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We present a Landau-Ginzburg theory for a fractional gaadtiHall nematic state and the transition to it
from an isotropic fractional quantum Hall state. This jfist Lifshitz-Chern-Simons theory — which is shown
to be its dual — on a more microscopic basis and enables usnipute a ground state wave function in the
symmetry-broken phase. In such a state of matter, the Hasitemce remains quantized while the longitudinal
DC resistivity due to thermally-excited quasiparticleamssotropic. We interpret recent experiments at Landau
level filling factorv = 7/3 in terms of our theory.

PACS numbers:

I. INTRODUCTION the nearby fraction = 5/2'2 and because the anisotropy at

300 mK actually decreases as the tilt is increased fidfm

to 76°. We conjecture that the most important effect of the

which a fractional quantized Hall conductance coexist$ wit in-plane field is to vary the effective interaction betwe;he t
electrons, thereby driving the (almost) spontaneous lmgak

the broken rotational symmetry characteristic of a nematic .
as in the model introduced in Ref. 1. The idea that a phas%c :ﬁfsgigzlri?;rpeny' We are thus led to apply our mbdel

of matter could have both topological order and conventiona : . : . -
To this end, we give a more microscopic derivation of our

broken symmetry is not new; for instance, Hall crystdls model as a Landau-Ginzburg theory. We thereby recover a
and quantum Hall ferromagnéfsare other examples. See o : ) :
theory which is equivalent, through particle-vortex diyalio

for a more recent discussion in a related system. Howeve[he effective field theory introduced in Ref. 1. In order to

the FQHN has the unusual feature that the broken symme- .
. . compare theory and experiment more closely, we extend our
try and the topological order are equally important for de-

termining the system’s transport properties. Furthermibies previous analysis of zero-temperature, finite-frequerays:

model also predicts an unusual quantum critical point s#par port to finite-temperature DC transport; in order to do this,

) . ) . ; we must enlarge our model to include the effects of gapped
ing the FQHN from an ordinary isotropic fractional quantum h d inarticles. The devel f ic onder i
Hall state. charged quasiparticles. The development of nematic onder i

duces strongly temperature-dependent anisotropy in thgi-qu

Remarkably, a recent experiment may have observed garticle effective masses. We predict that both longitatiin
FQHN’. An in-plane magnetic fieldB is applied to the conductances will eventually vanish at the lowest tempera-
v = 7/3 fractional quantum Hall plateau. When the angletyres, although one of them will have non-monotonic temper-
0 between the total magnetic field and the normal is zero, thgture dependence at S||ght|y h|gher tempera’[uresl Weyina”

system is essentially isotropic: féf < 100mK, R.. ~ R,y.  make predictions for transport at and near the transitiéntpo
At T = 15 mK, there is a well-developed Hall plateau with

Ry = Ry, = 24 At T > 100mK, there is a small%

20%) difference bet}NeelRmm andRyy, which may be due tO II. LANDAU-GINZBURG THEORY

device geometry, alignment of the contacts, or a smallisici
anisotropy acquired by the samples during the growth psoces
For tilt anglesy > 19° andT < 50mK, Ry, = Ry, = 2 &
while R, — R, increases with decreasing temperature. In ) )
fact, dR,,/dT < 0 while dR,,/dT > 0 at the lowest ob- One can map the proplem qf spinless planar el_ectrons in
served temperatures. Thus, this experiment finds transpo® transverse magnetic field with Coulomb repulsion, to
which is reminiscent of the nematic phases found at half@n equivalent system of a bosonic order parametef unit
filing of higher Landau levels, such as = 9/2,11/2,...  charge coupled to a Chern-Simons gauge figltf. The ac-
without an in-plane fie® and also at = 5/2 and7/2inthe  tion takes the form:

presence of an in-plane fiéf!, except for one very strik-

ing difference: the Hall resistance remains quantized @ th Srg = /dedt((bTi(at —i(As +ap))o

A fractional quantized Hall nematic (FQHN) is a phase in

A. Overview

anisotropic phase. 1 v
; 2
We interpret these observations as a slightly rounded tran- T 2m, (05 = i(Ai + i) o|” + Eeaﬂvaaaﬂav
sition between an isotropic fractional quantum Hall phase a 1 2 .t _ t _
0 < 0. < 19° and an FQHN a# > 6.. The rounding of - 5/‘1 y(@'o(z) — p)V(z —y)(¢ ¢—P))- )

the transition is caused by the in-plane field. We believe it
to be a weak rotational symmetry-breaking field because thel,, is the background electromagnetic field satisfying
system is in an isotropic metallic phase for even larges &itt  ¢;;0;A; = B; p is the mean charge density of bosons



(or equivalently, electrons)n. is the electron band mass; mentum limit,
V(x) is a general two-body potential; and the Chern-Simons
gauge fieldz,, attache2m~! units of statistical flux to each . {p(w,@)p(—w, —q)) "

0% ? 1 ; . lim = —, (3)
particlé. In particular, fory—! an odd integer, the resulting 90 ¢ w? — w2
Aharonov-Bohm phases transmute the bosons into fermions.

