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We study theoretically the low-energy hole states ofSbeorgshell nanowires. The low-energy valence band
is quasi-degenerate, formed by two doublets fiedént orbital angular momentum, and can be controlled via
the relative shell thickness and via external fields. We firad tlirect (dipolar) coupling to a moderate electric
field leads to an unusually large spin-orbit interaction aRba-type on the order of meV which gives rise to
pronounced helical states enabling electrical spin-chnithe system allows for quantum dots and spin-qubits
with energy levels that can vary from nearly zero to severlndepending on the relative shell thickness.

PACS numbers: 73.22.Dj, 73.21.Hb, 73.21.La, 72.25.Dc

I. INTRODUCTION feature remains pronounced, which is essential for spbitqu
implementation. The nanowires are sensitive to externgtma
rr]etic fields, with g-factors that depend on both the field ori-
entation and the hole momentum. In particular, we find a
new SOI of Rashba type (referred to as direct Rashba SOlI,
DRSOI), which results from a direct dipolar coupling to an
external electric field. This term arises in first order of the
multiband perturbation theory, and thus is 10-100 timegdar
than the known Rashba SOI for holes (RSOI) which is a third
order dfect® Moreover, DRSOI scales linearly in core di-
ameterR (while RSOl R™), so that spin-orbit interaction

. . remains strong even in large nanowires. Similarly to coaven
The nanowires are operated both in the electron (congn41 Rashba SOiL-17:24313DRSO] induces helical ground

; 9 10,17 ; _ ) .
duc_'uon band_, CB.ef. an_d hole (valence band, VB states, but with much larger spin-orbit energies (meV-edng
regimes. While similar in the charge sector, holes can haVﬂqan in other known semiconductors

many advantages in the spin sector. Due to strong spin-orbit 1o 4rticle is organized as follows. In Sec. Il we introduce

interaction (SOI) on an atomic level, the electron spin is re y,q |, noerturbed Hamiltonian for holes inside the Ge core, an

placed by an ﬁequve spin of 'engﬂ.‘] - _3/2’ and even in rovide its exact, numerical solution. The system is ver{l we
systems that are inversion symmetric, spin and momentum a'(%escribed by anfeective 1D Hamiltonian, which we derive

strongly coupled, enablindiecient hole spin manipulation by i, 'sec |11 in Sec. IV we include the static strain, and find

purely 9Iectr|cal means. Holes, MOreover, are very S“”'gs'“ a strong dependence of the nanowire spectrum on the relative
to confinement, strongly prolonging the'f_Sp'T‘ lifetirrés? shell thickness. The spectrum of Senanowire-based QDs
Also, VBs possess _only one valley at #hpoint, in contrastto s giseyssed subsequently (Sec. V). In the main section, Sec
Fhe CB‘?‘ of Ge or Si, Wh.'Ch.'S partlcula_rly use_fulsfor spintron VI, we analyze the hole coupling to electric fields and com-
ics devices such as spin filtéfsand spin qubits® Most re- pare the newly found DRSOI to standard RSOI. In this con-
cently splg-selectwe hole tunneling in SiGe nanocrysiais text, we also show that G8i nanowires present an outstand-
achievedt ing platform for helical hole states and Majorana fermions.
In this article we analyze the hole spectrum of/8le  \agnetic field &ects are discussed in Sec. VII, followed by

corgshell nanowires, which combine several useful featurespyr summary and final remarks, Sec. ViIl. Technical details
The holes are subject to strong confinement in two dimengnd additional information are appended.

sions and can be confined down to 0D in ¥é28Ge and
Si can be grown nuclear spin free, and mean free paths around

Semiconducting nanowires are subject to intense expe
imental dfort as promising candidates for single photon
sources, field effect transistors,and programmable circuifs.
Progress is being made both with group IV matefi@land
[1I-V compounds, particularly InAs, where single-electro
quantum dots (QDSY and universal spin-qubit contfohave
been implemented. Proximity-induced superconductivig w
demonstrated in these systefri8forming a platform for Ma-
jorana fermiong1-16

