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We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it
from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory – which is shown
to be its dual – on a more microscopic basis and enables us to compute a ground state wave function in the
symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal
DC resistivity due to thermally-excited quasiparticles isanisotropic. We interpret recent experiments at Landau
level filling factorν = 7/3 in terms of our theory.

PACS numbers:

I. INTRODUCTION

A fractional quantized Hall nematic (FQHN) is a phase in
which a fractional quantized Hall conductance coexists with
the broken rotational symmetry characteristic of a nematic,
as in the model introduced in Ref. 1. The idea that a phase
of matter could have both topological order and conventional
broken symmetry is not new; for instance, Hall crystals2,3

and quantum Hall ferromagnets4,5 are other examples. See6

for a more recent discussion in a related system. However,
the FQHN has the unusual feature that the broken symme-
try and the topological order are equally important for de-
termining the system’s transport properties. Furthermore, the
model also predicts an unusual quantum critical point separat-
ing the FQHN from an ordinary isotropic fractional quantum
Hall state.

Remarkably, a recent experiment may have observed a
FQHN7. An in-plane magnetic fieldB‖ is applied to the
ν = 7/3 fractional quantum Hall plateau. When the angle
θ between the total magnetic field and the normal is zero, the
system is essentially isotropic: forT < 100mK, Rxx ≈ Ryy.
At T = 15 mK, there is a well-developed Hall plateau with
Rxy = Ryx = 3

7
h
e2 . At T > 100mK, there is a small (≈

20%) difference betweenRxx andRyy, which may be due to
device geometry, alignment of the contacts, or a small intrinsic
anisotropy acquired by the samples during the growth process.
For tilt anglesθ > 19◦ andT < 50mK, Rxy = Ryx = 3

7
h
e2

while Rxx − Ryy increases with decreasing temperature. In
fact, dRxx/dT < 0 while dRyy/dT > 0 at the lowest ob-
served temperatures. Thus, this experiment finds transport
which is reminiscent of the nematic phases found at half-
filling of higher Landau levels, such asν = 9/2, 11/2, . . .
without an in-plane field8,9 and also atν = 5/2 and7/2 in the
presence of an in-plane field10,11, except for one very strik-
ing difference: the Hall resistance remains quantized in the
anisotropic phase.

We interpret these observations as a slightly rounded tran-
sition between an isotropic fractional quantum Hall phase at
θ < θc

<
∼ 19◦ and an FQHN atθ > θc. The rounding of

the transition is caused by the in-plane field. We believe it
to be a weak rotational symmetry-breaking field because the
system is in an isotropic metallic phase for even larger tilts at

the nearby fractionν = 5/212 and because the anisotropy at
300 mK actually decreases as the tilt is increased from44◦

to 76◦. We conjecture that the most important effect of the
in-plane field is to vary the effective interaction between the
electrons, thereby driving the (almost) spontaneous breaking
of rotational symmetry. We are thus led to apply our model1

to this experiment.
To this end, we give a more microscopic derivation of our

model as a Landau-Ginzburg theory. We thereby recover a
theory which is equivalent, through particle-vortex duality, to
the effective field theory introduced in Ref. 1. In order to
compare theory and experiment more closely, we extend our
previous analysis of zero-temperature, finite-frequency trans-
port to finite-temperature DC transport; in order to do this,
we must enlarge our model to include the effects of gapped
charged quasiparticles. The development of nematic order in-
duces strongly temperature-dependentanisotropy in the quasi-
particle effective masses. We predict that both longitudinal
conductances will eventually vanish at the lowest tempera-
tures, although one of them will have non-monotonic temper-
ature dependence at slightly higher temperatures. We finally
make predictions for transport at and near the transition point.

II. LANDAU-GINZBURG THEORY

A. Overview

One can map the problem of spinless planar electrons in
a transverse magnetic fieldB with Coulomb repulsion, to
an equivalent system of a bosonic order parameterφ of unit
charge coupled to a Chern-Simons gauge fieldaµ

13. The ac-
tion takes the form:

SLG =

∫

d2xdt
(

φ†i(∂t − i(At + at))φ

− 1

2me
|(∂i − i(Ai + ai))φ|2 +

ν

4π
ǫαβγaα∂βaγ

− 1

2

∫

d2y(φ†φ(x) − ρ̄)V (x− y)(φ†φ− ρ̄)
)

. (1)

Aµ is the background electromagnetic field satisfying
ǫij∂iAj = B; ρ̄ is the mean charge density of bosons



2

(or equivalently, electrons);me is the electron band mass;
V(x) is a general two-body potential; and the Chern-Simons
gauge fieldaµ attaches2πν−1 units of statistical flux to each
particle14. In particular, forν−1 an odd integer, the resulting
Aharonov-Bohm phases transmute the bosons into fermions.

We assume that the low-energy effective theory for dis-
tances longer than the magnetic length, obtained by integrat-
ing out short-distance fluctuations ofφ, aµ, has the same form
as the microscopic action (1), but with the bare microscopic
parameters1/me and V (x − y) replaced by renormalized
ones,r̄ andVeff(x − y). Such an ansatz allows one to de-
rive many of the properties of the standard fractional quan-
tum Hall states13,15. Here, we will make the same ansatz, but
without assuming that̄r remains positive. We note that even
the ‘microscopic’ action (1) must be viewed as an effective
low-energy action that describes the partially filledN = 1
Landau level withν = 2 + 1/3. The electrons are confined
to a quantum well of finite-width; a strictly two-dimensional
theory is an effective theory at energy scales far below the
splitting between energy sub-bands for motion perpendicu-
lar to the plane. Thus, the application of the in-plane field
B||, through its modification of the motion perpendicular to
the plane, will modify the parameters inSLG. Consequently,
the effective parameters at distances longer than the magnetic
length will also be modified, but not in a simple or, at present,
transparent way. It is easy to check that reasonable local varia-
tions ofVeff do not cause qualitative changes to the physics of
(1)15. We leave to a future study the question of higher-body
potential terms resulting from a projection of the degrees of
freedom into a specific Landau level.