We assume that the low-energy effective theory for dis-The locations of the two poles are determined by the cyatotro
tances longer than the magnetic length, obtained by integrafrequencyw. = B/m.. For fixedB, the cyclotron frequency
ing out short-distance fluctuations@fa,,, has the same form is determined by the bare mass of the particles, independent
as the microscopic action (1), but with the bare microscopi®f the their relative interactions. The residues of the pale
parameters /m. and V(z — y) replaced by renormalized equal to£1/2B. The form of this correlator is ensured by
ones,7 and Vg (x — y). Such an ansatz allows one to de- a Ward identity and satisfies an f-sum rule. Kohn’s theorem
rive many of the properties of the standard fractional quanroughly states that the center-of-mass of the system always
tum Hall state¥1° Here, we will make the same ansatz, butdecouples from the relative coordinate motion of the parti-
without assuming that remains positive. We note that even cles; it effectively behaves as a single chargeparticle of
the ‘microscopic’ action (1) must be viewed as an effectivemassNm., exhibiting circular motion at a frequenay. in a
low-energy action that describes the partially filldd = 1 background magnetic fiel&. In quantum Hall systems, the
Landau level withv = 2 + 1/3. The electrons are confined quantum well explicitly breaks translational symmetry fie t
to a quantum well of finite-width; a strictly two-dimensidna z-direction (i.e. perpendicular to the plane). However, the
theory is an effective theory at energy scales far below thén-plane center-of-mass motion still decouples from theeot
splitting between energy sub-bands for motion perpendicudegrees of freedom, so long as the magnetic field is strictly
lar to the plane. Thus, the application of the in-plane fieldperpendicular to the plane. Thus, Kohn’s theorem holds even
By, through its modification of the motion perpendicular to in this case.
the plane, will modify the parameters g},. Consequently, If we now compute the density-density correlator using the
the effective parameters at distances longer than the rtiagneaction (1), we find precisely the form dictated by Kohn's theo
length will also be modified, but not in a simple or, at presentrem (3). However, the modificatiarym. — 7 would change
transparent way. Itis easy to check that reasonable lodalva the location of the pole. This manifestly constitutes aafioin
tions of V¢ do not cause qualitative changes to the physics obf Kohn’s theorem.

(1)*. We leave to a future study the question of higher-body However, the experiment of Ref. 7 does not satisfy the as-
potential terms resulting from a projection of the degrefes osumptions of Kohn's theorem. The large in-plane field, com-
freedom into a specific Landau level. bined with the confining well potential (perpendicular te th

Therefore, we conjecture that as the in-plane fiBld is plane), manifestly breaks Galilean invariance and doeslnot
varied, the most significant variation is of the parametdn  low a decoupling of the center-of-mass mode. The in-plane
other words, we study the instabilities of (1) as the kineticfield couples motion along the-direction to motion in the
structure of the theory is modified. plane, while the confining potential in thedirection cou-

Since we will be considering < 0, we add the following ples thez-component of the center-of-mass position to the

term withc > 0 to the action in order to maintain stability of component of the relative coordinates. TNe= 1 Landau
the vacuum: level in the devices considered in Ref. 7 is particularly-sus

ceptible to perturbations mixing planar anelirection mo-
¢ ) ) 9,12 tion because the gap to té = 0 Landau level of the next
0§ =—3 /d zdt|(0; — i(Ai + a;))"9l" . (2)  quantum well sub-band is smgl
In summary, our theory, in which is not fixed, applies
to situations, such as those in the experiment of Ref. 7, in
which Kohn'’s theorem does not hold. Our theory cannot de-
scribe a fictional system in which the two-dimensional layer
is infinitely-thin and the transition is driven purely by tog
the inter-electron interaction (without any in-plane fledthce
such a system would necessarily satisfy Kohn's theorem. To
make our point more concrete, we show in the Appendix that,
as a result of the violation of the conditions of Kohn’s the-
orem, the location of the cyclotron pole can vary s is
B. Kohn'sTheorem increased.

1

This theory exhibits a transition between an isotropic{frac
tional quantum Hall phase, when> 0, and an anisotropic
phase with well-quantized Hall conductance (after indasi
of disorder or a lattice) when < 0, just as if. The two
phases are separated by a quantum critical point with 2
dynamical scaling, arising a&t= 0.

