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Magneto-transport measurements in a wide GaAs quantum well in which we can tune the Fermi
energy (EF ) to lie in different Landau levels of the two occupied electric subbands reveal a remarkable
pattern for the appearance and disappearance of fractional quantum Hall states at ν = 10/3, 11/3,
13/3, 14/3, 16/3, and 17/3. The data provide direct evidence that the q/3 states are stable and
strong even at such high fillings as long as EF lies in a ground-state (N = 0) Landau level of
either of the two electric subbands, regardless of whether that level belongs to the symmetric or the
anti-symmetric subband. Evidently, the node in the out-of-plane direction of the anti-symmetric
subband does not de-stabilize the q/3 fractional states. On the other hand, when EF lies in an
excited (N > 0) Landau level of either subband, the wavefunction node(s) in the in-plane direction
weaken or completely de-stabilize the q/3 fractional quantum Hall states. Our data also reveal that
the strength of the q/3 fractional states near the crossing of two Landau levels belonging to the
two subbands depends on the relative spin polarization of the levels; specifically, the states remain
stable very near the crossing if the two levels have parallel spins.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect,1 signaled by the vanishing of the longitudinal resistance and the quan-
tization of the Hall resistance, is the hallmark of an interacting two-dimensional electron system (2DES) in a large
perpendicular magnetic field. It is a unique incompressible quantum liquid phase described by the celebrated Laughlin
wavefunction.2 In a standard, single-subband 2DES confined to a low-disorder GaAs quantum well, the FQH effect
is most prominently observed at low Landau level (LL) filling factors ν < 2, where the Fermi energy (EF ) lies in the
spin-resolved LLs with the lowest orbital index (N = 0).3 The strongest states are seen at the q/3 fractional fillings,
namely at ν = 1/3, 2/3, 4/3, and 5/3. In contrast, as illustrated in Fig. 1(a), when EF lies in the second (N = 1) set
of LLs (2 < ν < 4), the equivalent q/3 states at ν = 7/3, 8/3, 10/3, and 11/3 are much weaker.4,5 In yet higher LLs
(ν > 4), e.g., at ν =13/3, 14/3, 16/3, and 17/3, which correspond to EF being in the third (N = 2) set of LLs, the
FQH states are essentially absent;6–8 see Fig. 1(a). This absence is believed to be a result of the larger extent of the
electron wavefunction (in the 2D plane) and its extra nodes that modify the (exchange-correlation) interaction effects
and favor the stability of various non-uniform charge density states (e.g., stripe phases) over the FQH states.9–13

Recently, the FQH effect was examined in a wide GaAs quantum well where two electric subbands are occupied.14

A main finding of Ref. 14 is highlighted in Fig. 1(b): When the Fermi level (EF ) lies in the N = 0 LLs of the
anti-symmetric electric subband, the even-denominator FQH states (at ν = 5/2 and 7/2) are absent and, instead,
strong FQH states are observed at q/3 fillings ν = 7/3, 8/3, 10/3 and 11/3, as well as at q/5 fillings such as 12/5,
13/5, 17/5 and 18/5. Here we extend the measurements in this two-subband system and examine the stability of the
q/3 FQH states at even higher fillings as we tune the position of EF to lie in different LLs of the two subbands. At a
fixed 2DES density, we observe a remarkable pattern of alternating appearance and disappearance of the q/3 states
as we tune the subband separation and the position of EF . The data demonstrate that the q/3 states are stable even
at filling factors as high as ν = 17/3, as long as EF lies in a ground state (N = 0) LL, regardless of whether that LL
belongs to the symmetric or anti-symmetric subband.
Our data also provide evidence that the stability of q/3 FQH states near the crossing (at EF ) of two LLs belonging