Therefore, we conjecture that as the in-plane fieldB|| is
varied, the most significant variation is of the parameterr̄. In
other words, we study the instabilities of (1) as the kinetic
structure of the theory is modified.

Since we will be considerinḡr < 0, we add the following
term withc > 0 to the action in order to maintain stability of
the vacuum:

δS = − c

2

∫

d2xdt|(∂i − i(Ai + ai))
2φ|2 . (2)

This theory exhibits a transition between an isotropic frac-
tional quantum Hall phase, when̄r > 0, and an anisotropic
phase with well-quantized Hall conductance (after inclusion
of disorder or a lattice) when̄r < 0, just as in1. The two
phases are separated by a quantum critical point withz = 2
dynamical scaling, arising at̄r = 0.

B. Kohn’s Theorem

On might object to any variation of̄r from its bare value on
the basis of Kohn’s theorem16. (See Section 5 of15 for a dis-
cussion.) In a Galilean-invariant system ofN identical mutu-
ally interacting particles of unit charge and massme subject
to a constant external magnetic fieldB, Kohn’s theorem states
that the density-density correlation function has the low mo-

mentum limit,

lim
q→0

〈ρ(ω, q)ρ(−ω,−q)〉
q2

=
1
me

ω2 − ω2
c

, (3)

The locations of the two poles are determined by the cyclotron
frequencyωc = B/me. For fixedB, the cyclotron frequency
is determined by the bare mass of the particles, independent
of the their relative interactions. The residues of the poles are
equal to±1/2B. The form of this correlator is ensured by
a Ward identity and satisfies an f-sum rule. Kohn’s theorem
roughly states that the center-of-mass of the system always
decouples from the relative coordinate motion of the parti-
cles; it effectively behaves as a single chargeN particle of
massNme, exhibiting circular motion at a frequencyωc in a
background magnetic fieldB. In quantum Hall systems, the
quantum well explicitly breaks translational symmetry in the
z-direction (i.e. perpendicular to the plane). However, the
in-plane center-of-mass motion still decouples from the other
degrees of freedom, so long as the magnetic field is strictly
perpendicular to the plane. Thus, Kohn’s theorem holds even
in this case.

If we now compute the density-density correlator using the
action (1), we find precisely the form dictated by Kohn’s theo-
rem (3). However, the modification1/me → r̄ would change
the location of the pole. This manifestly constitutes a violation
of Kohn’s theorem.

However, the experiment of Ref. 7 does not satisfy the as-
sumptions of Kohn’s theorem. The large in-plane field, com-
bined with the confining well potential (perpendicular to the
plane), manifestly breaks Galilean invariance and does notal-
low a decoupling of the center-of-mass mode. The in-plane
field couples motion along thez-direction to motion in the
plane, while the confining potential in thez-direction cou-
ples thez-component of the center-of-mass position to thez-
component of the relative coordinates. TheN = 1 Landau
level in the devices considered in Ref. 7 is particularly sus-
ceptible to perturbations mixing planar andz-direction mo-
tion because the gap to theN = 0 Landau level of the next
quantum well sub-band is small12.

In summary, our theory, in which̄r is not fixed, applies
to situations, such as those in the experiment of Ref. 7, in
which Kohn’s theorem does not hold. Our theory cannot de-
scribe a fictional system in which the two-dimensional layer
is infinitely-thin and the transition is driven purely by tuning
the inter-electron interaction (without any in-plane field) since
such a system would necessarily satisfy Kohn’s theorem. To
make our point more concrete, we show in the Appendix that,
as a result of the violation of the conditions of Kohn’s the-
orem, the location of the cyclotron pole can vary asB|| is
increased.

C. Duality

We have computed the long wavelength transport proper-
ties of the various phases of (1) directly from the Landau-
Ginzburg theory and found them to exactly match the response
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determined from the Lifshitz-Chern-Simons (LCS) theory of1.
This is expected because there is a low-energy equivalence
between the (more) microscopic theory (1), (2) and the LCS
theory which we demonstrate by expanding about the relevant
ground state in the three casesr̄ > 0, r̄ = 0, r̄ < 0, and map-
ping the low-energy theory to the action governing the similar
phase of the LCS theory, using particle-vortex duality17. For
convenience, we assume a short-ranged repulsive interaction,
Veff(x) = V0δ(x) with V0 > 0, throughout. This choice is
motivated by expected screening effects of the microscopic
electrons. Nevertheless, the precise form ofVeff plays very
little role in the considerations below as long as it is local.