On might object to any variation @ffrom its bare value on

the basis of Kohn's theoreth (See Section 5 &F for a dis- C. Duality
cussion.) In a Galilean-invariant systemgfidentical mutu-
ally interacting particles of unit charge and mass subject We have computed the long wavelength transport proper-

to a constant external magnetic figkd Kohn's theorem states ties of the various phases of (1) directly from the Landau-
that the density-density correlation function has the loar m Ginzburg theory and found them to exactly match the response
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determined from the Lifshitz-Chern-Simons (LCS) theofyy of This is a formal expression because of the inverse Laplatian
This is expected because there is a low-energy equivalendke second term. Current conservation, which is imposed by
between the (more) microscopic theory (1), (2) and the LCShe# equation of motion, allows us to replagevith the emer-
theory which we demonstrate by expanding about the relevarmgent gauge fielch. Imposing the gauge conditions, = 0
ground state in the three cases- 0,7 = 0,7 < 0, and map- andd;n; = 0, and integrating out,,, we obtain a gauge-fixed
ping the low-energy theory to the action governing the simil version of the LCS Lagrangian. Covariantizing the gauge-
phase of the LCS theory, using particle-vortex duéfityFor  fixed action yields
convenience, we assume a short-ranged repulsive intenacti
Verr(z) = Vod(x) with Vo > 0, throughout. This choice is g . (x — 0y — 1 /dz dt( 1 (Bime — Oym)?
motivated by expected screening effects of the microscopic g* 292
electrons. Nevertheless, the precise formigf plays very —1(3-71- —9m)? + ?
little role in the considerations below as long as it is local J !
For7 > 0, there is a saddle point configuration given by ) B ) ) o .
(6t) = p, (a,) = —A,,, with filling fraction 5/B = v/2x. wherex* = 2c_pV0, andg_ = 47r_ /Vo. 'I_'h|s is pre_C|se_Iy the
The low-energy action for fluctuations about this grounttsta the€ory governing the critical point twith thee; field inte-
when# > 0 is grated out. (The = 2 nature of ther; field action~ (9;e;)?
in that theory, gives rise to the peculiar inverse Lapladan
_ . 2 r_ o the action above).
Sen(r>0) = /d Idt(_(sp(ate ~ 0ar) = 5p(9:8 = dai) Lastly, we discuss the anisotropic< 0 phase. The ground
v 1 2 state is still homogeneouép'¢) = p’ p' = p + |7|?/8cVo,
T g Caprdaadsiay = 3Vo(9p) ) @ but anisotropic, sincéa,,) i;& —>AH — vy, with, v(l |:/0 and
= |F|/2c. At this saddle point, the chemical potential is
shn‘ted upwards. The leading terms in the low-energy agtion
xpanding around the symmetry-breaking vacuum with the
ondensate lying along the x-axis, take the form (wheremagai
we have introduced a currey)

g
Ay 50467”0485”7) , (8)

dp andé govern the fluctuations of the norm and phase of the,
bosonic order parametey, da,, represents the fluctuation of
the Chern-Simons gauge field, and we have taken the bac
ground field fluctuations to vanisi§.s (7 > 0) can be rewrit-
ten by introducing the field; (the spatial components of the
U(1) current associated with the background gauge field):

Sert(F < 0) /dzxdt( - §p(6t9 —dat) — J[(06 — day)

Scﬁ»(f > O) = /d2xdt(—5p(8t9 — 5045) — JZ(89 — 50,1) . il Jg)] 2 [82(8 0 — 6CLU) 1 qu]
v 4|71p’ 05 2¢p’
—_ 2 _—
+ 2--”’1 17 aBr09a0p0ay VO‘Sp )(5) + ﬁemaaaagaaw - 51/05[) ) (9)

Now, integrating out/; trivially reproduces the previous La-

grangian; but we can instead find a dual description of th
theory by keepingJ; in the Lagrangian and integrating out
the other degrees of freedofappears linearly and functions
as a Lagrange multiplier ensuring conservatiod,of We can - 1 ) )
guarantee this by rewritind,, = s-¢,,,0,n,. Writing the Sros(F < 0) = 7 /d dt(2 752 (Oxny — Ogny)

theory in terms ok, and integrating ouia,,, we find

The6 equation of motion imposes current conservation for the
%IenSIly5p and current/;. Integrating outa,, once more, we
obtain

2 1 92

i , 1 , 2| |(8 e —0gny )? —5(ij—Bjni)2+mea57na65n7),

Sres(r>0) = /d 9ch‘(29g (Oing — Orny) (10)
1 , 1

_%(@'"ﬂ' = 0jm)” + Reamnaaﬁm)' ®)  wherex? = 2¢p'Vs, 7| = 4|7|p'Vy, andg? is as above. This

agrees with the LCS theory in the anisotropic phase linis
This is Maxwell- Chern Simons theory at levet! with g2 = gapless, as may be seen fromtheropagators, which evince

4r%rp andg?, = 4= This matches the behavior of the LCS @ contribution from the Goldstone mode for spontaneously-

broken SO(2) rotational symmetry. Note that a symmetry
breaking vacuum along the x-direction of the LG theory corre
sponds to a symmetry breaking vacuum along the y-direction
n the LCS theory.

