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We study theoretically the low-energy hole states of Ge/Si core/shell nanowires. The low-energy valence band
is quasi-degenerate, formed by two doublets of different orbital angular momentum, and can be controlled via
the relative shell thickness and via external fields. We find that direct (dipolar) coupling to a moderate electric
field leads to an unusually large spin-orbit interaction of Rashba-type on the order of meV which gives rise to
pronounced helical states enabling electrical spin-control. The system allows for quantum dots and spin-qubits
with energy levels that can vary from nearly zero to several meV, depending on the relative shell thickness.

PACS numbers: 73.22.Dj, 73.21.Hb, 73.21.La, 72.25.Dc

I. INTRODUCTION

Semiconducting nanowires are subject to intense exper-
imental effort as promising candidates for single photon
sources,1 field effect transistors,2 and programmable circuits.3

Progress is being made both with group IV materials2–5 and
III-V compounds, particularly InAs, where single-electron
quantum dots (QDs)6,7 and universal spin-qubit control8 have
been implemented. Proximity-induced superconductivity was
demonstrated in these systems,9,10 forming a platform for Ma-
jorana fermions.11–16

The nanowires are operated both in the electron (con-
duction band, CB)6–9 and hole (valence band, VB)2–5,10,17

regimes. While similar in the charge sector, holes can have
many advantages in the spin sector. Due to strong spin-orbit
interaction (SOI) on an atomic level, the electron spin is re-
placed by an effective spin of lengthJ = 3/2, and even in
systems that are inversion symmetric, spin and momentum are
strongly coupled, enabling efficient hole spin manipulation by
purely electrical means. Holes, moreover, are very sensitive
to confinement, strongly prolonging their spin lifetimes.18–23

Also, VBs possess only one valley at theΓ point, in contrast to
the CBs of Ge or Si, which is particularly useful for spintron-
ics devices such as spin filters24 and spin qubits.25 Most re-
cently spin-selective hole tunneling in SiGe nanocrystalswas
achieved.26

In this article we analyze the hole spectrum of Ge/Si
core/shell nanowires, which combine several useful features.
The holes are subject to strong confinement in two dimen-
sions and can be confined down to 0D in QDs.4,27,28 Ge and
Si can be grown nuclear spin free, and mean free paths around
0.5 µm have been reported.5 During growth, the core diam-
eter (∼ 5-100 nm) and shell thickness (∼ 1-10 nm) can be
controlled individually. The VB offset at the interface is large,
∼ 0.5 eV, so that holes accumulate naturally in the core.5,29

Lack of dopants underpins the high mobilities2 and the charge
coherence seen in proximity-induced superconductivity.10

We find that the low-energy spectrum in Ge/Si nanowires
is quasi-degenerate, in contrast to typical CBs. Static strain,
adjustable via the relative shell thickness, allows to liftthis
quasi-degeneracy, providing a high degree of control. We
also calculate the spectrum in longitudinal QDs, where this

feature remains pronounced, which is essential for spin-qubit
implementation. The nanowires are sensitive to external mag-
netic fields, with g-factors that depend on both the field ori-
entation and the hole momentum. In particular, we find a
new SOI of Rashba type (referred to as direct Rashba SOI,
DRSOI), which results from a direct dipolar coupling to an
external electric field. This term arises in first order of the
multiband perturbation theory, and thus is 10-100 times larger
than the known Rashba SOI for holes (RSOI) which is a third
order effect.30 Moreover, DRSOI scales linearly in core di-
ameterR (while RSOI∝ R−1), so that spin-orbit interaction
remains strong even in large nanowires. Similarly to conven-
tional Rashba SOI,11–17,24,31,32DRSOI induces helical ground
states, but with much larger spin-orbit energies (meV-range)
than in other known semiconductors.

The article is organized as follows. In Sec. II we introduce
the unperturbed Hamiltonian for holes inside the Ge core, and
provide its exact, numerical solution. The system is very well
described by an effective 1D Hamiltonian, which we derive
in Sec. III. In Sec. IV we include the static strain, and find
a strong dependence of the nanowire spectrum on the relative
shell thickness. The spectrum of Ge/Si nanowire-based QDs
is discussed subsequently (Sec. V). In the main section, Sec.
VI, we analyze the hole coupling to electric fields and com-
pare the newly found DRSOI to standard RSOI. In this con-
text, we also show that Ge/Si nanowires present an outstand-
ing platform for helical hole states and Majorana fermions.
Magnetic field effects are discussed in Sec. VII, followed by
our summary and final remarks, Sec. VIII. Technical details
and additional information are appended.

