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The electronic structures and transport properties of a series of actinide mono carbides, mono
nitrides and dioxides are studied systematically using a combination of density functional theory
and dynamical mean field theory. The studied materials present different electronic correlation
strength and degree of localization of 5f–electrons, where a metal–insulator boundary naturally lies
within. In the spectral function of Mott-insulating uranium oxide, a resonance peak is observed in
both theory and experiment and may be understood as a generalized Zhang–Rice state. We also
investigate the interplay between electron–electron and electron–phonon interactions, both of which
are responsible for the transport in the metallic compounds. Our findings allow us to gain insight
in the roles played by different scattering mechanisms, and suggest how to improve their thermal
conductivities.

I. INTRODUCTION

When engineering fuel materials for nuclear power, im-
portant thermophysical properties to be considered are
melting point and thermal conductivity. Understanding
the physics underlying transport phenomena due to elec-
trons and lattice vibrations in actinide systems is a cru-
cial step toward the design of better fuels. In this work we
conduct a systematic theoretical study on the electronic
structures and lattice dynamics of actinide compounds.
We start by concentrating on the class of actinide oxides,
nitrides and carbides based on uranium, neptunium, plu-
tonium, americium and curium. According to the Linde-
mann criterion, solids with large Debye frequencies have
high melting points. This is typically found in insulators
where atomic bonds are strong due to lack of electronic
screening. On the other hand, high thermal conductivity
can usually be achieved in metals where conduction elec-
trons are dominant heat carriers. For example, Uranium
and plutonium oxide fuels used in very high temperature
fast breeder reactors have very high melting points, but
they suffer from poor thermal conductivity. Hence atten-
tion is turning to metallic fuels for the new generation of
reactors, such as uranium carbide and nitride1. Apply-
ing these principles to the actinide compounds leads us to
an observation that systems close to the Mott transition
from the metallic side are the best option. In the present
work we throughly study the transport properties of ura-
nium mono carbide and nitride, two promising metallic
fuel materials, and prescribe how to improve them by
intercalating solid solution.

II. COMPUTATIONAL METHODS

A. LDA+DMFT

Electronic structures and thermophysical properties of
actinide compounds are not well described by the tra-

ditional approaches based on density functional theory
(DFT) within its local density approximation (LDA) due
to strong electronic correlation. It requires a theory that
can take into account both itinerant and localized behav-
iors of the correlated electrons on equal footing. In this
study we use an advanced electronic structure method
based on the combination of DFT and dynamical mean
field theory (LDA+DMFT)2, which has proven success
in describing such strongly correlated problems3–5. Our
full–potential charge self–consistent implementation of
LDA+DMFT described in Ref.7 is based on the DFT
program Wien2K6. For the impurity solver we use
the continuous time quantum Monte Carlo (CTQMC)
algorithm8,9. For late actinides such as Pu and beyond,
we use the less expensive vertex corrected one–crossing
approximation (OCA)2, which is very accurate in these
more localized systems. All calculations were performed
in the paramagnetic phase, using experimental struc-
tural parameters and scalar relativistic including spin-
orbit coupling.

B. Linear Response Method of Lattice Dynamics

For the calculation of phonon spectra we used the
well developed full–potential density functional linear re-
sponse approach implemented in the LMTO basis10,11,
which has successfully produced the lattice dynamics
of many solids12 including actinides materials such as
plutonium3 and UO2

5. The spin–orbit coupling effect is
included in this calculation. A q–grid of 6 × 6 × 6 is
used to compute phonon frequencies, which generates 36
irreducible q points in the Brillouin zone.
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FIG. 1. Correlation diagram. The shading represents the
electronic correlation strength. The labels on the top denote
the actinides elements, and the labels to the left denote the
ligand elements. The red line is the metal–insulator boundary.
Two quantities, which are computed at T = 100K, are listed
in each cell: Hubbard U (units: eV) and f -electron valence
nf .

III. CORRELATION STRENGTH AND

ELECTRONIC STRUCTURES

We first describe the chemical trends governing the
degree of localization of the f–electrons in the binary
actinide compounds listed in Fig. 1. The key param-
eters are the on-site Coulomb repulsion among the 5f–
electrons, quantified by the Hubbard U and Hund’s rule
exchange J ; the charge transfer energy ∆; and the 5f
band width quantified by the hybridization between 5f
and spd electrons.