0.5 um have been reportédDuring growth, the core diam- II. MODEL HAMILTONIAN AND NUMERICAL

eter ¢ 5-100 nm) and shell thickness (1-10 nm) can be SOLUTION

controlled individually. The VB @set at the interface is large,

~ 0.5 eV, so that holes accumulate naturally in the édfe. |y cupic semiconductors, the VB states are well described

Lack of dopants qnderpins th(_e high mobilifiesd the ch_arge by the Luttinger-Kohn (LK) Hamiltoniad®34
coherence seen in proximity-induced superconductifity.
We find that the low-energy spectrum in [Senanowires
is quasi-degenerate, in contrast to typical CBs. Statairstr
adjustable via the relative shell thickness, allows tottifs
quasi-degeneracy, providing a high degree of control. WavhereJ,y, (in units of#:) are the three components of the ef-
also calculate the spectrum in longitudinal QDs, where thidective electron spin in the VBn is the bare electron mass,
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FIG. 1. Schematic drawing of the systems studied in thiclarti ) ) )
Top: Excerpt of a G&Si nanowire with core radiuR and shell thick- -05 0.0 0.5
nessks — R, where thez axis corresponds to the axis along the wire. k. R

The nanowires are typically sevepai in length and can therefore

be considered infinitely extended, hosting a 1D hole gaslénieir |G 2. Low-energy hole spectrum of a Ge nanowire as a funcifo

core. The surrounding Si shell influences the hole specthmough  he |ongjtudinal wave numbée,. In the unstrained casg, = 0, the

static strain. Bottom: Quantum c!qts ofﬂ(@:tiye) Iengt.hL fprm plot is independent dR, with 72/(mR2) =~ 0.76 meV forR = 10 nm.

when the holes are subject to additional confinement irztiieec-  pye to time reversal invariance and cylindrical symmetageline is

tion. This can be realized via gaté$*®or, in principle, by surround- 5 ywo-fold degeneracy, where red (blue) indicates quantumbers

ing the Ge with layers of barrier material during grovth. F, = +1/2 (F, = +3/2). Atk, = 0 the spectrum is quasi-degenerate,
with the lowest states having, ~ 0 (ground states) and,| = 1
(excited states) character. Dashed lines result from fiieeteve 1D
model for the lowest subspace, whéyés treated perturbatively. The

hik is the momentum operator, amg, ys = (2y2 + 3ys)/5are  top figure is a zoom-in on the low-energy sector of a straiystesn,

the Luttinger parameters in spherical approximation, Wiéc  y = 40%, illustrating strong dependence on the Si shell thiskne

well applicable for Gey; = 13.35, ys = 5.11)3°% Studying

nanowires, Fig. 1 (top), the LK Hamiltonian must be supple-

mented with the confinement in the transverse directigns (

plane), perpendicular to the wire axis Since we are inter- A plot of the spectrum is shown in Fig. 2 (bottom).

ested in the low-energy states, we can add two more simpli-

fications at this stage. Firstly, since the low-energy state

located near the core center, we can assume a potential with IIl. EEFECTIVE 1D HAMILTONIAN

cylindrical symmetry even though the real system is not per-

fectly symmetric. Secondly, due to the large VBset, the

) The present analysis does not, however, allow us to de-
confinement can be treated as a hard wall, P Y

rive an dfective 1D Hamiltonian describing the lowest-energy
0. r<R states. For this, we integrate out the transverse motion and