II. MODEL HAMILTONIAN AND NUMERICAL
SOLUTION

In cubic semiconductors, the VB states are well described
by the Luttinger-Kohn (LK) Hamiltonian,33,34

HLK =
~

2

2m

[(

γ1 +
5
2
γs

)

k2 − 2γs(k · J)2

]

, (1)

whereJx,y,z (in units of~) are the three components of the ef-
fective electron spin in the VB,m is the bare electron mass,
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FIG. 1. Schematic drawing of the systems studied in this article.
Top: Excerpt of a Ge/Si nanowire with core radiusR and shell thick-
nessRs − R, where thez axis corresponds to the axis along the wire.
The nanowires are typically severalµm in length and can therefore
be considered infinitely extended, hosting a 1D hole gas inside their
core. The surrounding Si shell influences the hole spectrum through
static strain. Bottom: Quantum dots of (effective) lengthL form
when the holes are subject to additional confinement in thez direc-
tion. This can be realized via gates4,27,28or, in principle, by surround-
ing the Ge with layers of barrier material during growth.44

~k is the momentum operator, andγ1, γs ≡ (2γ2 + 3γ3)/5 are
the Luttinger parameters in spherical approximation, which is
well applicable for Ge (γ1 = 13.35, γs = 5.11).35 Studying
nanowires, Fig. 1 (top), the LK Hamiltonian must be supple-
mented with the confinement in the transverse directions (x-y
plane), perpendicular to the wire axisz. Since we are inter-
ested in the low-energy states, we can add two more simpli-
fications at this stage. Firstly, since the low-energy states are
located near the core center, we can assume a potential with
cylindrical symmetry even though the real system is not per-
fectly symmetric. Secondly, due to the large VB offset, the
confinement can be treated as a hard wall,

V(r) =

{

0, r < R
∞, r > R , (2)

with R as the core radius. Given this confinement, the total
HamiltonianHLK+V commutes with the operatorFz = Lz+Jz,
whereLz = −i∂φ is the orbital angular momentum along the
wire axis, so thatFz is a good quantum number and the states
can be classified accordingly.36,37 The system is also time-
reversal symmetric (Kramers doublets), and due to cylindrical
symmetry one obtains the same spectrum for same|Fz|. This
is valid for any circular confinement and does not require the
assumption of a hard wall. We note that, again in clear con-
trast to the CB case,Lz is not conserved in the VB.

The Hamiltonian separates in 4×4 blocks corresponding to
given Fz. By solving HLK + V numerically, using an ansatz
analogous to Refs. 36 and 37, we find that the low-energy
spectrum in the Ge core is formed by two quasi-degenerate
bands, withFz = ±1/2 each, where the ground (excited) states
are ofLz ≈ 0 (|Lz| = 1) type. These, in total, four states are
well separated from higher bands, and the quasi-degeneracy
indicates that one can project the problem onto this subspace.

FIG. 2. Low-energy hole spectrum of a Ge nanowire as a function of
the longitudinal wave numberkz. In the unstrained case,γ = 0, the
plot is independent ofR, with ~2/(mR2) ≃ 0.76 meV forR = 10 nm.
Due to time reversal invariance and cylindrical symmetry, each line is
a two-fold degeneracy, where red (blue) indicates quantum numbers
Fz = ±1/2 (Fz = ±3/2). At kz = 0 the spectrum is quasi-degenerate,
with the lowest states havingLz ≈ 0 (ground states) and|Lz| = 1
(excited states) character. Dashed lines result from the effective 1D
model for the lowest subspace, wherekz is treated perturbatively. The
top figure is a zoom-in on the low-energy sector of a strained system,
γ = 40%, illustrating strong dependence on the Si shell thickness.

A plot of the spectrum is shown in Fig. 2 (bottom).