to two subbands depends on the relative spin configuration of the two crossing LLs. More specifically, the q/3 FQH
states seem to disappear suddenly when the two crossing LLs have antiparallel spins. But when the levels have
parallel spins, the states remain stable near the crossing and disappear slowly. We provide self-consistent in-field
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FIG. 1. Longitudinal resistance (Rxx) vs. magnetic field (B) for electrons confined to: (a) a narrow (well-width W = 30 nm)
and (b) a wide (W = 55 nm) GaAs quantum well. In (a) FQH states at ν = 5/2 and 7/2 can be clearly seen, but the states
at ν = 7/3 and 8/3 are weak. In contrast, the even-denominator states are absent in (b) but strong FQH states are seen
at ν = 7/3, 8/3, 10/3 and 11/3. The insets schematically show the positions of the spin-split LLs of the symmetric (S) and
anti-symmetric (A) subbands; the indices N = 0 and 1 indicate the lowest and the excited LLs, respectively. The subband
separation for the trace in (b) is 24 K.
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FIG. 2. (color online) (a) Charge distribution (red) and potential (black), and (b) wave functions from self-consistent simulations
for a 55 nm-wide GaAs QW. The charge density is kept fixed at n = 2.12×1011cm−2. The subband separation ∆ is the smallest
when the QW is balanced (bottom panels), and increases as the QW is imbalanced. (c) The Fourier transform spectra of the
measured low-field Shubnikov-de Haas oscillations. Each spectrum exhibits two main peaks, denoted as BA and BS , whose
separation increases as the QW is imbalanced (from bottom to top). (d) The subband separation ∆ determined from the
Fourier transforms through ∆ = h̄e

m⋆
(BS −BA), plotted as a function of the charge distribution asymmetry δn. The solid curve

represents ∆ vs. δn from self-consistent calculations for a 55 nm-wide GaAs QW.

calculations to examine a possible ”pinning” of the crossing levels in a finite range of magnetic field. The pinning allows
for a charge transfer between the crossing levels, and this charge transfer in turn helps bring the charge distribution
at high fields close to the zero-field distribution. We use the results of such calculations to further discuss the stability
of the q/3 FQH states near the LL crossings.

II. SAMPLE AND EXPERIMENTAL DETAILS

Our sample, grown by molecular beam epitaxy, is a 55 nm-wide GaAs quantum well (QW) bounded on each side
by undoped Al0.24Ga0.76As spacer layers and Si δ-doped layers.15 We fitted the sample with an evaporated Ti/Au
front-gate and an In back-gate to change the 2D electron density, n, and tune the charge distribution symmetry and
the occupancy of the two electric subbands, as demonstrated in Fig. 2. This tunability, combined with the very high
mobility (∼ 400 m2/Vs) of the sample, is key to our success in probing the strength of the q/3 states at high fillings.
When the QW in our experiments is ”balanced”, i.e., the charge distribution is symmetric, the occupied subbands

are the symmetric (S) and anti-symmetric (A) states (see the lower panels in Figs. 2(a) and (b)). When the QW is
”imbalanced,” the two occupied subbands are no longer symmetric or anti-symmetric; nevertheless, for brevity, we
still refer to these as S (ground state) and A (excited state). In our experiments, we carefully control the electron
density and charge distribution symmetry in the QW by applying back- and front-gate biases.16,17 For each pair of
gate biases, we measure the occupied subband electron densities from the Fourier transforms of the low-field (B ≤ 0.5
T) Shubnikov-de Haas oscillations. These Fourier transforms, examples of which are shown in Fig. 2(c), exhibit two
peaks (BS and BA) whose frequencies, multiplied by 2e/h, give the subband densities, nS and nA. The difference

between these densities directly gives the subband separation, ∆, through the expression ∆ = πh̄
2

m∗
(nS − nA), where

m∗ is the electron effective mass. Note that, at a fixed total density, ∆ is smallest when the charge distribution is
balanced and it increases as the QW is imbalanced. Figure 2(d) shows the measured ∆ as a function of the charge
δn transferred between the back and front sides of the QW. Note that we measure δn from the change in the sample
density induced by the application of either the back-gate or the front-gate bias.

III. MAGNETO-TRANSPORT DATA

Figure 3 shows a series of longitudinal resistance (Rxx) vs. magnetic field (B) traces taken at a fixed density
n = 2.12 × 1011 cm−2 as the subband spacing is increased. The y-axis is ∆, which is measured from the low-field
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FIG. 3. Waterfall plot of Rxx vs. B taken at a fixed density n = 2.12 × 1011cm−2 as the subband separation (∆) is increased.
The scale for Rxx is indicted in the upper left (0 to 1 kΩ). Each trace is shifted vertically so that its zero (of Rxx) is aligned
with its measured value of ∆ which is used as the y-axis of the waterfall plot. Vertical lines mark the field positions of the
filling factors, ν.