While most electronic structure methods can accu-
rately calculate the hopping integrals between various
electronic orbitals, evaluating the screened U in solids
is generally a difficult task. Here we have computed
U using a newly developed fully self–consistent many–
body GW approach13, which provides a seamless inter-
face with LDA+DMFT. The latter method allows to de-
termine the degree of localization of the 5f–electrons
in each material. Our estimates for the Hund’s J are
within the range of 0.5− 0.6 eV, about 30% smaller than
their atomic values due electronic screening. This set of
Coulomb interaction U parameters are somewhat larger
than what have been used in previous theoretical studies
because LDA+DMFT, when solved by an exact impu-
rity solver, sums up all local diagrams, many of which
screen Coulomb interaction efficiently, and thus requires
a larger U.

The charge transfer energy ∆ is computed as the en-
ergy difference between the center of p band of ligand
(C, N or O) atoms and 5f band of actinides, and listed
in Table.I. ∆ increases from carbides to oxides due to
the stronger electronegtivity of the ligand atoms. ∆ de-
creases from U to Cm compounds because as the atomic
number Z increases, the 5f occupation grows and 5f
band is pulled lower with respect to the ligand p band.
The charge transfer energy increases vertically from car-
bides to oxides due to the change in the electro–negativity
of ligand atoms. The band width of 5f -electrons shrinks

U Np Pu Am Cm

C 2.27 1.96 1.78 0.92 0.67

N 3.14 2.55 2.07 1.64 1.39

O2 3.79 3.53 3.41 2.75 2.49

TABLE I. The calculated charge transfer energy of the 15
studied compounds. The units are eV.

horizontally from U to Cm compounds, indicating a more
localized nature in late actinides. This causes a reduction
of screening which is manifest in the gradual increase of
U from the left to the right, and from the top to the bot-
tom of the table. The charge transfer energies of oxides,
from UO2 to CmO2, range from 3.8 to 2.5eV , smaller
than their Coulomb U values.
As a combination of the above quantities, the overall

correlation strength and localization is visualized by the
shading of Fig. 1, referred as the “correlation diagram”
of binary nuclear fuel materials, where the gray gradient
approximately represents the partial f density of states
at the Fermi level computed by LDA+DMFT.
Next, we present the frequency dependence of the

electronic spectral functions of some representative com-
pounds in Fig. 2. From the top panel to the bottom, the
5f partial DOS changes qualitatively. UC and UN rep-
resent an itinerant 5f–electron system with most spec-
tral weight on the Fermi level, but the picture starts to
change at PuN, where the Kondo resonance and satellite
5f states are present. In AmN the 5f DOS begins to
form an marginal energy gap. The evolution of the den-
sity of states from UN to CmN echoes the itinerancy–
localization transition of 5f–electrons, and demonstrates
the metal–insulator transition in a transparent point of
view. CmC, CmN, and all the actinide oxides are also
found to be insulators. This allows to establish a metal–
insulator transition boundary, illustrated by the red line
in Fig. 1.
The actinides ions in most of the metallic crystals are

found to be in a mixed valence state, where they do not
settle in one valence, but fluctuate between different va-
lences in the solid. It can be described by an effective
number nf (listed in Fig. 1), obtained using a valence
histogram technique4, which represents an average over
all the atomic configurations weighted by corresponding
probabilities.
As for the two metallic uranium compounds which

we will focus on in transport properties, experimentally
UC is a Fermi liquid (FL) at room temperature and
ARPES measurement indicates that the overall band
width is reduced by a factor of 4 relative to the LDA band
structure28. In our calculation UC is a FL below 300K
with m∗/mLDA = 3.7. On the other hand, UN shows
a strongly correlated heavy fermion character with a co-
herence temperature below its Neel temperature of 53K.
In the absence of magnetic order, UN would be a FL
at very low temperature with a large mass enhancement
(m∗/mLDA ≈ 12) as can be inferred from the linear spe-
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FIG. 2. Partial 5f DOS of UC, UN and select actinide ni-
trides, calculated at T=100K, and compared with available
x-ray photoemission spectroscopy. The XPS & BIS data of
UC is from Ref.22, UN from Ref.23, PuN from Ref.27, and
AmN from Ref.26.

cific heat coefficient43. It is a non FL in the temperature
range (55− 1000K) we studied.