V(r) = { o ISR (2)  treatk, in perturbation theoryk,R < 1). The four eigen-

’ statesg: ande., corresponding to ground and excited states

with R as the core radius. Given this confinement, the totafor Fz = +1/2 atk; = 0, serve as the basis states in the ef-
HamiltonianH_« +V commutes with the operatét = L,+J,, fective 1D_ Ham|lt_on|an. The su_bscrlpt refers to the sign of
whereL, = —id, is the orbital angular momentum along the the contained spin staje3/2), since the system & = 0
wire axis, so thaF, is a good quantum number and the statescan be separated into twox22 spin blocks’ and details of
can be classified accordingi§3” The system is also time- the calculation are described in Appendix B. Knowledge of
reversal symmetric (Kramers doublets), and due to cyloadri 9+ €, With eigenenergiegy = 0, Ec = A, allows us to
symmetry one obtains the same spectrum for s@iyie This |n_clude thekZ-erendent terms of the LK Hamiltonian. The
is valid for any circular confinement and does not require theliagonal matrix elements take on the fofgy|Hik 19.) =
assumption of a hard wall. We note that, again in clear cont’Ke/(2my), (e:| Hik le.) = 1%K;/(2me) + A, and the non-zero
trast to the CB casg,, is not conserved in the VB. off-diagonal terms are of typ@.| Hix |g) = iCk;, with C as
The Hamiltonian separates in«t blocks correspondingto "eéal-valued coupling constafft Summarized in matrix nota-
givenF,. By solvingH.x + V numerically, using an ansatz tion, this yields
analogous to Refs. 36 and 37, we find that the low-energy of
spectrum in the Ge core is formed by two quasi-degenerate Hk = Ac + A1z + Ckeryoy, 3)
bands, withF, = +1/2 each, where the ground (excited) states
are ofL, ~ 0 (L, = 1) type. These, in total, four states are whereA. = 72k? (mgl + mgl) /4 + A/2, andT, oi are the
well separated from higher bands, and the quasi-degenera®auli matrices acting ofg, €}, {+, —} (see also Appendix A).
indicates that one can project the problem onto this sulespacFor Ge, the values are = 0.737%%/(mR?), C = 7.26/#%/(MR),



Mg = M/(y1 + 2ys) = 0.043m, andme = m/(y1 + ys) =
0.054m. The eigenspectrum

3
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nicely reproduces all the key features of the exact solution :
and is added to Fig. 2 for comparison, with good agreement 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

for sz <1l Length (nm) Length (nm)
2 100 Ge ' ' ' -
E gfR=5mm
IV.  STATIC STRAIN 2 ot L = 40 nm
b= L = 60 nm
24t e
To the above model one needs to add theats of static 2 DI e
strain, since the Si shell (radil®;) tends to compress the g ol Zai L = 80 nm ]
Ge lattice. A detailed derivation of the strain field in/Se — oio 0i1 0i2 0i3 0i4 015
cor¢g'shell nanowires will be provided elsewhere, here we just v=(R,—R)/R

guote the results needed to calculate the hole spectrum. Cou

pling is described by the Bir-Pikus Hamiltonidfisp, EQ.  FIG. 3. Top: Hole energy spectrum in a nanowire-based QDSGe
(C1), which for Ge (spherical approximation applies) ist@t  corgshell,R = 5 nm), for both a thin and a thick shell, as a function
same form as Eq. (1), witkik; replaced by the strain ten- of confinement length.. Each line corresponds to a Kramers pair,
sor elementszij.39 Assuming a stress-free wire surface andand dashed lines representor comparison. Bottom: Level splitting
continuous disp|acement and stress at the interface, Smme of the two lowest Kramers doublets as a function of relativells

considerations and Newton's second law requise = e, thicknessy and for diferent lengthd.. Static strain, induced via
6y = 6z = &, = 0 within the core, so that only terms the shell, allows continuous tuning of the energy gap oveersg

o Jf contribute. HenceF, remains a good quantum num- meV, an attractive feature for spin qubit applications. ¢retails see

ber, [Hk + V + Hgp, F;] = 0, which allows us to solve the Appendix D.
system exactly even in the presence of strain, following the
same steps as described in Sec. Il. Importantly, these exact
spectra show that the low-energy states, Fig. 2 (bottorp}, se a5 of several meV, which should, in particular, be useful f
arate even further from the higher bands when the Ge core Fhplementing spin qubits.
strained by a Si shell, so that the low-energy sector remains
energetically well isolated and projection onto this su#rep
is always valid. , , _ VI. DIRECT RASHBA SOI AND HELICAL HOLE STATES