Shubnikov-de Haas oscillations of each trace. The same data are interpolated and presented in a color-scale plot in
Fig. 4(a). In Fig. 5, we show a color-scale plot of the data in the low field regime.

In Figs. 3, 4(a), and 5 we observe numerous LL coincidences at various integer filling factors, signaled by a weakening
or disappearance of the Rxx minimum. For example, the Rxx minimum at ν = 4 is strong and wide at all values
of ∆ except near ∆ = 32 and 58 K, marked by squares in Fig. 4(a), where it becomes narrow or disappears. Such
coincidences can be easily explained in a simple, qualitative fan diagram of the LL energies in our system as a function
of increasing ∆, as schematically shown in Fig. 4(b). In this figure, we denote an energy level by its subband index (S
or A), LL index (N = 0, 1, 2, · · ·), and spin (↑ or ↓). Also indicated in Fig. 4(b) are the separations between various
levels: the cyclotron energy (EC = h̄eB/m∗), Zeeman energy (EZ = g∗µBB, where g∗ is the effective Landé g-factor),
and ∆. From Fig. 4(b) it is clear that the condition for observing a LL coincidence at odd fillings is ∆ = iEC , while
for coincidences at even fillings, the condition is ∆ = iEC ± EZ ; in both cases, i is a positive integer.

In Figs. 4(a) and 4(b), we have indicated the two coincidences at ν = 4 with squares. Note that the coincidences
at even fillings correspond to a crossing of two levels with antiparallel spins. In Figs. 3 and 4(a), the coincidences
at low, odd fillings (e.g., ν = 3 and 5) are not as easy to see at low temperatures since the resistance minima remain
strong as the two LLs, which have parallel spins, cross. Such behavior has been reported previously and has been
interpreted as a signature of easy-plane ferromagnetism.18–20 We note that our data taken at higher temperatures (T
= 0.31 K) reveal a weakening of the ν = 5 Rxx minimum at ∆ = 35 K, and of the ν = 3 minimum at ∆ = 58 K;21

these are marked by circles in Fig. 4(a). The crossings at higher odd fillings are clearly seen in Figs. 4(a) and 5; e.g.,
the ν = 7 Rxx minimum disappears at around ∆ = 50 K, and the ν = 9 Rxx minimum around ∆ = 40 K and 60 K.22

In Figs. 4(a) and 5 we include several solid white lines representing ∆ = iEC , assuming GaAs band effective mass
of m∗ = 0.067 (in units of free electron mass). These lines indeed pass through the positions of the observed LL
coincidences at odd-integer fillings, implying that ∆ is not re-normalized at these coincidences. We will return to
the possibility of the re-normalization of ∆ near coincidences later in the paper. The dashed lines in Figs. 4(a) and
5, represent ∆ = iEC ± EZ , i = 1, 2, ..., where g∗ is chosen as a fitting parameter so that these lines pass through
the observed coincidences at even-integer fillings. All the dashed lines in Figs. 4(a) and 5 are drawn using g∗ = 8.8,
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except for the ∆ = EC − EZ line, which is drawn using g∗ = 7.6.
We conclude that g∗ is enhanced by a factor of ∼ 20 relative to the GaAs band g-factor (0.44). This enhancement is

somewhat larger than the values reported for GaAs QWs with two subbands occupied. For example, Muraki et al.19

reported a ∼ 10-fold enhancement of g∗ for electrons in a 40 nm-wide QW with n ∼ 3×1011 cm−2 while Zhang et al.23

measured a ∼ 5-fold enhancement in a 24 nm-wide QW with n ∼ 7 × 1011 cm−2. In GaAs/AlGaAs hetero-junction
samples, Leadley et al.24 report a density-dependent g∗ which is about 14-fold enhanced at a density comparable to
our sample density. It appears then that the enhancement depends on the QW width, confining potential, and electron
density, and a systematic study of the enhancement would be an interesting future project. We would also like to
emphasize that the dashed lines in Figs. 4(a) and 5 pass through nearly all of the observed coincidences quite well.
Since each of these lines are drown using very similar g∗, the data imply that the enhancement is nearly independent
of the filling factor. This is surprising, because an exchange-enhanced g∗ is theoretically expected to depend on the
filling factor.25 We mention, however, that the observation of a significantly enhanced g-factor which is essentially
independent of the filling factor is not unprecedented and has been reported before for 2D electrons in GaAs24 and
in AlAs26.
We now focus on the main finding of our work, namely the correspondence between the stability of the FQH states