III. EFFECTIVE 1D HAMILTONIAN

The present analysis does not, however, allow us to de-
rive an effective 1D Hamiltonian describing the lowest-energy
states. For this, we integrate out the transverse motion and
treat kz in perturbation theory (kzR < 1). The four eigen-
statesg∓ ande±, corresponding to ground and excited states
for Fz = ±1/2 at kz = 0, serve as the basis states in the ef-
fective 1D Hamiltonian. The subscript refers to the sign of
the contained spin state|±3/2〉, since the system atkz = 0
can be separated into two 2× 2 spin blocks,37 and details of
the calculation are described in Appendix B. Knowledge of
g±, e±, with eigenenergiesEg ≡ 0, Ee ≡ ∆, allows us to
include thekz-dependent terms of the LK Hamiltonian. The
diagonal matrix elements take on the form〈g±|HLK |g±〉 =
~

2k2
z /(2mg), 〈e±|HLK |e±〉 = ~2k2

z /(2me) + ∆, and the non-zero
off-diagonal terms are of type〈e±|HLK |g∓〉 = iCkz, with C as
real-valued coupling constant.38 Summarized in matrix nota-
tion, this yields

Heff
LK = A+ + A−τz +Ckzτyσx, (3)

whereA± ≡ ~2k2
z

(

m−1
g ± m−1

e

)

/4 ± ∆/2, andτi, σi are the
Pauli matrices acting on{g, e}, {+,−} (see also Appendix A).
For Ge, the values are∆ = 0.73~2/(mR2), C = 7.26~2/(mR),
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mg ≃ m/(γ1 + 2γs) = 0.043m, andme = m/(γ1 + γs) =
0.054m. The eigenspectrum

Eg,e(kz) = A+ ∓
√

A2
− +C2k2

z (4)

nicely reproduces all the key features of the exact solution
and is added to Fig. 2 for comparison, with good agreement
for kzR < 1.

IV. STATIC STRAIN

To the above model one needs to add the effects of static
strain, since the Si shell (radiusRs) tends to compress the
Ge lattice. A detailed derivation of the strain field in Ge/Si
core/shell nanowires will be provided elsewhere, here we just
quote the results needed to calculate the hole spectrum. Cou-
pling is described by the Bir-Pikus HamiltonianHBP, Eq.
(C1), which for Ge (spherical approximation applies) is of the
same form as Eq. (1), withkik j replaced by the strain ten-
sor elementsǫi j.39 Assuming a stress-free wire surface and
continuous displacement and stress at the interface, symmetry
considerations and Newton’s second law requireǫxx = ǫyy,
ǫxy = ǫxz = ǫyz = 0 within the core, so that only terms
∝ J2

z contribute. Hence,Fz remains a good quantum num-
ber,

[

HLK + V + HBP, Fz
]

= 0, which allows us to solve the
system exactly even in the presence of strain, following the
same steps as described in Sec. II. Importantly, these exact
spectra show that the low-energy states, Fig. 2 (bottom), sep-
arate even further from the higher bands when the Ge core is
strained by a Si shell, so that the low-energy sector remains
energetically well isolated and projection onto this subspace
is always valid.

In the 1D model, strain leads to a simple rescaling of the
energy splitting∆ → ∆ + δ(γ), where 0≤ δ(γ) . 30 meV for
0 ≤ γ ≤ ∞, with γ ≡ (Rs−R)/R as the relative shell thickness.
Hence,δ is independent of the core radius, while∆ ∝ R−2. We
note that∆ ≃ 0.6 meV for a wire ofR = 10 nm, which makes
this energy scale very small. Therefore the splitting can be
changed not only viaR, but also viaRs. In fact, the system
can be varied from the quasi-degenerate to an electron-like
regime, Fig. 2 (top), where theLz ≃ 0 and|Lz| = 1 states are
parabolas.