The effects of disorder are implemented by allowing spa-
tially varying 7(x) in the Landau-Ginzburg description. The

theory of in the fractlonal quantum Hall phasge > 0).
When# = 0 (the z = 2 critical point), it is necessary to
keep thedS term. Nevertheless, the dualization proceeds als
most identically. The leading terms in the expansion of th

action in small fluctuations about the saddle point are

J low-energy equivalence implies that introducing suchidiso

Set (7 =0) = /d%dt(—dp(&te —day) — a—; (0:0;(0,6 in the LG theory will lift the Goldstone mode of the sponta-
) neously broken SO(2) symmetry and will lead to a quantized

v €ay000030a, — 5%@2). (7) Hall conductance, as it did in in the anisotropic phase of the

1
_Ji 4+ —
Z ) 4m LCS theory. The pseudo-Goldstone mode should be visible
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in low-energy Raman scattering experiments. Alternagivel coefficient\ preserves the full spatiglO(2) symmetry, while
we could introduce a lattice by including terms in the actionthe operator with coefficient explicitly breaks it down tdD,.
which explicitly lower the rotational symmetry from SO(®)t We assumex is small and positive, reflecting a small explicit
D,. In this case, the third term in (9) takes, instead, the formbreaking ofSO(2) inherent in the real material. The last term

Jy[(0,0 — day) — WJS)], where7 is proportional to the in S.¢s is the coupling to the external electromagnetic field
effective lattice potential; consequently, there is nodtine 4, The statistical gauge field endows the massive quasipar-
mode for rotational symmetry-breaking. ticles represented b$ with their fractional statistics. The

irrelevant energy-energy coupling parameterizecdulig the
leading term that directly communicates thg spatial rota-
D. Ground State Wave Function in the7 < 0 Phase tional symmetry breaking of the < 0 ground state to the
matter field. By ignoring a possibl€ |®|? coupling, we are
We now compute the ground state wave function in theaSSuming that the magnitude of the symmetry-breaking order
7 < 0 phase following the method described’in For D, ~ Parametete;) inther < 0 regime is much less than the quasi-

symmetry, which is more experimentally-relevant, it tatess ~ Particle gapA. » .
form: We concentrate on the finite temperature DC conductivity

whenr < 0, however, the actual expressions obtained are
U(z) = H(Zi ) (1 n %%) . (1) valid for all r, if interpreted appropriately. (The functional
c form of the optical conductivity was already determinetf in
it differs in the two phases, and shows striking featurebat t
In (11), z; = =; +4y;, 07 = 7 — 7, and we have suppressed critical point.) Let us assume that, ) is non-zeroin the < 0
both higher-order terms ifv /7 and theexp(— 3, |2;|*/4¢3) regime at zero temperature. To quadratic ordgf,e. be-
Gaussian factor wher& = h/B . The wave function be- comes
comes identical to the Laughlin wave function in the absence
of symmetry breaking§7 = 0. It would be interesting to _ 2 ( "y _
understand if there is any relation betweéh)(and Ref. 18. Smatter = /d wdt( @710 + o = A)®

i<j

+ (1 + ulea)) (0 + 1a)? + (i, +my))®). (24)
I11.  FINITE-TEMPERATURE TRANSPORT . .
Attemperatures less thak, we can integrate out the quasi-

Wi te th tribution to the finite t t articles and write an effective action solely in terms of th
€ how compute the contribution to the ninite temperature;q appearing irbLcs. It is convenient to express the re-

DC conductivity tensor from thermally-excited chargedsjua : : e ; .
) . . . _sulting effective action in Fourier space, obtainin
particles. The LCS theory is more convenient than the equiva 9 P 9

lent Landau-Ginzburg description because (massive) elarg 1
quasiparticles are vortices of the Landau-Ginzburg thaad/ S = SLcs+§ /dquw 1y (—w, =), (w, @)y (w, q).

fundamental particles of the LCS theory. This computation (15)
demonstrates that highly-anisotropic finite-temperatitanes-

port can result from our model but is not an attempt to give arhe kernelll,,, appearing in the second term contains the
precise fit to experimental data, which would require a MOr§yuasiparticle contribution to the conductivity?
careful analysis of the effects of disorder, the latticel sub-

leading interactions. w1 ) 1
We include the effects of the massive quasiparticles by?:; = 1 E@i(_“’o)%(“’o» = lim ——11;; (w,q=0),
adding to the first-order’ form of the LCS action,