For r̄ ≥ 0, there is a saddle point configuration given by
〈φ†φ〉 = ρ̄, 〈aµ〉 = −Aµ, with filling fraction ρ̄/B = ν/2π.
The low-energy action for fluctuations about this ground state
whenr̄ > 0 is

Seff(r̄ > 0) =

∫

d2xdt
(

−δρ(∂tθ − δat)−
r̄

2
ρ̄(∂iθ − δai)

2

+
ν

4π
ǫαβγδaα∂βδaγ − 1

2
V0(δρ)

2
)

. (4)

δρ andθ govern the fluctuations of the norm and phase of the
bosonic order parameterφ, δaµ represents the fluctuation of
the Chern-Simons gauge field, and we have taken the back-
ground field fluctuations to vanish.Seff(r̄ > 0) can be rewrit-
ten by introducing the fieldJi (the spatial components of the
U(1) current associated with the background gauge field):

Seff(r̄ > 0) =

∫

d2xdt
(

−δρ(∂tθ − δat)− Ji(∂iθ − δai)

+
1

2r̄ρ̄
J2
i +

ν

4π
ǫαβγδaα∂βδaγ − 1

2
V0δρ

2
)

.(5)

Now, integrating outJi trivially reproduces the previous La-
grangian; but we can instead find a dual description of the
theory by keepingJi in the Lagrangian and integrating out
the other degrees of freedom.θ appears linearly and functions
as a Lagrange multiplier ensuring conservation ofJµ. We can
guarantee this by rewritingJµ = 1

2π ǫµντ∂νnτ . Writing the
theory in terms ofn, and integrating outδaµ, we find

SLCS(r̄ > 0) =

∫

d2xdt
( 1

2g2e
(∂int − ∂tni)

2

− 1

2g2m
(∂inj − ∂jni)

2 +
1

4πν
ǫαβγnα∂βnγ

)

. (6)

This is Maxwell-Chern-Simons theory at levelν−1 with g2e =

4π2r̄ρ̄ andg2m = 4π2

V0

. This matches the behavior of the LCS
theory of1 in the fractional quantum Hall phase(r̄ > 0).

When r̄ = 0 (the z = 2 critical point), it is necessary to
keep theδS term. Nevertheless, the dualization proceeds al-
most identically. The leading terms in the expansion of the
action in small fluctuations about the saddle point are

Seff(r̄ = 0) =

∫

d2xdt
(

−δρ(∂tθ − δat)−
Ji
∂2

(

∂i∂j(∂jθ

− δaj)−
1

2cρ̄
Ji
)

+
ν

4π
ǫαβγδaα∂βδaγ − 1

2
V0δρ

2
)

. (7)

This is a formal expression because of the inverse Laplacianin
the second term. Current conservation, which is imposed by
theθ equation of motion, allows us to replaceJ with the emer-
gent gauge fieldn. Imposing the gauge conditionsδn0 = 0
and∂ini = 0, and integrating outaµ, we obtain a gauge-fixed
version of the LCS Lagrangian. Covariantizing the gauge-
fixed action yields

SLCS(r̄ = 0) =
1

g2

∫

d2xdt
( 1

2κ2

1

∂2
(∂int − ∂tni)

2

−1

2
(∂inj − ∂jni)

2 +
g2

4πν
ǫαβγnα∂βnγ

)

, (8)

whereκ2 = 2cρ̄V0, andg2 = 4π2/V0. This is precisely the
theory governing the critical point in1, with theei field inte-
grated out. (Thez = 2 nature of theei field action∼ (∂iej)

2

in that theory, gives rise to the peculiar inverse Laplacianin
the action above).

Lastly, we discuss the anisotropicr̄ < 0 phase. The ground
state is still homogeneous,〈φ†φ〉 = ρ′ ρ′ = ρ̄ + |r̄|2/8cV0,
but anisotropic, since〈aµ〉 = −Aµ − vµ, with, v0 = 0 and
v2i = |r̄|/2c. At this saddle point, the chemical potential is
shifted upwards. The leading terms in the low-energy action,
expanding around the symmetry-breaking vacuum with the
condensate lying along the x-axis, take the form (where again
we have introduced a currentJi)

Seff(r̄ < 0) =

∫

d2xdt
(

− δρ(∂tθ − δat)− Jx[(∂xθ − δax)

− 1

4|r̄|ρ′ J
2
x)]−

Jy
∂2
y

[∂2
y(∂yθ − δay)−

1

2cρ′
J2
y ]

+
ν

4π
ǫαβγδaα∂βδaγ − 1

2
V0δρ

2
)

. (9)

Theθ equation of motion imposes current conservation for the
densityδρ and currentJi. Integrating outδaµ once more, we
obtain

SLCS(r̄ < 0) =
1

g2

∫

d2xdt
( 1

2κ2

1

∂2
(∂xnt − ∂tnx)

2

+
g2

2|r| (∂ynt−∂tny)
2−1

2
(∂inj−∂jni)

2+
g2

4πν
ǫαβγnα∂βnγ

)

,

(10)

whereκ2 = 2cρ′V0, |r| = 4|r̄|ρ′V0, andg2 is as above. This
agrees with the LCS theory in the anisotropic phase in1. It is
gapless, as may be seen from theni propagators, which evince
a contribution from the Goldstone mode for spontaneously-
broken SO(2) rotational symmetry. Note that a symmetry
breaking vacuum along the x-direction of the LG theory corre-
sponds to a symmetry breaking vacuum along the y-direction
in the LCS theory.