In the 1D model, strain leads to a simple rescaling of the
energy splittinghA — A + 6(y), where 0< §(y) < 30 meV for
0 <y < o0, withy = (Rs—R)/Ras the relative shell thickness.
Henceg is independent of the core radius, whllec R2. We
note thatA ~ 0.6 meV for a wire ofR = 10 nm, which makes Ho = —eE.x (5)
this energy scale very small. Therefore the splitting can be ed X
changed not only vi&, but also viaRs. In fact, the system ity x = r cosg) as the carrier position in field direction. For
can be varied from the quasi-degenerate to an electron-lik§o|es in the Ge core we expect this energy gradient to have
regime, Fig. 2 (top), where the, ~ 0 and|L;| = 1 states are  gj;apje gects compared to electron systems, since the low-
parabolas. energy band is made of quasi-degenerate statesfefeftl,
character. MoreoveE will also couple directly to the spins
due to the SOl in the VB. Projection éfeq onto the subspace
yields the &ective SOI Hamiltonian

An electric fieldEy applied alongx couples directly to the
charge of the hole via the dipole term

V. QUANTUM DOT SPECTRUM

We analyze this feature in more detail by calculating the Hor = H = eEx\U T, (6)
eigenenergies of @8i nanowire-based QDs, Fig. 1 (bottom).
All steps of this calculation are carefully explained in Sec  referred to as direct Rashba SOI (DRSOI), characterized by
of the appendix. Remarkably, the variability wi also  the coupling constant = (g.|(-x)|e;). The form of Eq.
transfers to the QD levels. Figure 3 shows the spectrum a) still resembles the CB case, where dipolar coupling can-
a function of confinement length for a wire with both thin not modify the spins. However, the additiorkaty o term in
and thick shell, and plots the energy splitting of the IowestHf{f< makes the key dierence to the CB, and accounts for the
Kramers doublets as a function ®f For a negligible shell, SOl featured in the LK Hamiltonian. Indeed, by diagonaligin
the states lie so close in energy that even additional degerh-lfﬁ + Hpgr we find that the DRSOI lifts the two-fold degen-
eracies may be observed. Increasig the QD spectrum eracy, as plotted in Fig. 4. Surprisingly, th&eets closely
changes monotonically from the quasi-degenerate regime t@semble a standard RSOI for holes in a transverse electric
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FIG. 4. Dispersion relation for holes in a Ge nanowirdef 10 nm, - 05 excited state ‘ :
negligible shell, and an applied electric fidkg alongx, calculated ’ \ ______
from HE + Hpg, Egs. (3) and (6), wittHpg as the DRSOI Hamil- - 1.0t ‘ RN i oo ]
tonian. Hole bands of lowest (higher) energy are plottee Iffed). -04 -02 0.0 0.2 0.4
RSOl is about 100 times smaller than DRSOI and thus negéigibl k.R

Note that DRSOI shows qualitatively similar features tonderd
Rashba SOI with dispersion curves shifted aldagagainst each  FIG. 5. Top: Splitting of the lowest valence band when antelec
other. field Ex = 6 V/um is applied to a G&i nanowire ofR = 5 nm and

Rs = 6.5nm. Ground (excited) hole states are plotted blue (red).
Eso > 1.0 meV, a large value compared to InA%, and the degen-

. . . . o eracy atk, = 0 may be lifted via a magnetic field (see Fig. 6). The
field (see discussion below). [Again, this is not the case fogonyentional RSO for holes is negligible. Bottom: Plot(d§) for
the CB whereHeq does not lift the degeneracy since spin andihe above system, whexd,) and(J,) are zero throughout. In the
orbit are decoupled (in leading order).] ground state, the nanowire carries opposite spins in ofgpdsiec-

As a consequence, when analyzing the eigenstaﬂdﬁﬁoﬁ tions with[(J,)| > 1/2.