) wherej;(w, q) = % is the quasiparticle current op-
Srcs = iz /d%dt (eiatni +n;0;e; — geg _ %(31.63.)2 erator. Computing the DC conductivity from (15), we find:
g
1 2, 9 A2)2 = S lim e;peji(key + 2mo ) ~! (16)
- 5(61',7'51'7%‘) + méuuwuam,\ - Z(ei) i = 5 m eipeji(ker )
+ %(ei +ey)+ %e#uAAuaum), (12)  This implies thap,, = —p,. = k while p,, = 270 and
pyy = 2modP. Thus, we see that one of the most remarkable
the matter action, features of the experimental results in Ref. 7 has a natural e
planation in our modelp,, remains quantized while, ., p,,
Sinatter = /d%dtq)* (iat +ng — A+ (i0; + ni)Q can be temperature-dependenti# is diagonal. Secondly,
we note that the anisotropy in the DC resistivity comes en-

+ wel (i0, +ng)® +uel (0, + ny)Q) ®.(13) tirely from the induced anisotropy in the quasiparticlegtio
energy. By contrast, the transport due to the fluctuations in
Thus, we study the total actiofi = Spcs + Smatter- IN Srcs showed frequency-dependent anisotropy that resulted
Srcs, we have not integrated out thg field. At tree-level,  from subleading terms in the gauge field actioBo there is
the quartice* terms inSy s are marginal; the operator with additional anisotropy in the AC transport that is not prégen
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the DC transport. In particular, AC transport shows low fre-Since the Kosterlitz-Thouless critical point lies at theubd-
guency conductivity that vanishes linearly and cubicdiiyng  ary point of this half-line, we expect the particular crtithe-
the two orthogonal directions. The two types of anisotropyory governing the transition to be largely determined by the
come from different physical mechanisms — anisotropy in thedegree ofSO(2) rotation symmetry-breaking in the experi-
gauge field kinetic energy versus anisotropy in the quatsipar mental system. Since the in-plane field appears to be a weak
cle kinetic energy — although the ultimate cause is the same.symmetry-breaking field, as discussed in the Introductien,

It remains to calculatél,,,,. We summarize the calculation expect the transition to be fairly sharp.
of I1,; for spatiali below. We introduce dissipation by assum-  For definiteness below, we take the transition to be in the
ing the quasiparticles have an elastic scattering lifetspeal  universality class of the critical four-state Potts modéaiak
to 7 and single-particle gap /2. Due to the anisotropy in- lies at the boson radius = 1/+/2 on the orbifold line.
troduced by(e;) IN Siatter, the longitudinal current-current In Fig.1 are plotted the resistivitiegy. ,,. The order pa-
correlation functions along the two spatial directions @e  rameter for this transitiof®) ~ (e,) ~ (—t)*/'2, where

lated, t = (T — T,)/T.2%. (There is not a significant qualitative dif-
, , 1, ference in the plots if the system has the f6iD(2) rotation
_ 241 . .
<3_w(wn’ O)J_CE(_“W 0) = (1+ “<e$>2)_{(“‘f”’ T) symmetry so we have suppressed a separate discussion of the
(Jy(Wn, 0)jy(—wn, 0)) = (14 ules)”) 2 fiwn, T), KT transition.)

The microscopic parameters in (19) are determined us-
ing the resistance measurements performédaim follows.
T For simplicity, we assume rotationally invariant relatdme-
fliw,, T) = ~ Z/dqng(iwn+m,Q)G(iwm,Q) (17)  tween resistivities and resistances, = f(L, L,)R.. and
m pyy = f(La, Ly)R,,, wheref(L,, L,) is some function de-
pending on the sample lengtfis , . In other words, we ig-
nore possible geometrical enhancements that may be present
i in translating between these two sets of quantities. Jee
G (iwm, q) = iwm — A)2 = ¢* + FArg(A/2 = iwn). a discussior? of the importance of this digtinction inZ(iﬁe-con
(18)  text of anisotropic transport in = 9/2,11/2, ... half-filled
Here, we use the fact that the imaginary part of the correlatandau leve&) The measured temperature dependences of
tion function (which gives the real part of the conductiyiy ., and p,, at zero in-plane field are fit well by Arrhe-
cutoff independent so that the rescaling of the cutoffs @n bnius plots, p,; ., = Aexp(—A/2T), with A = 225mK
neglected. The diamagnetic contribution to the sum vasisheand A = 1072h/e?. We continue to use these values in

where

and after rescaling, to obtain the rotationally invariant form,

Replacing the sum over Matsubara frequencies, =  the anisotropic regime, which we identify with the region
27T, by a contour integral, we havenf(w + i,7) = # < 0, when the in-plane field is of sufficient magnitude.
Twl'T e~2/2T 'where we have made use of the largkmit. The temperature-independent valuedobver the temperature
Therefore, the longitudinal quasiparticle DC conducig} range50mK < T < 150mK implies a quasiparticle scat-