The effects of disorder are implemented by allowing spa-
tially varying r̄(x) in the Landau-Ginzburg description. The
low-energy equivalence implies that introducing such disorder
in the LG theory will lift the Goldstone mode of the sponta-
neously broken SO(2) symmetry and will lead to a quantized
Hall conductance, as it did in in the anisotropic phase of the
LCS theory1. The pseudo-Goldstone mode should be visible
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in low-energy Raman scattering experiments. Alternatively,
we could introduce a lattice by including terms in the action
which explicitly lower the rotational symmetry from SO(2) to
D4. In this case, the third term in (9) takes, instead, the form
Jy[(∂yθ − δay) − 1

4|r̄′|ρ′
J2
y )], wherer̄′ is proportional to the

effective lattice potential; consequently, there is no Goldstone
mode for rotational symmetry-breaking.

D. Ground State Wave Function in the r̄ < 0 Phase

We now compute the ground state wave function in the
r̄ < 0 phase following the method described in15. For D4

symmetry, which is more experimentally-relevant, it takesthe
form:

Ψ(zi) =
∏

i<j

(zi− zj)
1/v

(

1 + δr̄
|r̄|ν

(zi−zj)
2+(z̄i−z̄j)

2

|zi−zj |2

)

. (11)

In (11),zi = xi + iyi, δr̄ = r̄ − r̄′, and we have suppressed
both higher-order terms inδr̄/r̄ and theexp(−∑

i |zi|2/4ℓ20)
Gaussian factor whereℓ20 = ~/B . The wave function be-
comes identical to the Laughlin wave function in the absence
of symmetry breaking,δr̄ = 0. It would be interesting to
understand if there is any relation between (11) and Ref. 18.

III. FINITE-TEMPERATURE TRANSPORT

We now compute the contribution to the finite temperature
DC conductivity tensor from thermally-excited charged quasi-
particles. The LCS theory is more convenient than the equiva-
lent Landau-Ginzburg description because (massive) charged
quasiparticles are vortices of the Landau-Ginzburg theoryand
fundamental particles of the LCS theory. This computation
demonstrates that highly-anisotropic finite-temperaturetrans-
port can result from our model but is not an attempt to give a
precise fit to experimental data, which would require a more
careful analysis of the effects of disorder, the lattice, and sub-
leading interactions.

We include the effects of the massive quasiparticles by
adding to the ‘first-order’ form of the LCS action,

SLCS =
1

g2

∫

d2xdt
(

ei∂tni + nt∂iei −
r

2
e2i −

κ2

2
(∂iej)

2

− 1

2
(ǫij∂inj)

2 +
g2

4πν
ǫµνλnµ∂νnλ − λ

4
(e2i )

2

+
α

4
(e4x + e4y) +

1

2π
ǫµνλAµ∂νnλ

)

, (12)

the matter action,

Smatter =

∫

d2xdtΦ∗
(

i∂t + nt −∆+ (i∂i + ni)
2

+ u e2x (i∂x + nx)
2 + u e2y (i∂y + ny)

2
)

Φ.(13)

Thus, we study the total actionS = SLCS + Smatter. In
SLCS, we have not integrated out theei field. At tree-level,
the quartice4 terms inSLCS are marginal; the operator with

coefficientλ preserves the full spatialSO(2) symmetry, while
the operator with coefficientα explicitly breaks it down toD4.
We assumeα is small and positive, reflecting a small explicit
breaking ofSO(2) inherent in the real material. The last term
in SLCS is the coupling to the external electromagnetic field
Aµ. The statistical gauge field endows the massive quasipar-
ticles represented byΦ with their fractional statistics. The
irrelevant energy-energy coupling parameterized byu is the
leading term that directly communicates theD4 spatial rota-
tional symmetry breaking of ther < 0 ground state to the
matter field. By ignoring a possiblee2i |Φ|2 coupling, we are
assuming that the magnitude of the symmetry-breaking order
parameter〈ei〉 in ther < 0 regime is much less than the quasi-
particle gap∆.

We concentrate on the finite temperature DC conductivity
when r < 0, however, the actual expressions obtained are
valid for all r, if interpreted appropriately. (The functional
form of the optical conductivity was already determined in1;
it differs in the two phases, and shows striking features at the
critical point.) Let us assume that〈ex〉 is non-zero in ther < 0
regime at zero temperature. To quadratic order,Smatter be-
comes

Smatter =

∫

d2xdt
(

Φ∗(i∂t + n0 −∆)Φ

+ Φ∗((1 + u〈ex〉2)(i∂x + nx)
2 + (i∂y + ny)

2)Φ
)

. (14)

At temperatures less than∆, we can integrate out the quasi-
particles and write an effective action solely in terms of the
fields appearing inSLCS. It is convenient to express the re-
sulting effective action in Fourier space, obtaining

S = SLCS+
1

2

∫

d2qdω nµ(−ω,−q)Πµν(ω, q)nν(ω, q).

(15)

The kernelΠµν appearing in the second term contains the
quasiparticle contribution to the conductivity,σqp

ij ,

σqp
ij = lim

ω→0

1

iω
〈ji(−ω, 0)jj(ω, 0)〉 = lim

ω→0

1

iω
Πij(ω, q = 0),

whereji(ω, q) = δSmatter

δni(−ω,−q) is the quasiparticle current op-
erator. Computing the DC conductivity from (15), we find:

σij =
1

2π
lim
ω→0

ǫikǫjl(kǫkl + 2πσqp
kl )

−1. (16)

This implies thatρxy = −ρyx = k while ρxx = 2πσqp
yy and

ρyy = 2πσqp
xx. Thus, we see that one of the most remarkable

features of the experimental results in Ref. 7 has a natural ex-
planation in our model:ρxy remains quantized whileρxx, ρyy
can be temperature-dependent ifσqp is diagonal. Secondly,
we note that the anisotropy in the DC resistivity comes en-
tirely from the induced anisotropy in the quasiparticle kinetic
energy. By contrast, the transport due to the fluctuations in
SLCS showed frequency-dependent anisotropy that resulted
from subleading terms in the gauge field action1. So there is
additional anisotropy in the AC transport that is not present in
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the DC transport. In particular, AC transport shows low fre-
quency conductivity that vanishes linearly and cubically along
the two orthogonal directions. The two types of anisotropy
come from different physical mechanisms – anisotropy in the
gauge field kinetic energy versus anisotropy in the quasiparti-
cle kinetic energy – although the ultimate cause is the same.