We now turn to the electronic structure of oxides.
Hybrid functionals, especially the newly developed HSE
variant, which mixes a certain amount of Hatree-Fock ex-
act exchange potential with LDA/GGA potentials, has
successfully captured strong correlation effects and pro-
duced qualitatively correct spectral properties, energy
gaps, and accurate optimal lattice constants in actinide
oxides14,15. However, in these studies the spin–orbit cou-
pling was not considered and the calculations were done
in either FM or AFM state. As a generalization to DFT
by adding static Hartree-Fock mean-field approximation
of electron interactions, the LDA+U is widely used for
electronic structure calculation of strongly correlated ma-
terials, and has been applied on actinide oxides such
as UO2

17, NpO2
16 and PuO2

18. Although some calcu-
lated physical properties were improved over LDA, the
LDA+U relies on magnetic ordering to get correct en-
ergy gap, and it does not capture real atomic features
nor quasipaticle bands, and thus fails in correlated metal-
lic compounds. LDA+DMFT does not require the mag-

netic ordering to obtain the Mott insulating gap. The
total and partial DOS of UO2 and PuO2 calculated by
LDA+DMFT are shown in Fig. 3. Both are Mott–
insulators with well formed Hubbard bands and large
correlation energy gaps. Most noticeably, the situation
U > ∆ allows us to describe the insulating actinide ox-
ides as charge transfer Mott–insulators19, which is well
known from late transition metal oxides, for example
NiO, the classical textbook example of strongly corre-
lated systems21.

As it is known from cuprates, which are charge transfer
type Mott–insulators, that the Zhang–Rice state (ZRS)20

would appear as the low–energy resonance corresponding
to the coupling of local moments of correlated electron
orbitals to the hole induced by phototemission process on
ligand orbitals. This ZRS concept has been generalized
to other transition metal oxides21, since they have the
same physics as cuprates. In the case of UO2, the situa-
tion is very similar because it also has a charge transfer
energy gap, and there is a local magnetic moment on
the U 5f2 orbital due to the Γ5 triplet being its many–
body ground state. On the other hand, PuO2 does not
have the ZRS because its ground state of the 5f4–shell
is the Γ1 singlet, which as zero moment. Since Hubbard
bands are of atomic nature, the position of the lower
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FIG. 3. (a)Total and partial DOS of UO2. XPS and BIS
taken from Ref.24. (b) Total and partial DOS of PuO2. XPS
from Ref.25. Both calculated at T=100K.
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FIG. 4. The real part of self-energy of UO2 on real frequency
axis.

Hubbard band (LHB) is found numerically by computing
the many body excitation energy of the impurity prob-
lem of DMFT, i.e. E(f2) − E(f1). In the theoretical
spectral function of UO2, the LHB is located at about
−4.3eV , which is broad and hybridized heavily with the
O 2p band. By performing the same calculation with
other values of U, we found that this resonance peak
is not sensitive to the choice of U, while the Hubbard
bands shift proportionally to U. Since DMFT corrects
LDA spectral function via the self–energy, the formation
of ZRS can also been explained through the self–energy
of UO2, plotted in Fig.4. The strong divergent peak in
the relevant 5/2 orbital at the Fermi energy (EF) is what
splits the f–band of LDA and creates the two Hubbard
bands. The other small peak in 5/2 channel, at about
−2.5eV , is responsible for the resonance f–peak (ZRS) in
the DOS just below EF.

IV. TRANSPORT PROPERTIES

A. Electronic Correlation and Transport

After understanding the electronic structures, we turn
to the transport properties. We focus on correlated
metallic compounds, where electrons play the role of
charge and heat transporters, while retaining a high melt-
ing point. Although in normal metals electron–phonon
scattering is dominant except at very low temperatures,
in strongly correlated metals electron–electron scattering
takes the lead. The electronic contribution to thermal
conductivity is proportional to the electrical conductiv-
ity via the Wiedemann–Franz law. From the electronic
structure and correlation strength of the studied materi-
als, small resistivity occurs in the least correlated com-
pounds in our table. Indeed UC and UN are the best fuel
materials in terms of their outstanding transport prop-
erties.
Strong Coulomb interactions among electrons can sub-

stantially reduce the interaction between electrons and
lattice vibrations29. Hence the electron–phonon interac-
tion (EPI) is usually weaker in strongly correlated ma-

terials, which might lead to smaller resistivity due to
EPI. On the other hand, increasing electronic correla-
tions leads to an increase in resistivity due to electron–
electron scattering. Therefore neither extremely weak
nor strong correlations is good from the perspective of
minimizing resistivity. Deciding the optimal degree of
correlation for the purpose of maximizing conductivity
thus requires first–principle calculations.
To evaluate the conductivity due to electron–electron

scattering we use the Kubo formalism7, where the scat-
tering rate comes from the imaginary part of DMFT self–
energy Σ(ω, T ), obtained from CTQMC.