) tering lifetimer ~ 22, An estimate 065.6 x 10~3h/e?for
ol =T+ u(e)?) 2 Tre T (19)  the maximum value of,, observed at a tilt angle f6°

, and achieved a8 — 15mK from above impliesu(e,)? ~
where thet- (—) refers too3g (o). Inserting these expres- 54 4)1/6 with 7, = 50mK. We stress that the fitting of pa-
sions into (16), we find that

puz — Pyy = Tule,)?Tre 22T 4 O(e™2/T).  (20)

(19) and (20) are assumed to be valid at temperatiires
A/2, but high enough such that variable-range hopping can
be ignored. Thus, we have demonstrated theoretically the
existence of a FQHE that has both anisotropic zero temper-
ature AC transport as well as anisotropic finite temperature
DC transport.

The DC resistivities are plotted in Fig. 1. The precise tem-
perature dependence of the DC resistivity is determinetiéy t
behavior of(e,) and the quasiparticle scattering time At T o T
temperatures near the rounded finite-temperature phase tra Temperaturemk)
sition, (e,;) can be identified with the order parameter of the
particular finite-temperature phase transition. We expiést
classical phase transition to be described by a theory lying FIG. 1: Longitudinal resistivitiep.... ,, along the easy x-axis (red)
the Ashkin-Teller half-line or equivalently, the modulieae  and hard y-axis (blue) obtained from the conductivitiesifl)(are
of thec = 1 Z, orbifold theory. All theories along the line plotted versus temperature. The microscopic parametézsiegthe
possess a global, symmetry and an order parameter for the expressions in (17_9) are fognd phenomenologically from sk
Z4-broken phase with critical exponeht16 < 3 < 001920 tances measured‘ias explained in the main text.

Resistivity({2)




rameters used to obtain Fig.1 is meant to be as optimistic abe scaling requirements detailed in the previous pardgrap
possible so as to determine the microscopic parameters of oGubstitutingu (e, )2 = 7(¢)? ath = 1 into our expressions for
theory if it is to apply to the experiment. the resistivities using the same values for the overallesoél
The height of the peak observed in Fig.1 dependghe resistivity and behavior of the scattering timas above,
sensitively on the temperature-independent value ofve find Fig. 3.
(ulex)?)/(—=t)/¢ = (ur)/((\ — a)?(—t)'/%). In Fig.2, we Whenr > 0, the form (16) and (19) of the finite tempera-
plot py, for three different values of this parameter startingture DC conductivity matrix still holds. Howeve, ) is zero
with the value used in Fig.1. As the figure indicates, the pealand the longitudinal conductivity along the two directiaus
decreases as this parameter is lowered. incides. Note that non-zero AC conductivity at the= 0
We expect the in-plane magnetic fielkl| to act as a small  critical point requires disorder exactly like the< 0 regimé-.
symmetry-breaking field on this finite temperature traositi
This will lead to a rounding of the resistivity curves in Hg.

The order parameter now behaves as IV. DISCUSSION
s ((E) - - -
(eg) ~ BII gi(ﬁ), (21) In this paper, we have given an explanation of one of the
BII most striking aspects of the data of Ref. 7: the anisotropy

of the longitudinal resistances coexisting with quantikzed
where the+ is determined by the sign af and the critical  resistance. Our theory further predicts that, while onehef t
exponents? = 1/12 at the four-state Potts point add= 15  resistances will increase with decreasing temperaturenat t
along the orbifold line. Integral expressions for the swali peratures just below the (rounded) finite-temperature gohas
functionsg. are knowrt?, a precise functional form, however, transition at which nematic order develops, as obséntmath
is not. Scaling dictates that_ (z = 0) = g (x = 0) are  |ongitudinal resistances will, eventually, go to zero at lhw-
finite and non-zerog_(x) ~ = asx — oo, andg,(x) = 0  est temperatures, which is yet to be observed. It is an in-
forz > xeip ~ 1. teresting question to consider the complementary experime

Since we do not have an explicit functional form for,  tal possibility of a state that is metallic along one diresti

let us simply model the transition using mean field theory inand insulating along the other, but with fractionally quzexd
order to obtain a qualitative picture for the rounding of theHall conductance. Our theory does not apply to such a state.
transition. (We do not mean to imply that the crossover func-Transport beyond the linear regime, the nature of the massiv
tion for theZ, transition is in any way similap* mean field  quasiparticles in the anisotropic phase, and a more coeplet
crossover function. Rather, we only want a picture for howdetermination of the values of the parameters in the effecti
the transition might be rounded.) Tki¢ mean field critical ~ Lagrangian in terms of microscopic variables are intengsti
exponentsg? = 1/2 andé = 3. Specification of the free en- open problems.
ergy, ' = 1T.t¢* + 2¢* — ¢h, allows the calculation of+
via minimization of F’ with respect tap. We select the root,

F2(3)/32% 4 21/3(9 + /81 £ 121:6)2/3)
62/3(9 + /81 £ 1226)1/3) ’
(22)

wherez = |T — T.|'/?/h'/? and where the upper sign is
chosen for positive and the lower for negative It satisfies
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cles. (The gauge chosen for the vector potential is consis-
tent with a spatial geometry that is of a finite length along
the x, z-directions, and infinite along thg-direction. Note,
however, we are essentially ignoring the finite length along
the z-direction in the discussion below so we can think of it
as being large compared to the length scale provided by the
confining potential along the-direction.)