It remains to calculateΠµν . We summarize the calculation
of Πii for spatiali below. We introduce dissipation by assum-
ing the quasiparticles have an elastic scattering lifetimeequal
to τ and single-particle gap∆/2. Due to the anisotropy in-
troduced by〈ex〉 in Smatter, the longitudinal current-current
correlation functions along the two spatial directions arere-
lated,

〈jx(ωn, 0)jx(−ωn, 0)〉 = (1 + u〈ex〉2)
1

2 f(iωn, T )

〈jy(ωn, 0)jy(−ωn, 0)〉 = (1 + u〈ex〉2)−
1

2 f(iωn, T ),

where

f(iωn, T ) =
T

π

∑

m

∫

dqq3G(iωn+m, q)G(iωm, q) (17)

and after rescalingqx to obtain the rotationally invariant form,

G−1(iωm, q) = iωm −∆/2− q2 +
i

πτ
Arg(∆/2− iωn).

(18)
Here, we use the fact that the imaginary part of the correla-
tion function (which gives the real part of the conductivity) is
cutoff independent so that the rescaling of the cutoffs can be
neglected. The diamagnetic contribution to the sum vanishes.

Replacing the sum over Matsubara frequencies,ωm =
2πT , by a contour integral, we haveImf(ω + iδ, T ) =
π
4ωTτ e

−∆/2T , where we have made use of the largeτ limit.
Therefore, the longitudinal quasiparticle DC conductivities,

σqp
xx,yy = π

4 (1 + u〈ex〉2)±1/2 Tτ e−∆/2T , (19)

where the+ (−) refers toσqp
xx (σqp

yy ). Inserting these expres-
sions into (16), we find that

ρxx − ρyy ≈ π
4 u〈ex〉2Tτ e−∆/2T +O(e−∆/T ). (20)

(19) and (20) are assumed to be valid at temperaturesT <
∆/2, but high enough such that variable-range hopping can
be ignored. Thus, we have demonstrated theoretically the
existence of a FQHE that has both anisotropic zero temper-
ature AC transport as well as anisotropic finite temperature
DC transport.

The DC resistivities are plotted in Fig. 1. The precise tem-
perature dependence of the DC resistivity is determined by the
behavior of〈ex〉 and the quasiparticle scattering timeτ . At
temperatures near the rounded finite-temperature phase tran-
sition, 〈ex〉 can be identified with the order parameter of the
particular finite-temperature phase transition. We expectthis
classical phase transition to be described by a theory lyingon
the Ashkin-Teller half-line or equivalently, the moduli space
of the c = 1 Z2 orbifold theory. All theories along the line
possess a globalZ4 symmetry and an order parameter for the
Z4-broken phase with critical exponent1/16 < β < ∞1920.

Since the Kosterlitz-Thouless critical point lies at the bound-
ary point of this half-line, we expect the particular critical the-
ory governing the transition to be largely determined by the
degree ofSO(2) rotation symmetry-breaking in the experi-
mental system. Since the in-plane field appears to be a weak
symmetry-breaking field, as discussed in the Introduction,we
expect the transition to be fairly sharp.

For definiteness below, we take the transition to be in the
universality class of the critical four-state Potts model which
lies at the boson radiusr = 1/

√
2 on the orbifold line.

In Fig.1 are plotted the resistivities,ρxx,yy. The order pa-
rameter for this transition〈O〉 ∼ 〈ex〉 ∼ (−t)1/12, where
t = (T − Tc)/Tc

21. (There is not a significant qualitative dif-
ference in the plots if the system has the fullSO(2) rotation
symmetry so we have suppressed a separate discussion of the
KT transition.)

The microscopic parameters in (19) are determined us-
ing the resistance measurements performed in7 as follows.
For simplicity, we assume rotationally invariant relations be-
tween resistivities and resistances,ρxx = f(Lx, Ly)Rxx and
ρyy = f(Lx, Ly)Ryy, wheref(Lx, Ly) is some function de-
pending on the sample lengthsLx,y . In other words, we ig-
nore possible geometrical enhancements that may be present
in translating between these two sets of quantities. (See22 for
a discussion of the importance of this distinction in the con-
text of anisotropic transport inν = 9/2, 11/2, ... half-filled
Landau levels8.) The measured temperature dependences of
ρxx and ρyy at zero in-plane field are fit well by Arrhe-
nius plots,ρxx,yy = A exp(−∆/2T ), with ∆ = 225mK
andA = 10−2h/e2. We continue to use these values in
the anisotropic regime, which we identify with the region
r̄ < 0, when the in-plane field is of sufficient magnitude.
The temperature-independent value ofA over the temperature
range50mK < T < 150mK implies a quasiparticle scat-
tering lifetimeτ ∼ 200

T . An estimate of5.6 × 10−3h/e2for
the maximum value ofRxx observed at a tilt angle of66◦

and achieved asT → 15mK from above impliesu〈ex〉2 ∼
50(−t)1/6 with Tc = 50mK. We stress that the fitting of pa-
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FIG. 1: Longitudinal resistivitiesρxx,yy along the easy x-axis (red)
and hard y-axis (blue) obtained from the conductivities in (19) are
plotted versus temperature. The microscopic parameters entering the
expressions in (19) are found phenomenologically from the resis-
tances measured in7 as explained in the main text.
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rameters used to obtain Fig.1 is meant to be as optimistic as
possible so as to determine the microscopic parameters of our
theory if it is to apply to the experiment.