Hpr for their spin properties, we find that an electric field gen-

erates helical ground states, i.e., holes of opposite spiwem

in opposite directions. Figure 5 (top) shows the splittifthe ~ .
lowest band wheE, = 6 V/um is applied to a typical G&i N Rashba-type SQB1-17.243L3A particular advantage of

nanowire of 5 nm core radius and 1.5 nm shell thickness. EveRRSOI. as compared to conventional Rashba SOI, is its un-
though RSOI is absent, the result resembles the typical Cgsua}lly large strength. While the Re}shba term for holegaris
spectra considered in previous studies, where Rashba $0I fi§) third order of multiband perturbation theory and thudesa
electrons leads to two horizontally shifted parabolaséftk with 1/(band gap), DRSOI is a first orderféect and there-
diagram!2-14.17.243\oreover, the analogy also holds for the fore much stronget® Explicit values for _Ge argJ =0.15 R
spins, which are twisted towards tielirection, perpendicu- S = 0-36/R, anda ~ -0.4 ne, so that, in typical nanowires
lar to both the propagation axdsand the field directiox. As with R = 5-10 nm,Hpr dominatedHr by one to two orders of
Fig. 5 (bottom) illustrates;J,) in the ground state is an anti- Magnitude (Appendix F). Moreover, sizable R_?Ol would re-
symmetric function ok,, the characteristic feature of a helical duire unusually small confinement, sinkd@ oc R™. In stark
mode. We note thatl,) = (J,) = O throughout, so that the con';rast, for DRSOI we f_mcH-IDR o« R, wh|ch aIIows one to
spins are indeed oppositely oriented. The valugg,phround realize the qleswed couph_ng_strengths in larger wires db we
the band minima are 1/2, while the spin-orbit (SO) energy, The up-scqlmg, howe;/er, is limited by the assomatedldgxere
i.e., the diference between band minimum and degeneracy & l€vel splitting ¢ R™%) and of the ternCk;ryox (< R™) in

k; = 0, isEso > 1.0 meV. This value exceeds the reported Ea. (3).
100eV in InAs nanowires by a factor of ten (see also Ap-

pendix E)%4° and further optimization is definitely possible

via both the gate voltage and the shell thickness.

We can understand the qualitative similarity of DRSOI, Eq. _
(6), and RSOP® The Kramers degeneracy can be lifted by an external mag-

netic field B, which couples to the holes in two ways. First,
Hso = aEx(kyJ; — KJy), (7)  viathe orbital motion, through the substitutibh — —izV +
eA(r), with A(r) as the vector potential, and secondly, via
the Zeeman CouplinlgljzB = 2xupB - J, wherex is a material

VIl. MAGNETIC FIELD EFFECTS

by projecting the latter onto the low-energy subspace, whic

yields parameter. FoiB alongz (x), parallel (perpendicular) to the
Hg = HET ~ oE,STy0, (8)  wire, the 1D Hamiltonian is of form
for kR < 1, with S = (g.|k/J;le,). Further informa- He. =/JBBZ(210'2+ZZ7'20'2+ Zsszxdy), )

tion on Hso, Hr, and the Rashba cfiienta can be found
in Appendix F. This formal analogy dflpg and Hg, Egs.
(6) and (8), immediately implies that &g nanowires pro- where the real-valued constaits(X;) are listed in Eq. (G1)

vide a promising platform for novel quantunffects based of the appendix. The results agree with recent experiments,

Hpx = usBx (xlo'x + XoT0 % + XSkz'Ty) , (10)
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%‘ Lot =03 N omdemte /| The dipole-induced formation of helical modes proves use-
= B, =1T N R ] ful for several reasons. First, strength and orientatioexef

: 0.0 E; =6V/um %]/ excited state ternally applied electric fields are well controllable viates.

e Ge Secondly, the DRSOI scales linearlyRyinstead oR™%, and

g - 0.5¢ R =5 nm \/ ] thicker wires remain operational. Thirdly, the system issée
/- 1.0f ] tive to magnetic fields, and undesired degeneraci&s at0

may easily be lifted, withg, (0)| > 5. Finally, helical modes

1.Of , with large Esp and wave numberkgs are achievable using
0.5; Spin of ground state (Jy) moderate electric fields of ordeyAdn. In Fig. 6, setting the
3| SN S Fermi level inside the gap opened by the magnetic field, these
<J > areEso > 1.0meV andke = 90um~2, with [(J)| > 1/2,
- 0.5¢ (. (J.)=0 ] and optimization via both the gate voltage and the Si shell is
- 1.0t ‘ ‘ ¥ ‘ ‘ ] possible. FoiR = 10 nm and thin shells, due to the quasi-
-04 -02 00 02 04 degeneracy gt — 0, even small electric fields 6f 0.1 V/um
k.R are stfficient to form helical states witksp > 0.3 meV. Re-