B. Phonons and Electron–phonon Interactions

The phonon dispersion of UN along 3 high–symmetry
directions is plotted in Fig. 5(a) together with experi-
mental data measured by neutron scattering30. As shown
in Fig. 5(b), UC carries similar phonon dispersions but
slightly lower phonon energies. Despite apparent pres-
ence of correlation effects, excellent agreement is achieved
with the local density approximation (LDA). Similar suc-
cess of LDA in studying lattice dynamics of strongly cor-
related metallic systems have been reported earlier, for
example in Palladium12, high temperature superconduct-
ing cuprates31, and recently iron pnictides32.
Calculations of electron–phonon interactions and

transport properties require quasiparticle description of
the one–electron spectra when evaluating Eliashberg and
transport spectral functions by integrating over the Fermi
surfaces12. As a result, due to large mass enhancement,
the straightforward LDA procedure can produce wrong
electron–phonon resistivity which was indeed found in
our calculation for UC where ρ(T )EPI was overestimated
by a factor of 3 compared to experiment. This is de-
spite of simple arguments that would suggest that any
multiplicative effects on the electron mass renormaliza-
tion should cancel out in the resistivity, because it enters
both the scattering rate τ that appears in the denomina-
tor, and the electronic mass that appears in the numera-
tor of the expression for ρ(T )EPI , which is evident from
a simple Drude formula for ρ = m/(ne2τ). However, in
general, this does not apply to multi–band systems where
only correlated f–electron wave functions are primarily
affected by strong Coulomb interactions.
In order to evaluate the electron–phonon scattering in

the presence of correlations we develop a method that
accounts for the effects from quasiparticle mass renor-
malization and spectral weight transfer by utilizing in-
teracting Green functions. We have previously shown33

that the use of the pole interpolation of self–energy

Σ(ω) = Σ(∞) +
∑

i

V †
i Vi

ω − Pi

(1)

allows us to replace the non–linear (over energy) Dyson
equation by a linear Schroedinger–like equation in ex-
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FIG. 5. Phonon dispersions plotted along three high–
symmetry lines. (a) Solid curves: Calculated phonon disper-
sion of UN. Open circles: Experimental phonon excitations of
UN from Ref.30. (b) Theoretical phonon dispersion of UC.

tended subset of “pole states”:

(

ω −H0(k)− Σ(∞)− ǫkj V +

V ω − P − ǫkj

)(

ψ
(e)
kj

ψ
(a)
kj

)

= 0.

(2)

Here, only components ψ
(e)
kj describe one–electron excita-

tions where the spectral content of each energy eigenvalue

ǫkj is determined by the matrix element 〈ψ
(e)
kj |ψ

(e)
kj 〉 that

is less than unity in general. The advantage of the present
method is that the well developed machinery of standard
electronic structure methods can be simply generalized to
account for the dynamical self–energy effects. In particu-
lar, our successful applications on computation of phonon
spectra in paramagnetic states of Mott–insulators such
as NiO34, UO2 and PuO2

5, as well as in Pu3 and Am33

as representative systems with localized f–electrons have
been made with the Hubbard 1 self–energy that exactly
casts the form of the pole expansion in Eq. (1).
In the present work we extend this method to com-

pute electron–phonon interactions for systems such as
UC and UN whose f–electrons show itinerant behavior
with m∗/mLDA ≈ 4 − 12. To capture this mass renor-
malization effect, we first make a fit to the self–energy
obtained from the CTQMC, using a two–pole interpola-
tion where the slope of the self–energy at zero frequency