We consider the component of the magnetic field lying
along thezx-direction to be a perturbation to the system. It
is convenient to switch coordinates to the center-of-masds a
relative coordinate frame. Choosing

1
X = —(Xl +X2),

; (24)

P = X1 — X2,

traceless: x n matrix N, . Landau-Ginzburg theory predicts a the Hamiltonian becomes

continuous transition when = 2 while a first-order transition is
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energy. TheZ,-invariant critical point we study describes a con-

tinuous symmetry-breaking transition with vector ordergpaeter
(e;). Itis theZ.-invariant directore;)? that enters physical quan-
tities like the resistivity and allows the description ofantinuous
nematic transition in terms of certain response functions.
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Aside from the confining potentialdg(z12) = Ao(X, +
%pz), the center-of-mass and relative coordinates are decou-
pled.



motion in the plane and we are left with a collection of two- ! Me

dimensional electrons indexed by their band or energy along . o ]

the z-direction. (Here, we are assuming the pair potential only-i'st. we note that translation invariance along thg-
depends on the separation of the electrons invthey plane;  direction allows us to replace derivatives with respeckip
the well width is assumed small compared to the magneti®ith the momentunt, along this direction. Next, we shift the
lengthB—'/2. This is not the case in the experiments of Refs.X, coordinate by defining, = fgg — X_.. The Hamiltonian
7,12, so the violations of Kohn's theorem will be larger thanhas the form,

in our simple model.) Given a-eigenfunction, the center-of-

At B = 0, motion in thez-direction decouples from the H, — B”B(iaxy —2BX,)X. + (’)(Bﬁ). (28)

mass part of the wave function executes oscillatory _mot_ton a g — 1 ( _ a?( FAB2X2 9% + 4m€)\2X22)

the cyclotron frequenc¥B/(2m.). This is the generalization 4m @ >

qf Kohn's theore_m to the situation where elect.ror)s are con- HBXIXZ + (’)(Bﬁ), (29)
fined along the direction parallel to the magnetic field. When Me

the spacing between the energy levels oftheigenfunctions _ )
greatly exceeds the cyclotron frequency, it is possiblegto i Where terms proportional t5) are taken to be a perturbation.
nore higher sub-bands when considering low-energy proper- Our goal is to determine the spectral flow as a function of

ties of the system. However, this is not the case in the experiB|| Of the ground and first excited energy levels. Dividing out
ments of Refs. 7,12. by the irrelevantX, factor (which determines the degeneracy

of the Landau levels in a rectangular sample, but is inconse-
guential here), the eigenfunctions of the above coupled har
monic oscillator Hamiltonian aB; = 0 take the form:

Now considerB|; # 0. There is now a direct mixing be-
tween motion in the-direction and motion in the plane. This
mixing mediates a coupling at higher ordersBy between
the planar center-of-mass and relative degrees of freedom.

Thus, there there is no requirement of a pole at the cyclotrony (X, X.),... = cm.n exp(—@f(f) exp(—
frequency in the density-density correlator. This folldwsn ’ ’ 2

the fact that the full three-dimensional Galilean symmésy X Hp (v MweXz)Hn (v Mw.X:), (30)
cept for X, p, translations) is broken when therelisth an

in-plane field and a non-zero confining potential along the di Wheréwe = B/me, w. = A/y/me, M = 2m., H,(X)
rection normal to the plane. If either the confining well or d€note Hermite polynomials, and thg, ,, are normalization
in-plane field are removed, there will be a Kohn polesat constants. We assume that < w. < oc.

We would like to better understand departures of the pole (Forelectrons movingin a Ga-As quantum weliat 7/3,
from the cyclotron frequency in this more general situationVe can estimate. andw.. Given a band mass.. ~ .07my,
with non-zero in-plane field. Namely, we would like to know Wherem is the free electron mass and transverse magnetic
how the location of the pole varies with,. We can ob- Magneticfield o2.82 T, we estimate a. ~ 3 x 12/2 eV ~
tain some intuition by studying a special case for the form?0K- A has engineering dimension equalidass]|”/= so we

of the confining potential. Take the confining potential to betaﬁ_eE,tO be pro?ortircl)nal tﬂ)/“_’3/2’ v_\,/herefz;)_ is rt]he W§I| Wifdtr:‘
quadratic Ao () = %222. Then, because which is 40 nm for the experimentinWe fix the order of the

proportionality constant via the estimate of the Landaellev

1 1 1 sub-band gap given in Fig. 26f We findw, ~ z/w®/?,
Ao(X. + §pz) + Ap(X, — Epz) = \(X2+ Zpi), (26)  wherez = 103, Thus,w./w. ~ 2. As the filling fraction is

lowered, the ratia, /w, is increased and so the discussion be-

the center-of-mass and relative coordinate motion adelstii  low becomes less relevant as the two scales are too far apart.