. . cent experiments agree well with the theory presented here.
FIG. 6. Top: Hole spectrum of Fig. 5 (top) in the presence of |ndeed, magneto-transport measurements gBi®anowires
B = 1T. The magnetic field opens a gap 080meV atk, = 0,  point towards a very strong SOI, externally controllabla vi
corresponding to a g-factor above 5. Bottom: Plot of the gdou electric fieldt!

state spin(Jy) and(J,), where(J,) = 0 throughout. At energies . .
within the gap, the G&i nanowire features helical hole states with The nanowire spectrum _can bg changed frlom the quasi-
Eso > 1.0 meV, k| ~ 90m-, and|(d,)| = 1/2. degenerate to an electron-like regime, depending on tHe she
e thickness. This moreover holds for QD spectra, so that,

given the strong response to electric and magnetic fields,

Ge/Si wires also seem attractive for applications in quan-

where the g-factors in G8i nanowire-based QDs (multi-hole tum information processing, particularly via electrigaie-
regime) were found to vary dramatically with both the orien-induced spin resonancé:** Finally, when combined with a
tation of B and also the QD confinemefft?® In the absence superconducto? the DRSOI in these wires provides a useful
of electric fields, the ground state g-fact(k) for B, along platform for Majorana fermions:°
the wire turns out to be small fdg, = 0, |g,(0)| ~ 0.1, and
increases akk,| increases. In contrast, the g-factnnk;) for
a perpendicular field, is large atk, = 0, g, (0)| ~ 6, and de- ACKNOWLEDGMENTS
creases afk;| increases, untify, (k;) eventually changes sign
at |k ~ 0.5/R. We note that these results for the ground We thank C. Marcus, Y. Hu, and F. Kuemmeth for help-
state cannot be directly compared to experimental results iful discussions and acknowledge support from the Swiss NF,
the multi-hole regime, as the g-factors in the excited sthte NCCRs Nanoscience and QSIT, DARPA, and the NSF under
ready show a clearly fferent dependence ¢q. In the pres-  Grant No. DMR-0840965 (MT).
ence of an electric fieléy, the efectiveg, andg, atk, = 0
may, to some extent, be tuned by the strengtg,of

Detailed analysis of the low-energy Hamiltonian yieldgtha Appendix A: Representation of spin matrices
the combination of magnetic and electric fields allows for op
timal tuning of the energy spectrum. For instanBg,= 1 T
opens a gap of.80 meV atk, = 0 in Fig. 5 (top), keeping
the spin properties fok, # O undtected. This corresponds
to|g.(0) ~ 5.2 and is illustrated in Fig. 6. Setting the Fermi
level within the induced gap, the spectrum of Fig. 6 presants
promising basis for applications using helical hole stafes
markably, an all-perpendicular setup with, eBy. alongx and
Ey alongy, Hpry = —eEyUTy, leads to an asymmetric spec-
trum where only states with one particular direction of rooti
may be occupied, which moreover provide a well-polarized
spin along the magnetic field axis. As before, this does not
require standard RSOI.

All results presented in this article are based on the follow
ing representation of the spifiZmatrices,

(&
3
Il

(A1)

, © onjg o
% o m ool
o Mo r o

onvHo o

[
<
I

(A2)

o O NT& o
o
o o
M S ©

VIIl.  DISCUSSION
(A3)

O oo

The low-energy properties found in this work make/&e
corgshell nanowires promising candidates for applications.
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The Pauli operators; (referring to{g, e}) ando; (acting on
{+,-}) are defined as
)’ Tz = (

{23

(o analogously)

01
10

10

0 _1). (A4)