dΣ(ω)/dω|ω=0 = 1 − m∗/mLDA controls the electronic
mass enhancement while the positions of the two poles
Pi in Eq.(1) determine the transfer of the spectral weight
from the quasiparticle band to the Hubard bands. Sec-
ond, we assume that the f–electrons are rigidly bound
to their ions so that there is no actual change in the
self–energy, δΣ(ω), caused by ionic excursions from their
equilibrium positions. Since the main contribution to
electronic transport comes from the states near the Fermi
surface, where quasiparticles are best described in terms
of slave bosons, the neglecting of δΣ(ω) due to ion dis-
placements corresponds to a rigid self–energy approxima-
tion. This is very similar to the famous rigid muffin–tin
approximation (RMTA)35, which has been successfully
applied in the past to study electron–phonon interactions
in transition metal materials36,37. Therefore our use of
rigid self–energy is expected to demonstrate a similar ac-
curacy.
As a result, the electron–phonon scattering matrix ele-

ment gkjk+qj′ can be evaluated using the electronic com-

ponents ψ
(e)
kj that appear as solutions to Eq.(2), and the

change of the ground state LDA potential, δqVLDA, com-
puted for each phonon wave vector q, i.e.

gkjk+qj′ = 〈ψ
(e)
kj |δ

qVLDA|ψ
(e)
k+qj′〉.

These matrix elements can be subsequently used for eval-
uating the EPI part of electrical and thermal resistivity
similar to our previous applications on weakly correlated
metals12, where the corresponding Fermi surface inte-
grals are now performed with “band structures” ǫkj of
Eq. (2) that acquire renormalizations due to correlations.
Finally, the EPI resistivity can be computed by

ρEPI(T ) =
πΩcellkBT

N(EF ) 〈v2x〉

∫

x2

sinh2 x

α2F (ω)

ω
dω. (3)

Since the inclusion of correlation effects also renormal-
izes bands thus modify the Fermi surface as well as the
average electron velocity, which enters the denominator
of Eq.(3), the combined effect of electron correlation on
ρEPI(T ) is not straightforwardly seen. By applying this
theory, we have obtained a substantial reduction (by a
factor of 3) in ρ(T )EPI for UC, while in UN the effect
was marginal.

C. Total Transport Properties

Taking into account both electron–electron and
electron–phonon scattering mechanisms, we can now
build the entire picture of the electronic transport in the
uranium compounds with our results summarized in Fig.
6. Electron–electron scattering can account for approx-
imately 80% of ρ(T ) in UN, commonly found in heavy
fermion systems, entitling it as a strongly correlated bad
metal. In contrast, UC shows nearly linear ρ(T ), which
is an indication of dominant electron–phonon scattering,
and our calculated results indeed show that in UC, ρ(T )ee
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is much smaller than ρ(T )EPI . The ρEPI(T ) of UN
shows very similar behavior, both qualitatively and quan-
titatively, to the experimental resistivity of ThN, which
has no 5f electrons and thus its resistivity is purely due
to electron-phonon interaction. This comparison reflects
the strong electron-electron correlation in UN, which acts
as additional (and in this case major) scattering of elec-
trons. Our calculations verify the distinct characters in
the electrical transport of UC and UN, two seemingly
similar materials.
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FIG. 6. Electrical resistivity due to two different scattering
mechanisms. The electron–phonon interaction (EPI) resistiv-
ity is show as solid lines, and electron–electron interaction
resistivity, which is calculated by LDA+DMFT (CTQMC) at
several temperatures, is shown as solid hexagons connected
by lines. The total resistivity ρ(T )total = ρ(T )ee + ρ(T )EPI,
is show as stars connected by lines. (a) UN. Experimental
resistivity data are taken from Ref.23. (b) UC. Experimental
data after Ref.38–42. The Debye and Kondo temperatures are:
UN: ΘD = 332K, TK = 1720; UC: ΘD = 320K, TK = 5500.

While electrical current can only be carried by elec-
trons in solids, excitations other than electrons may con-
tribute to thermal conductivity. Here we also estimate
lattice vibrational contribution to thermal conductivity
in UC and UN, using the phonon spectra we obtained
from linear response calculation. This is done by eval-
uating the Gruneisen parameter and phonon group ve-
locities using the method described previously for MOX

fuels5. According to our result, at T = 1000K, lattice
thermal conductivity κph is equal to 2.7W/mK in UC,
and κph = 4.4W/mK in UN. Thus κph only plays a minor
role in these two metallic uranium compounds.