and the position of EF . Note in Figs. 3 and 4(a) that FQH states are observed only in certain ranges of ∆. For
example, the ν = 10/3 and 11/3 states are seen in the regions marked by A and C in Fig. 4(a) but they are essentially
absent in the B region. The ν = 13/3 and 14/3 states, on the other hand, are absent in regions D and F while they
are clearly seen in regions E and G.
To understand this behavior, in the fan diagram of Fig. 4(b) we have highlighted the position of EF as a function

of ∆ for different filling factors by color-coded lines. Concentrating on the range 3 < ν < 4 (green line in Fig. 4(b)),
at small values of ∆ (region A), EF lies in the A0↓ level. At higher ∆, past the first ν = 4 coincidence which occurs
when ∆ = EC −EZ , EF is in the S1↑ level (region B). Once ∆ exceeds EC , EF lies in the A0↑ level (region C) until
the second ν = 4 coincidence occurs when ∆ = EC + EZ . Note in Fig. 4(a) that strong FQH states at ν = 10/3 and
11/3 are seen in regions A and C. From the fan diagram of Fig. 4(b) it is clear that in these regions EF is in the
ground-state (N = 0) LLs of the asymmetric subband, i.e., A0↑ and A0↓. In contrast, in region B, where the 10/3
and 11/3 states are essentially absent, EF lies in an excited (N = 1) LL, namely, S1↑. We conclude that the 10/3
and 11/3 FQH states are stable and strong when EF lies in a ground-state LL.
The data in the range 4 < ν < 5 corroborate the above conclusion. In Fig. 4(b) we represent the position of EF

in this filling range by a blue line. In regions E and G, EF lies in the ground-state LLs of the asymmetric subband
(A0↓ and A0↑), and these regions are indeed where the ν = 13/3 and 14/3 FQH states are seen. In regions D and F,
on the other hand, EF is in the excited LLs of the symmetric subband (S1↑ and S1↓), and the 13/3 and 14/3 FQH
states are absent. Data at yet higher fillings (5 < ν < 6) follow the same trend: FQH states at ν = 16/3 and 17/3
are seen in region I when EF is in the A0↓ level,27 but they are absent in regions H or J where EF lies in the S1↓ or
S2↑ levels.
In Fig. 6 we show additional data for a density of n = 2.90 × 1011 cm−2 in the same QW. Longitudinal and Hall

resistance traces are shown in the bottom panels for three different values of ∆, and in each panel the calculated charge
distribution (at B = 0) is also shown. In the top panels, we show the positions of the LLs and EF , corresponding to
the filling factors in the bottom panels. In all cases, strong q/3 FQH states are observed when EF lies in the A0↓
level. Note that the data shown in Fig. 6 are for asymmetric charge distributions. We would like to emphasize that
strong q/3 states are also observed for symmetric (balanced) charge distributions; e.g., see the bottom trace in Fig.
3, or the traces in Fig. 2(c) of Shabani et al.14

Next we address the FQH states observed at lower ν (< 3) in our sample. Data are shown for n = 2.12 × 1011

cm−2 for the balanced QW (∆ = 23 K) in Fig. 7; the Rxx trace is an extension of the lowest trace shown in Fig. 3.
In the range 1 < ν < 3, strong FQH states are seen at ν = 4/3, 5/3, 7/3 and 8/3. Data taken at yet higher magnetic
fields (not shown) reveal the presence of a very strong FQH state at ν = 2/3. From the fan diagram of Fig. 4(b), it
is clear that EF at these fillings lies in an N = 0 LL, namely, the A0↑ (ν = 7/3 and 8/3), S0↓ (ν = 4/3 and 5/3), or
S0↑ (ν = 2/3) levels.28