Appendix B: Basis states for the ffective 1D Hamiltonian

In this second section of the appendix we outline the cal-

culation of the basis statég,,g-,e,,e_}. Fork, = 0, each

of the 4x 4 blocks for given quantum numbEg and energy
E reduces to two X 2 blocks, labeled by according to the
sign of the contained spin stdte3/2). In the absence of con-

finement, using an ansatz analogous to Refs. 36 and 37, )

eigenstates to be considered are

Ui, = Jezaro(konr) €2 123/2)

— V3Jeu1p(knr) €YY 12172y, (BY)
Ui, = V3Jezap2(kinr)€FF22 1£3/2)
+ Jr,a1/2(kinr ) €FY29 12172y | (B2)

where thel,(x) are Bessel functions of the first kind, and

(B3)

When confinement is present, the eigenstates read

O (r,¢) = vy (@) + DIy (), (B4)
where the coﬁcientsa;,bzz and the energiek are to be
found from the boundary conditicrhiz(R, ¢) = 0, resulting in
the determinant equations

0 = Jr,=3/2(KnhR) Jr,+1/2(kinR)
+ 3Jr,:1/2(kihR) I, =3/2(KinR).

By solving the above equations, we find that fothe lowest
eigenenergy correspondsfg = ¥1/2, and the second low-
est one to-, = +1/2. The associated eigenstatps= ®**/2
ande. = ®*Y/2 for the transverse motion are found by cal-
culating the cofiicientsa?*?, b7"/?, a'/2 b*?, respectively,
and serve as the basis states in tffeaive 1D Hamiltonian.
Normalization requires

R 21
f drrf de 9.l = 1.
0 0

(e. analogously)

(BS)

(9:+19+) (B6)

It turns out that the excited states are puteiylike, b**? = 0,
and we choose the complex phases such that afficmamts
are real, witha™"/? < 0,b™"? > 0, anda*"/? > 0.

Appendix C: Bir-Pikus Hamiltonian

Referring to holes, the Bir-Pikus Hamiltonian reads

5
Hgp = _(a+ Zb)zai +quiJi2

|
2d

+ ﬁ(exy{Jx, I +cp), (C1)
wherea, b, andd are the deformation potentials; = ¢;;
are the strain tensor element#, B} = (AB + BA)/2, and
“c.p.” stands for cyclic permutatior’S.For Ge, the deforma-
tion potentials ar® ~ —2.5 eV andd ~ —5.0 eV ° so that the
spherical approximatiod = V3b applies. The hydrostatic
deformation potentiad accounts for the constant energy shift

the VB in the presence of hydrostatic strain, and theeefor
oes not contribute té(y), i.e., the rescaling of the energy
gapA.

Appendix D: Quantum dot spectrum

When the quantum dot lengthis much larger than the core
radiusR, Fig. 1, the spectrum can be well approximated using
the dfective Hamiltonian for extended states. In the absence
of external fieldsF, remains a good quantum number and the
Hamiltonian

12k2

e —iCk, 0 0
. " h2k2
off iCk; s +A+6(y) O 0
Hix = e n2k2 . ,
0 0 P —iCk,
212
0 0 iCk, 2 4 A+6(y)

2me
(D1)

here explicitly written out in the basig,,e_,g_,e.} for il-
lustration purposes, is 2 2 block diagonal with degenerate
eigenstates. The subspdge, e_} corresponds té, = —-1/2,
while {g_, e;} corresponds t&, = +1/2. Aiming at the quan-
tum dot spectrum, we introduce two complex functign&)
ande,(2), for which we require

e

I

The associated set of coupledtdrential equations reads

72k2 .
e —iCk,

. 72k2
iCk; e T A+ 6(y)

(2
en(2)

en(2)

(2 ) ) (D2)

hz /7’
0= “omg o (2) - Ce(2) - Engn(D (D3)

2
0= _%beg@ +Cgh(2 + (A +6(y) — En) en(2), (D4)

and in addition we demarg}(0) = e,(0) = gn(L) = ey(L) =0

due to hard wall confinement at= 0 andz = L. Having
solved the dferential equations, these boundary conditions
finally lead to a determinant equation for the eigenenergies
En, which can be analyzed numerically. Results are plotted in
Fig. 3.