The height of the peak observed in Fig.1 depends
sensitively on the temperature-independent value of
(u〈ex〉2)/(−t)1/6 = (ur)/((λ − α)2(−t)1/6). In Fig.2, we
plot ρyy for three different values of this parameter starting
with the value used in Fig.1. As the figure indicates, the peak
decreases as this parameter is lowered.

We expect the in-plane magnetic fieldB|| to act as a small
symmetry-breaking field on this finite temperature transition.
This will lead to a rounding of the resistivity curves in Fig.1.
The order parameter now behaves as

〈ex〉 ∼ B
1/δ
|| g±

( (±t)β

B
1/δ
||

)

, (21)

where the± is determined by the sign oft, and the critical
exponentsβ = 1/12 at the four-state Potts point andδ = 15
along the orbifold line. Integral expressions for the scaling
functionsg± are known23; a precise functional form, however,
is not. Scaling dictates thatg−(x = 0) = g+(x = 0) are
finite and non-zero,g−(x) ∼ x asx → ∞, andg+(x) = 0
for x > xcrit ∼ 1.

Since we do not have an explicit functional form forg±,
let us simply model the transition using mean field theory in
order to obtain a qualitative picture for the rounding of the
transition. (We do not mean to imply that the crossover func-
tion for theZ4 transition is in any way similarφ4 mean field
crossover function. Rather, we only want a picture for how
the transition might be rounded.) Theφ4 mean field critical
exponentsβ = 1/2 andδ = 3. Specification of the free en-
ergy,F = 1

2Tctφ
2 + 1

4φ
4 − φh, allows the calculation ofg±

via minimization ofF with respect toφ. We select the root,

〈φ〉 = h1/3
(∓2(3)1/3x2 + 21/3(9 +

√
81± 12x6)2/3

62/3(9 +
√
81± 12x6)1/3)

)

,

(22)
wherex = |T − Tc|1/2/h1/3 and where the upper sign is
chosen for positivet and the lower for negativet. It satisfies
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FIG. 2: Longitudinal resistivityρyy along the hard y-axis for three
separate values of the parameterm = u〈ex〉2/(−t)1/6. From top to
bottom (blue, red, yellow),m = 50, 10, 1.

the scaling requirements detailed in the previous paragraph.
Substitutingu〈ex〉2 = 7〈φ〉2 ath = 1 into our expressions for
the resistivities using the same values for the overall scale of
the resistivity and behavior of the scattering timeτ as above,
we find Fig. 3.

Whenr ≥ 0, the form (16) and (19) of the finite tempera-
ture DC conductivity matrix still holds. However,〈ex〉 is zero
and the longitudinal conductivity along the two directionsco-
incides. Note that non-zero AC conductivity at ther = 0
critical point requires disorder exactly like ther < 0 regime1.

IV. DISCUSSION

In this paper, we have given an explanation of one of the
most striking aspects of the data of Ref. 7: the anisotropy
of the longitudinal resistances coexisting with quantizedHall
resistance. Our theory further predicts that, while one of the
resistances will increase with decreasing temperature at tem-
peratures just below the (rounded) finite-temperature phase
transition at which nematic order develops, as observed7, both
longitudinal resistances will, eventually, go to zero at the low-
est temperatures, which is yet to be observed. It is an in-
teresting question to consider the complementary experimen-
tal possibility of a state that is metallic along one direction
and insulating along the other, but with fractionally quantized
Hall conductance. Our theory does not apply to such a state.
Transport beyond the linear regime, the nature of the massive
quasiparticles in the anisotropic phase, and a more complete
determination of the values of the parameters in the effective
Lagrangian in terms of microscopic variables are interesting
open problems.
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3 Z. Tešanović, F. Axel, and B. I. Halperin, Phys. Rev. B39 (1989).
4 S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys.

Rev. B47, 16419 (1993).
5 S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Ty-

cko, Phys. Rev. Lett.74, 5112 (1995).
6 D. A. Abanin, S. A. Parameswaran, S. A. Kivelson, and S. L.

Sondhi, Phys. Rev. B82, 035428 (2010).
7 J. Xia, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

arXiv:1109.3219 (2011).
8 M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett.82, 394 (1999).
9 E. Fradkin, S. Kivelson, M. Lawler, J. Eisenstein, and A. Macken-

zie, Annu. Rev. Condens. Matter Phys.1, 153 (2010).
10 W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.