IV. DISCUSSION

Our observations provide direct evidence that the q/3 FQH states are strong when EF resides in a ground-state
(N = 0) LL, regardless of whether that LL belongs to the A or S subband. This finding implies that the node
in the wavefunction in the out-of -plane direction does not significantly de-stabilize the q/3 FQH states. On the
other hand, when EF lies in an N > 0 LL, the wavefunction node(s) in the in-plane direction weaken or completely
de-stabilize the q/3 FQH states. These conclusions are consistent with the data from single-subband samples,4,6–8

as well as theoretical calculations.5,9–13 In a composite Fermion picture, our data also imply that the fully-occupied,
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lower-lying LLs are essentially inert and the composite Fermions are formed in the partially filled LL where EF lies.
The composite Fermions, however, could have a spin and/or subband degree of freedom, as we discuss at the end of
this section (see also, Ref. 14).
Our data also allow us to assess the stability of the FQH states as two LLs approach each other. It is clear in

Fig. 4(a) that Rxx data near LL coincidences at even (ν = 4 and 6) or odd (ν = 3 and 5) fillings exhibit different
features. As we approach the ∆ = EC − EZ line from the A region, the 10/3 and 11/3 FQH states remain strong
and abruptly disappear before they reach the dashed line, near which, no FQH states but rather large Rxx peaks are
seen. A similar statement can be made regarding the stability of the other q/3 FQH states when a dashed line is
approached from a circled region. All these cases correspond to the crossing of two LLs with antiparallel spins. Near
the coincidences where two parallel spin LLs are crossing at EF , on the other hand, instead of abruptly disappearing
and being replaced by Rxx peaks, the q/3 states persist and gradually become weaker. For example, the ν = 10/3
FQH state persists very close to the ∆ = EC line as we approach this line from reagion C. These observations suggest
that the relative spins of the two approaching LLs play a role in the stability of the q/3 FQH states.
It is worth re-iterating that, as is evident from Figs. 3 and 4(a) data, the relative spins of the two approaching

LLs also play a crucial role in the stability of the integer quantum Hall (IQH) states. For antiparallel-spin LLs, the
IQH state (e.g., at ν = 4) becomes very weak or completely disappears, while for the parallel-spin LLs the IQH state
(e.g., at ν = 3), remains strong. This behavior has been attributed to easy-axis (for an antiparallel-spin crossing) and
easy-plane (for a parallel-spin crossing) ferromagnetism.18–20

In order to further discuss the stability of the FQH states near LL crossings, we examine the possibility that ∆ is
re-normalized near LL coincidences. As pointed out in Ref. 29, when only a small number of quantized LLs belonging
to two different subbands are occupied, the distribution of electrons between these levels does not necessarily match
the B = 0 subband densities. This leads to a mismatch between the total electron charge density distributions
at B = 0 and high B. A pinning of two crossing LLs belonging to different electric subbands and a charge transfer
between these levels can help bring these distributions closer to each other. The pinning also implies that the subband
separation in magnetic field (∆(B)) is re-normalized and is different from the zero-field subband separation (∆).29–31

To examine the role of such a pinning quantitatively, we performed self-consistent calculations of the potential energy
and charge distribution at high B, similar to those described in Ref. 29. The calculations provide the boundaries
inside which two LLs are pinned together at EF .
Examples of the calculated boundaries are shown by solid lines (rhombohedral-shaped ”boxes”) in Fig. 8(a). Each
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box marks the boundary inside which the two crossing LLs (at EF ) are pinned together near an integer filling. To
explain how we calculated these boundaries, let us focus on the lower left box labeled ”∆(B) = EC” in Fig. 8(a);
we will refer to this box as the ”ν = 5 box”. Inside this box, which corresponds to the crossing of the A0↓ and
S1↓ levels near ν = 5, the in-field subband separation is given by ∆(B) = EC . This expression ensures that ∆(B)
is fixed at a given B, consistent with the pinning of the S1↓ and A0↓ levels. Consider next a series of in-field self-
consistent calculations, all done for a total density equal to 2.12 × 1011 cm−2 but each corresponding to a different
QW asymmetry. For each QW asymmetry, the in-field charge distribution is given by:

ρ(B) = e(eB/h)[νS · |ψS(B)|2 + νA · |ψA(B)|2]. (1)