V. QUANTUM DOT SPECTRUM

We analyze this feature in more detail by calculating the
eigenenergies of Ge/Si nanowire-based QDs, Fig. 1 (bottom).
All steps of this calculation are carefully explained in Sec. D
of the appendix. Remarkably, the variability withRs also
transfers to the QD levels. Figure 3 shows the spectrum as
a function of confinement length for a wire with both thin
and thick shell, and plots the energy splitting of the lowest
Kramers doublets as a function ofγ. For a negligible shell,
the states lie so close in energy that even additional degen-
eracies may be observed. IncreasingRs, the QD spectrum
changes monotonically from the quasi-degenerate regime to

FIG. 3. Top: Hole energy spectrum in a nanowire-based QD (Ge/Si
core/shell,R = 5 nm), for both a thin and a thick shell, as a function
of confinement lengthL. Each line corresponds to a Kramers pair,
and dashed lines represent∆ for comparison. Bottom: Level splitting
of the two lowest Kramers doublets as a function of relative shell
thicknessγ and for different lengthsL. Static strain, induced via
the shell, allows continuous tuning of the energy gap over several
meV, an attractive feature for spin qubit applications. Fordetails see
Appendix D.

gaps of several meV, which should, in particular, be useful for
implementing spin qubits.

VI. DIRECT RASHBA SOI AND HELICAL HOLE STATES

An electric fieldEx applied alongx couples directly to the
charge of the hole via the dipole term

Hed = −eExx, (5)

with x = r cos(φ) as the carrier position in field direction. For
holes in the Ge core we expect this energy gradient to have
sizable effects compared to electron systems, since the low-
energy band is made of quasi-degenerate states of differentLz

character. Moreover,Ex will also couple directly to the spins
due to the SOI in the VB. Projection ofHed onto the subspace
yields the effective SOI Hamiltonian

HDR = Heff
ed = eExUτxσz, (6)

referred to as direct Rashba SOI (DRSOI), characterized by
the coupling constantU = 〈g+| (−x) |e+〉. The form of Eq.
(6) still resembles the CB case, where dipolar coupling can-
not modify the spins. However, the additionalkzτyσx term in
Heff

LK makes the key difference to the CB, and accounts for the
SOI featured in the LK Hamiltonian. Indeed, by diagonalizing
Heff

LK + HDR we find that the DRSOI lifts the two-fold degen-
eracy, as plotted in Fig. 4. Surprisingly, the effects closely
resemble a standard RSOI for holes in a transverse electric
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FIG. 4. Dispersion relation for holes in a Ge nanowire ofR = 10 nm,
negligible shell, and an applied electric fieldEx along x, calculated
from Heff

LK + HDR, Eqs. (3) and (6), withHDR as the DRSOI Hamil-
tonian. Hole bands of lowest (higher) energy are plotted blue (red).
RSOI is about 100 times smaller than DRSOI and thus negligible.
Note that DRSOI shows qualitatively similar features to standard
Rashba SOI with dispersion curves shifted alongkz against each
other.

field (see discussion below). [Again, this is not the case for
the CB whereHed does not lift the degeneracy since spin and
orbit are decoupled (in leading order).]

As a consequence, when analyzing the eigenstates ofHeff
LK +

HDR for their spin properties, we find that an electric field gen-
erates helical ground states, i.e., holes of opposite spin move
in opposite directions. Figure 5 (top) shows the splitting of the
lowest band whenEx = 6 V/µm is applied to a typical Ge/Si
nanowire of 5 nm core radius and 1.5 nm shell thickness. Even
though RSOI is absent, the result resembles the typical CB
spectra considered in previous studies, where Rashba SOI for
electrons leads to two horizontally shifted parabolas in theE-k
diagram.12–14,17,24,31Moreover, the analogy also holds for the
spins, which are twisted towards they direction, perpendicu-
lar to both the propagation axisz and the field directionx. As
Fig. 5 (bottom) illustrates,〈Jy〉 in the ground state is an anti-
symmetric function ofkz, the characteristic feature of a helical
mode. We note that〈Jx〉 = 〈Jz〉 = 0 throughout, so that the
spins are indeed oppositely oriented. The values of|Jy| around
the band minima are≥ 1/2, while the spin-orbit (SO) energy,
i.e., the difference between band minimum and degeneracy at
kz = 0, is ESO > 1.0 meV. This value exceeds the reported
100µeV in InAs nanowires by a factor of ten (see also Ap-
pendix E),6,40 and further optimization is definitely possible
via both the gate voltage and the shell thickness.