coupled. This decoupling is not generic; a quartic poténtia Note also that this ratio approaches unity as the propertion

for example, couple&, andp. together. However, we will ality constant between the band and free electron masses is

argue that some conclusions drawn from the quadratic cadewered.)

Mw, ng)

are general. The perturbative shift in the energy of a state to second or-
We know that atB; = 0, the Kohn pole corresponds to derinH; is given by the formula,
the splitting between the ground and first excited statebeof t
center-of-mass motion. The relative coordinate is irrafev — BO) 4 (m, n|Hy|m,n)+ Z |(k|Hi|m,n)|?
both whenB; = 0 and for a quadratic electric potential, and ™" o ’ ’ EO _ g0
so we drop it from our discussion. Thus, the Hamiltonian we (k) #[m.n) ’ k(31)
study perturbatively irs is where Eﬁ% is the unperturbed energy of the state
H = Hy + Hy, (27) U(X,, X )m.n := |m,n). We are interested in the difference
Ey,0— E1 . At zeroth-order, this difference is equal to the cy-
where clotron frequencyy.. The first-order term on the RHS of (31)
vanishes because the perturbation is linear in Bottand X,
Hy = 1 (_ 9% + (idx, — 2BX,)? — 6 ) (the ground state is nodeless). Now consider the secoret-ord
2(2me) Ko Y ¢ X term. The state (or collection of states since we are iggorin

+ A2XZ the k,, dependence) mixed with the ground stfite)) by the
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perturbationid1, 1), while|0, 1) is the state mixed withl,0). ~ How general are these results? If we consider a more gen-

Because the wave functions factorize, eral form of the confining potential, there will be a coupling
between the center-of-mass and relative degrees of freedom
(1, 1|H110,0) = [{|0, 1|H1[1,0)], (32)  Nevertheless, for smalB;, our results hold generally. In
this limit, we can ignore the coupling between the center-of
however, mass and relative degrees of freedom. The perturbation cou-

) 0) ) ©0) ples the planar and motion of the center-of-mass at leading
[Eoo — Eril =we +w: >w: —we =[Ej g — Egil, 33)  order while the coupling between the planar center-of-mass
and relative degrees of freedom only occurs at higher order i

with both energy denominator differences being negatie. Sperturbation theory inB,,. Although the X eigenfunctions

while both Eo o and £, o are shifted downwards, the ground y iy 4oy e 4 different functional form and the spacing betwee
state is shifted less than the first excited state becaus®of ty,oq eigenfunctions will no longer be in regular multimés
_dn‘fe_rence In magmtu_de of the energy denommators: Th'swz, the above argument goes through unchanged as long as
implies that the location of the would-be Kohn pole is de-y gap between the lowest and first-exciféd eigenfunc-
creased from the cyclotron frequency. (There is no contradi

. ith llevel Isi : tion is greater thaw.. If B) is not small, then we cannot
tion with general level repulsion expectations as we amystu e the coupling between the center-of-mass and relativ
ing a systems with more than two states.) Notice that thi

. . . . %egrees of freedom. This can further modify the distributio
result requires mixing between the differexit-bands and is Ff spectral weight, but we do not have any simple argument

Br whether this coupling will move the pole, broaden thegpol
into a Lorentzian, or change its spectral weight. At any,rate

: ) oo . we can say that the coupling between the center-of-mass and
droppeq atermin th? pgrturbmg Hamiltonian quadratijn relative degrees of freedom will almost certainly causéer
and so it could, in principle, compete at t_he same order as thg,iations from expectations based on Kohn'’s theorem. Hap-
second-order result aboye. However_, th|s_ term has no cons ily, the effective field theory (1) describes a system where
quence on the energy difference as it shifts both energies e would-be Kohn pole is different from the bare cyclotron
the same amount.

_ . . . th h th iati 0] its study i
The above analysis implies that the location of the |eadlnqLequ§S§)gf t;](éup?aper.e variation of we pursue its study in

pole in a small momentum expansion of the density-density
correlator moves towards the origin as an in-plane field is ap
plied. This conclusion was drawn using a certain form of con-
fining potential in the direction transverse to the- y plane.

to infinity. Contributions from other excited states only- oc
cur at higher orders in perturbation theory. Note also that w