Now, for each point on the ”ν = 5 box” boundary, νS and νA have specific and well-defined values. For example, at
ν = 5 (B = 1.75 T), for which we show the results of our self-consistent calculations in Figs. 8(b-d), we have νS = 4
and νA = 1 for the upper boundary and νS = 3 and νA = 2 for the lower one. Note that νS = 4 and νA = 1 at
the upper boundary corresponds to level A0↓ having just de-pinned from S1↓ and moved above it (Fig. 8(b)), while
νS = 3 and νA = 2 corresponds to A0↓ having just moved below S1↓ (Fig. 8(d)). Focusing on the upper boundary at
ν = 5, we set νS = 4 and νA = 1 in Eq. (1), and perform a series of self-consistent calculations, each for a different
QW symmetry. One of these calculations in particular has a subband separation which is equal to ∆(B) = EC (= 35
K for B = 1.75 T). This particular QW asymmetry gives the upper boundary at B = 1.75 T. We then calculate the
zero-field subband separation for this QW asymmetry, which turns out to be ∆ = 42 K, and mark it in Fig. 8(a) as
the upper boundary for the pinning of the A0↓ and S1↓ levels at B = 1.75 T. Note that the above procedure ensures
that, at the upper boundary, ∆(B) at B = 1.75 T is equal to 35 K and the electron charge distributions at zero-field
and at 1.75 T are very close to each other (see the blue and red curves in Fig. 8(b)). For the lower boundary of the
”ν = 5 box” at B = 1.75 T, we follow the same procedure but use νS = 3 and νA = 2 in the calculations. We find
that the QW asymmetry that gives ∆(B) = 35 K corresponds to a zero-field ∆ of 29 K which we mark in Fig. 8(a)
as the lower boundary at 1.75 T.
The rest of the ”ν = 5 box” boundaries in Fig. 8(a) are determined in a similar fashion. For example, at a field

of 2.00 T (ν = 4.38, ∆(B) = 40 K), to determine the upper boundary we set νS = 4 and νA = ν − νS = 0.38 and
do a series of in-field self-consistent calculations to find the QW asymmetry that gives a subband separation of 40
K. We then calculate the zero-field subband separation for this particular QW asymmetry; this turns out to be 25
K which we mark as the upper boundary of the ”ν = 5 box” at B = 2.00 T. Following the same procedure, we also
find and draw the boundaries for the pinning of the S1↑ and A1↑ LLs when they coincide (at EF ) at and near ν =
3. These boundaries are shown in Fig. 8(a) by the upper right box labeled ”∆(B) = EC”. Similarly, we calculated
the boundaries for the pinning of coinciding LLs near ν = 4 and 6, and show these in Fig. 8(a). For the box labeled
”∆(B) = 2EC − EZ” we assumed g∗ = 8.8, while for the two boxes labeled ”∆(B) = EC ± EZ” we used g∗ = 7.6.
We note that the boundaries of these boxes depend weakly on the value of g∗ used. For example, the lower boundary
of the ∆(B) = EC −EZ box centered around ν = 4 moves up/down by ∼ 0.6 K, and the upper boundary by ∼ 3 K,
if we use a g∗ which is smaller/larger than 7.6 by 3 (i.e., if we use g∗ = 4.6 or 10.6).
Despite the simplicity of our simulations, the calculated boundaries for the LL crossings near ν = 4 appear to

match the observed features of the data reasonably well. For example, in Fig. 8(a) as we approach the lower right
boundaries of the ∆(B) = EC ± EZ boxes from below (i.e., from regions A or C in Fig. 4(a)), the ν = 10/3 and
11/3 FQH states abruptly disappear when the A0↓ level reaches the S1↑ or S1↓ level at these boundaries. A similar
statement can be made regarding the FQH states at ν = 13/3 and 14/3: these states disappear near the upper left
boundary of the ∆(B) = EC ±EZ boxes.32 We note that in Fig. 8(a) the ν = 10/3 and 11/3 fractional states appear
to slightly penetrate inside the ∆(B) = EC±EZ boxes. This is likely because of the inadequacies and uncertainties in
our calculations. We emphasize that our simulations, which are based on solving Poisson and Schroedinger equations
self-consistently, ignore the exchange-correlation effects and use a constant g-factor for an entire box. It is possible
that calculations which treat many-body interactions properly would account for the ∼ 2-3 K discrepancy between
the boundaries of the boxes and the regions where the FQH states are experimentally observed.
The situation appears to be different, however, as the boundaries of the ∆(B) = EC boxes centered at odd fillings

are approached. The q/3 fractional states do not disappear near these boundaries; instead they seem to penetrate
deep inside these boxes and disappear slowly when the ∆(B) = EC line (the dotted line in Fig. 8(a)) is reached.33