We can understand the qualitative similarity of DRSOI, Eq.
(6), and RSOI,30

Hso = αEx(kyJz − kzJy), (7)

by projecting the latter onto the low-energy subspace, which
yields

HR = Heff
so ≃ αExS τxσz (8)

for kzR < 1, with S = 〈g+| kyJz |e+〉. Further informa-
tion on Hso, HR, and the Rashba coefficientα can be found
in Appendix F. This formal analogy ofHDR and HR, Eqs.
(6) and (8), immediately implies that Ge/Si nanowires pro-
vide a promising platform for novel quantum effects based

FIG. 5. Top: Splitting of the lowest valence band when an electric
field Ex = 6 V/µm is applied to a Ge/Si nanowire ofR = 5 nm and
Rs = 6.5 nm. Ground (excited) hole states are plotted blue (red).
ESO > 1.0 meV, a large value compared to InAs,6,40 and the degen-
eracy atkz = 0 may be lifted via a magnetic field (see Fig. 6). The
conventional RSOI for holes is negligible. Bottom: Plot of〈Jy〉 for
the above system, where〈Jx〉 and 〈Jz〉 are zero throughout. In the
ground state, the nanowire carries opposite spins in opposite direc-
tions with |〈Jy〉| ≥ 1/2.

on Rashba-type SOI.7,8,11–17,24,31,32A particular advantage of
DRSOI, as compared to conventional Rashba SOI, is its un-
usually large strength. While the Rashba term for holes arises
in third order of multiband perturbation theory and thus scales
with 1/(band gap)2, DRSOI is a first order effect and there-
fore much stronger.30 Explicit values for Ge areU = 0.15R,
S = 0.36/R, andα ≈ −0.4 nm2e, so that, in typical nanowires
with R = 5-10 nm,HDR dominatesHR by one to two orders of
magnitude (Appendix F). Moreover, sizable RSOI would re-
quire unusually small confinement, sinceHR ∝ R−1. In stark
contrast, for DRSOI we findHDR ∝ R, which allows one to
realize the desired coupling strengths in larger wires as well.
The up-scaling, however, is limited by the associated decrease
of level splitting (∝ R−2) and of the termCkzτyσx (∝ R−1) in
Eq. (3).

VII. MAGNETIC FIELD EFFECTS

The Kramers degeneracy can be lifted by an external mag-
netic fieldB, which couples to the holes in two ways. First,
via the orbital motion, through the substitution~k → −i~∇+
eA(r), with A(r) as the vector potential, and secondly, via
the Zeeman couplingHZ

B
= 2κµBB · J , whereκ is a material

parameter. ForB alongz (x), parallel (perpendicular) to the
wire, the 1D Hamiltonian is of form

HB,z = µBBz

(

Z1σz + Z2τzσz + Z3kzτxσy

)

, (9)

HB,x = µBBx

(

X1σx + X2τzσx + X3kzτy

)

, (10)

where the real-valued constantsZi (Xi) are listed in Eq. (G1)
of the appendix. The results agree with recent experiments,
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FIG. 6. Top: Hole spectrum of Fig. 5 (top) in the presence of
Bx = 1 T. The magnetic field opens a gap of 0.30 meV atkz = 0,
corresponding to a g-factor above 5. Bottom: Plot of the ground
state spin,〈Jx〉 and 〈Jy〉, where〈Jz〉 = 0 throughout. At energies
within the gap, the Ge/Si nanowire features helical hole states with
ESO > 1.0 meV,|kz | ≃ 90µm−1, and|〈Jy〉| ≥ 1/2.

where the g-factors in Ge/Si nanowire-based QDs (multi-hole
regime) were found to vary dramatically with both the orien-
tation ofB and also the QD confinement.27,28 In the absence
of electric fields, the ground state g-factorg‖(kz) for Bz along
the wire turns out to be small forkz = 0, |g‖(0)| ≃ 0.1, and
increases as|kz| increases. In contrast, the g-factorg⊥(kz) for
a perpendicular fieldBx is large atkz = 0, |g⊥(0)| ≃ 6, and de-
creases as|kz| increases, untilg⊥(kz) eventually changes sign
at |kz| ≈ 0.5/R. We note that these results for the ground
state cannot be directly compared to experimental results in
the multi-hole regime, as the g-factors in the excited stateal-
ready show a clearly different dependence onkz. In the pres-
ence of an electric fieldEx, the effectiveg‖ andg⊥ at kz = 0
may, to some extent, be tuned by the strength ofEx.