We put together our results and evaluate total ther-
mal conductivity at 1000K, a representative tempera-
ture under which nuclear reactors operate. By applying
the Wiedemann–Franz law on the electrical conductivity
data, we obtain κee. Since electronic thermal resistivity
consists of two scattering processes, total thermal con-
ductivity is estimated by κtotal = (κ−1

ee + κ−1
EPI)

−1 + κph,
in which the first two terms correspond to κelectron.
For UN, our result is κtotal = 16.5W/mK, compares
well with a recent study which extracted the phonon
contribution from molecular dynamics (MD)44 and the
electronic contribution from experiments. Experimen-
tally, κ(1000K) ≈ 19 − 23W/mK. In UC, we obtained
κtotal = 18.7W/mK, also close to the experimental value
of 23W/mK45. The discrepancy between theory and ex-
periment is likely due to other excitations that can con-
duct heat but are not accounted for in our calculation, as
well as the approximate nature of the Wiedemann–Franz
law and Boltzmann transport theory which are used to
obtain the electronic and lattice thermal conductivity,
respectively.

At last, the understanding gained from our computa-
tional study suggests avenues for improving the thermal
conductivity of UC and UN. At high temperatures under
which reactors operate, optimizing thermal conductivity
is equivalent to minimizing resistivity. We investigate the
doping dependence of the resistivity of the solid solution
UC1−xNx. Here we explain how UC1−xNx solid solu-
tion can have smaller resistivity than the stoichiometric
compounds, by using a set of simple interpolative equa-
tions to simulate the transport in the solid solution. The
total resistivity of the is ρtotal(T ) = ρee(T ) + ρEPI(T ),
where the electron-electron interaction part can be quali-

tatively evaluated as ρee(T ) = K T 2

TK
, in whichK is a con-

stant, and TK is the Kondo temperature TK = e
− 1

N(0)JK .
For the EPI part of resistivity, in order to take into ac-
count the correlation effect on the electron-phonon cou-
pling constant, we use assume λeff = λLDAZ, where
Z is the renormalization factor, which is approximately
Z = TK/W , and W is the bandwidth (here we use
W = 2eV, roughly the LDA bandwidth of 5/2 sub band
of 5f-electrons). Since Z decreases from UC to UN as
a result of of stronger electronic correlation, we assume
that it changes linearly as Z(x) = D − Ex (where D
and E are constants). From the linear-response calcu-
lations, we get λLDA = 1.3 for UC, and 0.08 for UN.
To model λLDA in UC1−xNx solid solution, we take the
parabolic form of λLDA(x) = A−Bx+Cx2 (where A, B
and C are constant fitting parameters) between the two
stoichiometric UC and UN ends. At high temperatures,
ρEPI(T ) is a linear function of temperature, so we use
ρEPI(T ) = LλeffT (where L is a constant). Putting
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things together, we arrive at

ρtotal(T ) = T [
KT

D − Ex
+L(A−Bx+Cx2)(D−Ex)]. (4)

Using the quantities obtained from our LDA+DMFT and
linear-response calculations for the two end points of the
solution (UC and UN), we can fix the fitting parameters
and plot the interpolated ρtotal(T ) as a funciton of x. In
Fig 7., it is clearly seen a minimum exists. It is also pos-
sible to achieve similar effects in UC by electron doping,
or in UN by hole doping.
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FIG. 7. The total resistivity of UC1−xNx (solid line). The
experimental and first-principle calculation results are shown
at the two end points, and the interpolated curve is let to
go through between them to minimize error and give more
realistic fitting.

V. CONCLUSION

To conclude, we have carried out the first
LDA+DMFT exploration of the electronic structure
and transport properties of binary actinide compounds.
The dioxides are charge–transfer insulators, where the
Zhang–Rice state is present in UO2. The metallic
carbide and nitride compounds exhibit strong electronic
correlations, which is reflected in the incoherent non
Fermi liquid behavior at temperatures relevant for nu-
clear reactions. We have achieved a successful theoretical
description of the transport in UC and UN, two of the
most promising fuel materials due to their excellent
thermophysical properties. While UN clearly shows a
strongly correlated signature, both the electron–electron
and electron–phonon scattering mechanisms contribute
to transport in the less correlated sister compound UC.
Our findings enable us to give predictions on how to
improve these two uranium based nuclear fuel materials.
Also, we have developed a new method in the linear–
response calculation of electron–phonon interactions to
include strong electron correlation effects.
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