This is clearest in Fig. 8(a) for the ν = 10/3 and 14/3 fractional states. Given that the calculations involve only the
cyclotron energy and not the Zeeman energy, we do not believe that it is the inaccuracy of the calculation which leads
to this surprising observation.
Note that a main difference between the boxes centered at odd compared to even fillings is that an odd-filling box

corresponds to the crossing of two LLs with parallel spins, while the two LLs crossing inside an even-filling box have
antiparallel spins. We believe that the observations described in the preceding two paragraphs might be explained in
terms of easy-axis vs. easy-plane ferromagnetism to which we alluded before.18–20 The sudden disappearance of FQH
states when two LLs with antiparallel spins become degenerate at EF is consistent with easy-axis ferromagnetism.
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Electrons in these levels could condense into domains with opposite magnetization. The large resistance (bright colors
in Figs. 4(a) and 8(a)) can be attributed to electron scattering and enhanced dissipation at these domain walls.34,35

When the two approaching LLs have parallel spins, on the other hand, we expect the system to exhibit easy-plane
anisotropy. Instead of forming ferromagnetic domains, the wavefunctions of the electrons in these levels can mix and
fractional states are seen deep inside a LL crossing box. These states gradually weaken and eventually disappear as
their wavefunction progressively assumes the character of the N = 1 LL wavefunction.
We highlight three further observations. First, strong FQH states at large q/3 fillings have been recently observed

in very high quality graphene samples.36 These states qualitatively resemble what we see in our two-subband system.
It is tempting to associate the valley degree of freedom in graphene with the subband degree of freedom in our sample.
But the LL structure in graphene is of course different from GaAs so it is not obvious if this association is valid.
Second, data taken in the N = 1 LL at very low temperatures and in the highest quality, single-subband samples
exhibit FQH states at even-denominator fillings ν = 5/2 and 7/2.37,38 In the traces shown in Fig. 3, we do not see
any even-denominator states when N = 1, e.g., at ν = 7/2 in region B where EF is in the S1↑ level. However, in the
same sample, at higher densities (n > 3.4× 1011 cm−2) and at low temperatures (T = 30 mK), we do indeed observe
a FQH state at ν = 7/2 flanked by very weak 10/3 and 11/3 states when EF lies in the S1↑ level.14

Third, in the N = 0 LL, high-quality samples show strong higher-order, odd-denominator FQH states at composite
Fermion filling factor sequences such as 2/5, 3/7, 4/9, etc.3 We do observe a qualitatively similar behavior in our data
when EF is in an N = 0 LL. For example, in region A (Figs. 3 and 4(a)) we see weak but clear minima at ν = 17/5
next to the 10/3 minimum. Again, at higher densities and low temperatures, such states become more developed.14

In Fig. 1(b), for example, there are strong minima at ν = 12/5 and 13/5, adjacent to the 7/3 and 8/3 minima,
and at 17/5 and 18/5, adjacent to the 10/3 and 11/3 minima. These states, as well as the q/3 states, exhibit subtle
evolutions even when EF lies within a fixed N = 0 LL, consistent with the presence of composite Fermions which
have spin and/or subband degrees of freedom.14 A related question concerns the role of charge distribution symmetry
in the stability of the q/3 states. In other words, in a QW with fixed width, density and filling, and with EF in a
particular N = 0 LL, how does the strength of given a FQH state at a particular filling vary with charge distribution
symmetry. We do not have data to answer this question quantitatively, but the data we present here clearly indicates
that a primary factor determining the strength of the q/3 FQH states is whether or not EF lies in an N = 0 LL.

V. SUMMARY

In conclusion, the position of EF is what determines the stability of odd-denominator, q/3 FQH states at a given
filling factor. When EF lies in a ground-state (N = 0) LL, the q/3 FQH states are stable and strong, regardless of
whether that LL belongs to the symmetric or antisymmetric subband. This observation implies that the wavefunction
node in the out-of-plane direction is not detrimental to the stability of these FQH states. Also, the stability of the
q/3 FQH states near the crossing of two LLs depends on the relative spin polarization of these levels.
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