Detailed analysis of the low-energy Hamiltonian yields that
the combination of magnetic and electric fields allows for op-
timal tuning of the energy spectrum. For instance,Bx = 1 T
opens a gap of 0.30 meV atkz = 0 in Fig. 5 (top), keeping
the spin properties forkz , 0 unaffected. This corresponds
to |g⊥(0)| ≃ 5.2 and is illustrated in Fig. 6. Setting the Fermi
level within the induced gap, the spectrum of Fig. 6 presentsa
promising basis for applications using helical hole states. Re-
markably, an all-perpendicular setup with, e.g.,Bx alongx and
Ey alongy, HDR,y = −eEyUτy, leads to an asymmetric spec-
trum where only states with one particular direction of motion
may be occupied, which moreover provide a well-polarized
spin along the magnetic field axis. As before, this does not
require standard RSOI.

VIII. DISCUSSION

The low-energy properties found in this work make Ge/Si
core/shell nanowires promising candidates for applications.

The dipole-induced formation of helical modes proves use-
ful for several reasons. First, strength and orientation ofex-
ternally applied electric fields are well controllable via gates.
Secondly, the DRSOI scales linearly inR, instead ofR−1, and
thicker wires remain operational. Thirdly, the system is sensi-
tive to magnetic fields, and undesired degeneracies atkz = 0
may easily be lifted, with|g⊥(0)| & 5. Finally, helical modes
with large ESO and wave numberskF are achievable using
moderate electric fields of order V/µm. In Fig. 6, setting the
Fermi level inside the gap opened by the magnetic field, these
are ESO > 1.0 meV andkF ≃ 90µm−1, with |〈Jy〉| ≥ 1/2,
and optimization via both the gate voltage and the Si shell is
possible. ForR = 10 nm and thin shells, due to the quasi-
degeneracy atγ→ 0, even small electric fields of∼ 0.1 V/µm
are sufficient to form helical states withESO & 0.3 meV. Re-
cent experiments agree well with the theory presented here.
Indeed, magneto-transport measurements on Ge/Si nanowires
point towards a very strong SOI, externally controllable via
electric fields.41

The nanowire spectrum can be changed from the quasi-
degenerate to an electron-like regime, depending on the shell
thickness. This moreover holds for QD spectra, so that,
given the strong response to electric and magnetic fields,
Ge/Si wires also seem attractive for applications in quan-
tum information processing, particularly via electric-dipole-
induced spin resonance.7,8,42 Finally, when combined with a
superconductor,10 the DRSOI in these wires provides a useful
platform for Majorana fermions.11–16
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Appendix A: Representation of spin matrices

All results presented in this article are based on the follow-
ing representation of the spin 3/2 matrices,

Jx =





































0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0





































, (A1)

Jy =





































0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0





































, (A2)

Jz =





























3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2





























. (A3)
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The Pauli operatorsτi (referring to{g, e}) andσi (acting on
{+,−}) are defined as

τx =

(

0 1
1 0

)

, τy =

(

0 −i
i 0

)

, τz =

(

1 0
0 −1

)

. (A4)

(σi analogously)

Appendix B: Basis states for the effective 1D Hamiltonian

In this second section of the appendix we outline the cal-
culation of the basis states{g+, g−, e+, e−}. For kz = 0, each
of the 4× 4 blocks for given quantum numberFz and energy
E reduces to two 2× 2 blocks, labeled by± according to the
sign of the contained spin state|±3/2〉. In the absence of con-
finement, using an ansatz analogous to Refs. 36 and 37, the
eigenstates to be considered are

ψ
Fz

hh,± = JFz∓3/2(khhr)ei(Fz∓3/2)φ |±3/2〉

−
√

3JFz±1/2(khhr)ei(Fz±1/2)φ |∓1/2〉 , (B1)

ψ
Fz

lh,± =
√

3JFz∓3/2(klhr)ei(Fz∓3/2)φ |±3/2〉

+ JFz±1/2(klhr)ei(Fz±1/2)φ |∓1/2〉 , (B2)

where theJn(x) are Bessel functions of the first kind, and

khh,lh ≡
1
~

√

2mE
γ1 ∓ 2γs

. (B3)

