluate the microscopic 

Mn2+-carrier exchange interactions that give rise to such defining characteristics of DMSs as the 

giant band-edge Zeeman splittings and carrier-mediated magnetic ordering. These calculations 

describe carrier wavefunctions and Mn2+-carrier exchange energies without any of the usual 

assumptions such as mean-field or virtual-crystal approximations, or even the form of the 

effective exchange Hamiltonian. Atomistic and mean-field descriptions of DMS exchange 

interactions have been linked by analysis of the DFT electronic structure results using 

perturbation theory to predict Mn2+-carrier exchange energies. Comparison of DFT results with 

properties predicted from perturbation theory shows good agreement between the two. This 

analysis has allowed the major orbital pathways mediating Mn2+-carrier magnetic exchange to be 
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evaluated individually, and the impact of quantum confinement to be assessed quantitatively. As 

established previously, the Mn2+- hVB
+  interaction is dominated by p-d hybridization. The Mn2+-

eCB
−  interaction is shown to be dominated by spin-dependent s-s hybridization with a smaller 

opposing contribution from s-d hybridization. The sign of N0α is not inverted in these strongly 

quantum confined Cd1−xMnxSe QDs relative to bulk Cd1−xMnxSe. These results enrich our 

understanding of the microscopic origins of the unique physical properties of this class of 

materials. 
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