Appendix E: Spin-orbit energy in InAs nanowires in third order of the perturbation theory, wherés the Rashba
codficient and additional, negligible terms have been omitted.

For electrons in an electric fiel, alongx, the Hamiltonian !N Eq. (F2),Eo is the band gap (direck = 0) between con-

for Rashba SOl is of form duction (g) and valence bandf), andP is the corresponding
momentum matrix element between théike I'g and thep-
HE = aEx(kay — kyora), (E1) like Ty, I'Y states’® For Ge, explicit values arEy = 0.90 eV
_ o . andP = 9.7 eVA* which yieldsa ~ —0.4 nne.
wherea is the Rashba cdiécient in the conduction band) We can project Eq. (F1) onto the low-energy subspace

ando; are the Pauli matrices for spiri2i®® In the following,  {g,,g_,e,, e_} by calculating the 16 matrix elements. The ef-

we use the notationy = «Ex for illustration purposes. As-  fective Hamiltonian for RSOl takes on the form
suming a nanowire in which the electron moves freely along

thez direction with dfective massn®, the Hamiltonian of the Hr = Hgg = aEyxSTyo; + aEyks..., (F3)

system becomes

whereS = (g.|kyJ;|e,). This Hamiltonian has twoftects:

first, it features a constant coupling betweendlamde states,

and secondly, it provides a term which is lineakjmnd mixes

o the spin blocks. The latter is absenkat= 0, so that only the

with eigenspectrum constant ternwExSTyo, contributes for smalk,, which is of
2 the same form as the direct Rashba $k = eEyUTo,

h? (k m |ax|) mka?2

L+ —— | -

e

2m¢

el

+ axkoy, (E2)

E, (DRSOI) resulting from dipolar coupling. Finally, we note

- 2mr h2 2h2 that
_ (ke £ 155)° - Eso (E3) eE,U R?

The spin-orbit length is defined &g = 2/ (M |ay]), and the )
SO energy, the energyfiirence between the band minima for Ge, so that the DRSOI dominates RSOI by one to two

and the degeneracylat= 0, is Eso = ma2/(2h?), so that orders of magnitude in typical @& nanowires of 5-10 nm
’ X ' core radius.
Eso= ﬁ'éo- (E4)

Appendix G: Coupling to magnetic fields
We can use Eq. (E4) to calculate the spin-orbit energy foslnA
wires, wherdso has recently been measur@t.Usinglso =~ In Egs. (9) and (10), we show théfect of external mag-
127 nm andm* =~ m;,, = 0.023m° the SO energy in INAs  netic fields on the low-energy sector for fields applied along

is Eso ~ 100ueV. Further experiments confirmed tHab  (2) and perpendiculasq to the nanowire, respectively. Below,
typically varies between 100 and 200 nm in InAs nanowifes, the explicit values foz; andX; are listed,

and in the latter casésp ~ 40 ueV only.

Z; = 0.75 Xy = 272
Z, = -081 X, = 0.17 (G1)
Appendix F: Standard Rashba SOl and Rashba cdficient Z3 = 2.38R Xz = 8.04R,

Both Ge and Si are inversion symmetric, and thus couplin%s'rs‘g the parametess = 13.35,ys = 5.11, andk = 3.41 for
of Dresselhaus-type is absent. However, this does not ex2®:
clude the conventional Rashba term (RSOI), Eqg. (7). Here
we briefly outline its derivation, details are described &f.R

30. As in Sec. VI, we assume a constant electric figjd

along thex axis, which, referring to holes, results in the dipole
termHqq = —€ExX as a perturbation added to the potential en-
ergy. AccordinglyHeqis added to the multiband Hamiltonian
(envelope function approximation), where it appears omly o

the diagonal, while fi-diagonal parts provide thie - p cou-

pling. Finally, a Schriffer-Wolff transformation of the multi-

band Hamiltonian, with focus on the valence baijdyields

the Rashba term

Hso = aEx(kyJz — kzJy), (F1)
eP?

-, F2
= (F2)

a =
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