When confinement is present, the eigenstates read

Φ
Fz
± (r, φ) = aFz

± ψ
Fz

hh,±(r, φ) + bFz
± ψ

Fz

lh,±(r, φ), (B4)

where the coefficientsaFz
± , b

Fz
± and the energiesE are to be

found from the boundary conditionΦFz
± (R, φ) = 0, resulting in

the determinant equations

0 = JFz∓3/2(khhR)JFz±1/2(klhR)

+ 3JFz±1/2(khhR)JFz∓3/2(klhR). (B5)

By solving the above equations, we find that for± the lowest
eigenenergy corresponds toFz = ∓1/2, and the second low-
est one toFz = ±1/2. The associated eigenstatesg± ≡ Φ∓1/2

±
ande± ≡ Φ±1/2

± for the transverse motion are found by cal-
culating the coefficientsa∓1/2

± , b∓1/2
± , a±1/2

± , b±1/2
± , respectively,

and serve as the basis states in the effective 1D Hamiltonian.
Normalization requires

〈g± | g±〉 =
∫ R

0
drr

∫ 2π

0
dφ |g±|2 = 1. (B6)

(e± analogously)

It turns out that the excited states are purelyhh-like, b±1/2
± = 0,

and we choose the complex phases such that all coefficients
are real, witha∓1/2

± < 0, b∓1/2
± > 0, anda±1/2

± > 0.

Appendix C: Bir-Pikus Hamiltonian

Referring to holes, the Bir-Pikus Hamiltonian reads

HBP = −
(

a +
5
4

b

)

∑

i

ǫii + b
∑

i

ǫii J
2
i

+
2d
√

3

(

ǫxy

{

Jx, Jy

}

+ c.p.
)

, (C1)

wherea, b, andd are the deformation potentials,ǫi j = ǫ ji

are the strain tensor elements,{A, B} ≡ (AB + BA)/2, and
“c.p.” stands for cyclic permutations.39 For Ge, the deforma-
tion potentials areb ≃ −2.5 eV andd ≃ −5.0 eV,39 so that the
spherical approximationd =

√
3b applies. The hydrostatic

deformation potentiala accounts for the constant energy shift
of the VB in the presence of hydrostatic strain, and therefore
does not contribute toδ(γ), i.e., the rescaling of the energy
gap∆.

Appendix D: Quantum dot spectrum

When the quantum dot lengthL is much larger than the core
radiusR, Fig. 1, the spectrum can be well approximated using
the effective Hamiltonian for extended states. In the absence
of external fields,Fz remains a good quantum number and the
Hamiltonian

Heff
LK =













































~
2k2

z

2mg
−iCkz 0 0

iCkz
~

2k2
z

2me
+ ∆ + δ(γ) 0 0

0 0 ~
2k2

z

2mg
−iCkz

0 0 iCkz
~

2k2
z

2me
+ ∆ + δ(γ)













































,

(D1)
here explicitly written out in the basis{g+, e−, g−, e+} for il-
lustration purposes, is 2× 2 block diagonal with degenerate
eigenstates. The subspace{g+, e−} corresponds toFz = −1/2,
while {g−, e+} corresponds toFz = +1/2. Aiming at the quan-
tum dot spectrum, we introduce two complex functionsgn(z)
anden(z), for which we require

















~
2k2

z

2mg
−iCkz

iCkz
~

2k2
z

2me
+ ∆ + δ(γ)

















(

gn(z)
en(z)

)

= En

(

gn(z)
en(z)

)

. (D2)

The associated set of coupled differential equations reads

0 = −
~

2

2mg
g′′n (z) − Ce′n(z) − Engn(z), (D3)

0 = − ~
2

2me
e′′n (z) + Cg′n(z) + (∆ + δ(γ) − En) en(z), (D4)

and in addition we demandgn(0) = en(0) = gn(L) = en(L) = 0
due to hard wall confinement atz = 0 andz = L. Having
solved the differential equations, these boundary conditions
finally lead to a determinant equation for the eigenenergies
En, which can be analyzed numerically. Results are plotted in
Fig. 3.
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Appendix E: Spin-orbit energy in InAs nanowires

For electrons in an electric fieldEx alongx, the Hamiltonian
for Rashba SOI is of form