Baldwin, and K. W. West, Phys. Rev. Lett.83, 820 (1999).
11 M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett.83, 824 (1999).
12 J. Xia, V. Cvicek, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. Lett.105, 176807 (2010).
13 S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett.62,

82 (1989).
14 One can rewrite this action in terms ofãµ = ν−1aµ so that the
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VI. APPENDIX

In this Appendix, we show that, as a result of the viola-
tion of the conditions of Kohn’s theorem, the location of the
cyclotron pole can vary asB|| is increased. (It is also pos-
sible that additional spectral weight shows up atO(q2), but
we shall not study this possibility in any detail.) We do this
by identifying the leading pole in the density-density response
with the gap between the lowest and first-excited states in the
center-of-mass part of the quantum mechanical many-body
wave function. This identification is correct for vanishing
in-plane fieldB|| and we believe it holds for perturbatively
small values ofB|| as well, where separation of variables into
center-of-mass and relative coordinates is well-defined. Of
course, this simple example can, at best, give us a few clues
about the real system, which is far more complicated. One of
these is that the pole moves towards the origin (at least ini-
tially) asB|| is increased from zero. This justifies our study
of the model (1) with varyinḡr.

We begin with the quantum mechanics problem of two mu-
tually interacting three-dimensional electrons in a background
magnetic field. This can be easily generalized to an arbitrary
number of particles. We take their motion along thex − y
plane to be unconstrained but subject to a confining potential
along thez-direction. The Hamiltonian is

H =
∑

i=1,2

[ 1

2me

(

∂2
xi

+ (i∂yi
− (Bxi +B||zi))

2 − ∂2
zi

)

+ A0(zi)
]

+ V (|x1 − x2|), (23)

wherexi = (xi, yi, zi) labels the position of the two parti-
cles. (The gauge chosen for the vector potential is consis-
tent with a spatial geometry that is of a finite length along
thex, z-directions, and infinite along they-direction. Note,
however, we are essentially ignoring the finite length along
thex-direction in the discussion below so we can think of it
as being large compared to the length scale provided by the
confining potential along thez-direction.)

We consider the component of the magnetic field lying
along thex-direction to be a perturbation to the system. It
is convenient to switch coordinates to the center-of-mass and
relative coordinate frame. Choosing

X =
1

2
(x1 + x2), ρ = x1 − x2, (24)

the Hamiltonian becomes

H =
1

2(2me)

(

− ∂2
Xx

+ (i∂Xy
− 2(BXx +B||Xz))

2 − ∂2
Xz

)

+
1

2(me/2)

(

− ∂2
ρx

+ (i∂ρy
− 1

2
(Bρx +B||ρz))

2 − ∂2
ρz

)

+
∑

±

A0(Xz ±
1

2
ρz) + V (|ρ|). (25)

Aside from the confining potentialsA0(z1,2) = A0(Xz ±
1
2ρz), the center-of-mass and relative coordinates are decou-
pled.
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At B|| = 0, motion in thez-direction decouples from the
motion in the plane and we are left with a collection of two-
dimensional electrons indexed by their band or energy along
thez-direction. (Here, we are assuming the pair potential only
depends on the separation of the electrons in thex− y plane;
the well width is assumed small compared to the magnetic
lengthB−1/2. This is not the case in the experiments of Refs.
7,12, so the violations of Kohn’s theorem will be larger than
in our simple model.) Given az-eigenfunction, the center-of-
mass part of the wave function executes oscillatory motion at
the cyclotron frequency2B/(2me). This is the generalization
of Kohn’s theorem to the situation where electrons are con-
fined along the direction parallel to the magnetic field. When
the spacing between the energy levels of thezi-eigenfunctions
greatly exceeds the cyclotron frequency, it is possible to ig-
nore higher sub-bands when considering low-energy proper-
ties of the system. However, this is not the case in the experi-
ments of Refs. 7,12.

Now considerB|| 6= 0. There is now a direct mixing be-
tween motion in thez-direction and motion in the plane. This
mixing mediates a coupling at higher orders inB|| between
the planar center-of-mass and relative degrees of freedom.
Thus, there there is no requirement of a pole at the cyclotron
frequency in the density-density correlator. This followsfrom
the fact that the full three-dimensional Galilean symmetry(ex-
cept forXy, ρy translations) is broken when there isboth an
in-plane field and a non-zero confining potential along the di-
rection normal to the plane. If either the confining well or
in-plane field are removed, there will be a Kohn pole atωc.

We would like to better understand departures of the pole
from the cyclotron frequency in this more general situation
with non-zero in-plane field. Namely, we would like to know
how the location of the pole varies withB||. We can ob-
tain some intuition by studying a special case for the form
of the confining potential. Take the confining potential to be
quadratic,A0(z) =

λ2

2 z2. Then, because

A0(Xz +
1

2
ρz) +A0(Xz −

1

2
ρz) = λ2(X2

z +
1

4
ρ2z), (26)

the center-of-mass and relative coordinate motion are still de-
coupled. This decoupling is not generic; a quartic potential,
for example, couplesXz andρz together. However, we will
argue that some conclusions drawn from the quadratic case
are general.

We know that atB|| = 0, the Kohn pole corresponds to
the splitting between the ground and first excited states of the
center-of-mass motion. The relative coordinate is irrelevant
both whenB|| = 0 and for a quadratic electric potential, and
so we drop it from our discussion. Thus, the Hamiltonian we
study perturbatively inB|| is

H = H0 +H1, (27)

where

H0 =
1

2(2me)

(

− ∂2
Xx

+ (i∂Xy
− 2BXx)

2 − ∂2
Xz

)

+ λ2X2
z ,

H1 =
B||B

me
(i∂Xy

− 2BXx)Xz +O(B2
||). (28)

First, we note that translation invariance along theXy-
direction allows us to replace derivatives with respect toXy

with the momentumky along this direction. Next, we shift the
Xx coordinate by defining̃Xx =

kyc
2eB −Xx. The Hamiltonian

has the form,

H =
1

4me

(

− ∂2
X̃x

+ 4B2X̃2
x − ∂2

Xz
+ 4meλ

2X2
z

)