Hel
so = αEx(kzσy − kyσz), (E1)

whereα is the Rashba coefficient in the conduction band (Γc
6)

andσi are the Pauli matrices for spin 1/2.30 In the following,
we use the notationαx ≡ αEx for illustration purposes. As-
suming a nanowire in which the electron moves freely along
thez direction with effective massm∗, the Hamiltonian of the
system becomes

Hel =
~

2k2
z

2m∗
+ αxkzσy, (E2)

with eigenspectrum

E± =
~

2

2m∗

(

kz ±
m∗ |αx|
~2

)2

−
m∗α2

x

2~2

=
~

2

2m∗
(

kz ± l−1
SO

)2
− ESO. (E3)

The spin-orbit length is defined aslSO ≡ ~2/ (m∗ |αx |), and the
SO energy, the energy difference between the band minima
and the degeneracy atkz = 0, is ESO = m∗α2

x/(2~
2), so that

ESO =
~

2

2m∗
l−2
SO. (E4)

We can use Eq. (E4) to calculate the spin-orbit energy for InAs
wires, wherelSO has recently been measured.6,40 Using lSO ≃
127 nm andm∗ ≃ m∗bulk = 0.023m,6 the SO energy in InAs
is ESO ≃ 100µeV. Further experiments confirmed thatlSO

typically varies between 100 and 200 nm in InAs nanowires,40

and in the latter caseESO ≃ 40µeV only.

Appendix F: Standard Rashba SOI and Rashba coefficient

Both Ge and Si are inversion symmetric, and thus coupling
of Dresselhaus-type is absent. However, this does not ex-
clude the conventional Rashba term (RSOI), Eq. (7). Here
we briefly outline its derivation, details are described in Ref.
30. As in Sec. VI, we assume a constant electric fieldEx

along thex axis, which, referring to holes, results in the dipole
termHed = −eExx as a perturbation added to the potential en-
ergy. Accordingly,Hed is added to the multiband Hamiltonian
(envelope function approximation), where it appears only on
the diagonal, while off-diagonal parts provide thek · p cou-
pling. Finally, a Schrieffer-Wolff transformation of the multi-
band Hamiltonian, with focus on the valence bandΓv

8, yields
the Rashba term

Hso = αEx(kyJz − kzJy), (F1)

α ≃ − eP2

3E2
0

, (F2)

in third order of the perturbation theory, whereα is the Rashba
coefficient and additional, negligible terms have been omitted.
In Eq. (F2),E0 is the band gap (direct,k = 0) between con-
duction (Γc

6) and valence band (Γv
8), andP is the corresponding

momentum matrix element between thes-like Γc
6 and thep-

like Γv
8, Γ

v
7 states.30 For Ge, explicit values areE0 = 0.90 eV

andP = 9.7 eVÅ,43 which yieldsα ≈ −0.4 nm2e.
We can project Eq. (F1) onto the low-energy subspace
{g+, g−, e+, e−} by calculating the 16 matrix elements. The ef-
fective Hamiltonian for RSOI takes on the form

HR = Heff
so = αExS τxσz + αExkz..., (F3)

whereS = 〈g+| kyJz |e+〉. This Hamiltonian has two effects:
first, it features a constant coupling between theg ande states,
and secondly, it provides a term which is linear inkz and mixes
the spin blocks. The latter is absent atkz = 0, so that only the
constant termαExS τxσz contributes for smallkz, which is of
the same form as the direct Rashba SOIHDR = eExUτxσz

(DRSOI) resulting from dipolar coupling. Finally, we note
that

eExU
αExS

≃ −1.1
R2

nm2
(F4)

for Ge, so that the DRSOI dominates RSOI by one to two
orders of magnitude in typical Ge/Si nanowires of 5-10 nm
core radius.

Appendix G: Coupling to magnetic fields

In Eqs. (9) and (10), we show the effect of external mag-
netic fields on the low-energy sector for fields applied along
(z) and perpendicular (x) to the nanowire, respectively. Below,
the explicit values forZi andXi are listed,

Z1 = 0.75 X1 = 2.72
Z2 = −0.81 X2 = 0.17
Z3 = 2.38R X3 = 8.04R,

(G1)

using the parametersγ1 = 13.35,γs = 5.11, andκ = 3.41 for
Ge.35
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