+
B||B

me
X̃xXz +O(B2

||), (29)

where terms proportional toB|| are taken to be a perturbation.
Our goal is to determine the spectral flow as a function of

B|| of the ground and first excited energy levels. Dividing out
by the irrelevantXy factor (which determines the degeneracy
of the Landau levels in a rectangular sample, but is inconse-
quential here), the eigenfunctions of the above coupled har-
monic oscillator Hamiltonian atB|| = 0 take the form:

Ψ(X̃x, Xz)m,n = cm,n exp(−
Mωc

2
X̃2

x) exp(−
Mωz

2
X2

z )

× Hm(
√

MωcX̃x)Hn(
√

MωzXz), (30)

whereωc = B/me, ωz = λ/
√
me, M = 2me, Hn(X)

denote Hermite polynomials, and thecm,n are normalization
constants. We assume thatωc < ωz < ∞.

(For electrons moving in a Ga-As quantum well atν = 7/3,
we can estimateωc andωz. Given a band massme ∼ .07mf ,
wheremf is the free electron mass and transverse magnetic
magnetic field of2.82 T, we estimate anωc ∼ 3× 10−3eV ∼
30K. λ has engineering dimension equal to[Mass]3/2 so we
take it to be proportional to1/w3/2, wherew is the well width
which is 40 nm for the experiment in7. We fix the order of the
proportionality constant via the estimate of the Landau level
sub-band gap given in Fig. 2 of12. We findωz ∼ x/w3/2,
wherex = 10−3. Thus,ωz/ωc ∼ 2. As the filling fraction is
lowered, the ratioωz/ωc is increased and so the discussion be-
low becomes less relevant as the two scales are too far apart.
Note also that this ratio approaches unity as the proportion-
ality constant between the band and free electron masses is
lowered.)

The perturbative shift in the energy of a state to second or-
der inH1 is given by the formula,

Em,n = E(0)
n,m+〈m,n|H1|m,n〉+

∑

|k〉6=|m,n〉

|〈k|H1|m,n〉|2

E
(0)
m,n − E

(0)
k

,

(31)
where E

(0)
m,n is the unperturbed energy of the state

Ψ(X̃x, Xz)m,n := |m,n〉. We are interested in the difference
E0,0−E1,0. At zeroth-order, this difference is equal to the cy-
clotron frequency,ωc. The first-order term on the RHS of (31)
vanishes because the perturbation is linear in bothX̃x andXz

(the ground state is nodeless). Now consider the second-order
term. The state (or collection of states since we are ignoring
theky dependence) mixed with the ground state|0, 0〉 by the
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perturbation is|1, 1〉, while |0, 1〉 is the state mixed with|1, 0〉.
Because the wave functions factorize,

|〈1, 1|H1|0, 0〉| = |〈|0, 1|H1|1, 0〉|, (32)

however,

|E(0)
0,0 −E

(0)
1,1 | = ωc + ωz > ωz − ωc = |E(0)

1,0 −E
(0)
0,1 |, (33)

with both energy denominator differences being negative. So
while bothE0,0 andE1,0 are shifted downwards, the ground
state is shifted less than the first excited state because of the
difference in magnitude of the energy denominators. This
implies that the location of the would-be Kohn pole is de-
creased from the cyclotron frequency. (There is no contradic-
tion with general level repulsion expectations as we are study-
ing a systems with more than two states.) Notice that this
result requires mixing between the differentXz-bands and is
not present if we take the gap between these energy levels
to infinity. Contributions from other excited states only oc-
cur at higher orders in perturbation theory. Note also that we
dropped a term in the perturbing Hamiltonian quadratic inB||

and so it could, in principle, compete at the same order as the
second-order result above. However, this term has no conse-
quence on the energy difference as it shifts both energies by
the same amount.

The above analysis implies that the location of the leading
pole in a small momentum expansion of the density-density
correlator moves towards the origin as an in-plane field is ap-
plied. This conclusion was drawn using a certain form of con-
fining potential in the direction transverse to thex − y plane.

How general are these results? If we consider a more gen-
eral form of the confining potential, there will be a coupling
between the center-of-mass and relative degrees of freedom.
Nevertheless, for smallB||, our results hold generally. In
this limit, we can ignore the coupling between the center-of-
mass and relative degrees of freedom. The perturbation cou-
ples the planar andz motion of the center-of-mass at leading
order while the coupling between the planar center-of-mass
and relative degrees of freedom only occurs at higher order in
perturbation theory inB||. Although theXz eigenfunctions
will take a different functional form and the spacing between
these eigenfunctions will no longer be in regular multiplesof
ωz, the above argument goes through unchanged as long as
the gap between the lowest and first-excitedXz eigenfunc-
tion is greater thanωc. If B|| is not small, then we cannot
ignore the coupling between the center-of-mass and relative
degrees of freedom. This can further modify the distribution
of spectral weight, but we do not have any simple argument
for whether this coupling will move the pole, broaden the pole
into a Lorentzian, or change its spectral weight. At any rate,
we can say that the coupling between the center-of-mass and
relative degrees of freedom will almost certainly cause further
deviations from expectations based on Kohn’s theorem. Hap-
pily, the effective field theory (1) describes a system where
the would-be Kohn pole is different from the bare cyclotron
frequency through the variation of̄r; we pursue its study in
the body of the paper.


