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We measure a strong enhancement of the non-linear differential conductance (g = dI/dV ), the
amplitude of which exceeds the universal quantum conductance (2e2/h), under finite bias voltage
in quantum point contacts (QPCs). By developing a spin-based model in the low-electron-density
limit, we demonstrate that this resonance is an intrinsic nonequilibrium phenomenon that arises from
many-body induced modifications to the QPC potential. A comparison with the linear conductance
(G = I/V ) shows that this phenomenon is driven by many-body dynamics within a single one-
dimensional subband.

PACS numbers: 73.21.Hb, 85.35.Be, 73.23.Ad, 73.63.Nm

The well-known quantization of the conductance1,2

of quasi-one-dimensional (1D) quantum point contacts
(QPCs) and quantum wires (QWRs), in integer units
of G0(= 2e2/h), can be well described within a single
particle picture in the Landauer-Buttiker formalism3,4.
At the same time, however, many-body phenomena, in-
cluding those that involve spin-based interactions, have
been widely suggested to modify the conductance, in the
limit where the carrier density is lowered sufficiently that
many-body energy terms dominate over the carrier ki-
netic energy (for reviews see 5–7, and for various theo-
retical models see8–14) Recently, a strong conductance
enhancement beyond G0 was observed in the non-linear
transport of QWRs, when their transport was governed
by a single 1D subband15,16. Although many-body effects
were proposed as the origin of this enhancement, it re-
mains unclear precisely what non-equilibrium mechanism
can drive such a drastic departure from the quantized
conductance. Here, we provide a scenario that explains
this behavior in terms of nonequilibrium transport due
to spin fluctuations in quasi-1D constrictions. From di-
agrammatic calculations, it is shown that correlations of
the spin fluctuations strongly modify the effective poten-
tial barrier (Eb) formed in the 1D QWR, and it is this
effect that yields the observed non-linear conductance en-
hancement.

The phenomenon that we are interested in explain-
ing is demonstrated here with new results for two
GaAs/AlGaAs QPCs [which we refer to here as QPC A &
B, see inset to Fig. 1(a) for geometry], fabricated by nano-
lithography and wet etching. QPCs were defined with
nominal lengths and widths of about 100 nm, and had
a global Ti/Au top gate that covered the reservoirs and
the QPC. A two-dimensional electron gas (2DEG) was lo-
cated 55 nm below the top surface, and had (in the dark
at 4.2 K) a carrier density, mobility, and mean free path
of 3.1× 1011 cm−2, 1× 106 cm2/Vs, and 9.5 µm, respec-
tively. Differential conductance (g = dI/dVsd) was mea-

sured by lock-in technique, superimposing a dc source-
drain bias (Vsd) on top of a small ac excitation. Mea-
surements were made in a dilution refrigerator for tem-
peratures of 0.02− 10 K. In rough dc bias measurement
scans five out of nine QPCs showed immediate evidence
for a conductance peak, with two of these exhibiting a
peak with g > G0. The reproducibility of our results was
demonstrated in several cooling cycles, performed over
the course of a year. As illustrated in Fig. 1(a), in the
limit Vsd → 0, the differential conductance showed flat
quantized plateaus indicating the high quality of these
constrictions. As the top-gate voltage (Vg) is increased,
the onset of conduction is followed by the well-known 0.7
feature5. The 1D subband energy spacings were deter-
mined from the transconductance (dg/dVg) derived from
g17 measured as a function of both Vg and Vsd. Typical
values for the separation of the first and second subbands
(∆E1,2) were around 10 meV, significantly larger than
the values (1 − 3 meV) typically reported for split-gate
QPCs. The large subband spacing is critical for the non-
linear experiments here, since it allows us to apply dc
bias without inducing transport via higher subbands.

The resonant enhancement of the QPC conductance
under non-linear bias is demonstrated in Fig. 1(b). Here,
we plot high-resolution measurements of g(Vsd), for a
series of Vg close to pinch off. For the lowest conduc-
tance curves, it is clear that an increase of Vsd to 4 mV
yields a rapid increase of g, to a value beyond G0. Re-
lated behavior was found previously in the experiment
of Morimoto et al.

15,16, who showed that this resonant
enhancement became more pronounced with increasing
channel length, a result that we return to explain below.
It is clear from Fig 1(b) that the resonance is only seen
for a narrow range of Vg close to pinch-off, and that it
is rapidly suppressed with increase of the background g.
This can also be seen in the colorscale plot of g(Vg, Vsd)
in Fig. 1(c). Values of g exceeding G0 are plotted in dark
red and the width of the resonances is very narrow, about
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FIG. 1. (color online) (a) g = dI/dVsd measured vs. Vg (up-
and down-sweeps) for Vsd = 0 and Vsd = +4 mV at 22 mK,
QPC A. Inset: Typical QPC before deposition of the top gate.
(b) g(Vsd) measured at different Vg, showing g > G0, QPC
A. (c) Color plot of g(Vsd, Vg). g > G0 values in red. Red
line: g(Vsd=+4 mV) of Fig 1(a), blue line: g(Vg = 0.38V )
of Fig. 1(b), QPC A. (d) Temperature dependence of the
conductance peak, QPC B. Inset: linear conductance showing
the 0.7 anomaly. (e) Non-linear conductance peak for Vsd =
+4.5 mV at B = 0 T and 8 T, QPC B.

400 µV. For increasing gate voltage, as the background
conductance increases towards the right-hand side of the
contour, the resonances are suppressed. As a further il-
lustration of the range of the resonance, in Fig. 1(a) we
compare the gate-voltage dependence of the differential
conductance, measured with Vsd = 0 to that for Vsd = 4
mV. The data are similar to those in Ref.15, and show
that the enhancement of the conductance above G0 is as-
sociated with the threshold for a single subband. Sweep-
ing Vg up and down shows that the resonance is highly
reproducible and that there is no hysteresis. We have fur-
thermore found the resonance to be stable with regards
to variation of the ac excitation (4− 240 µV rms).

Two further features of the resonance that should be
addressed concern its temperature and magnetic-field
dependence, which are demonstrated in Figs. 1(d) and
1(e). Consistent with Ref.15, the resonance is sup-
pressed quickly with increase of temperature beyond 1
K [Fig. 1(d)]. Such behavior is therefore opposite to that
reported for the 0.7 feature5, whose visibility typically
improves above 1 K, suggesting that the resonance arises
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FIG. 2. (color online) (a) Schematic I − Vsd relation. As
a pinched-off QPC [in (d)] becomes conducting [in (e)] the
potential barrier shifts downward (dashed to solid curve) due
to the energy gain via coupling to spin fluctuations and the
current becomes enhanced. The current should be bound by
the maximum current, Imax = G0Vsd, if only one subband
is responsible. Once the conductance saturates [in (f)], the
potential shift does not affect the plateau. (b) Corresponding
differential conductance. (c) Measured I − Vsd curves. (d-f)
Energy configurations at different gate voltages. Eb is the
potential barrier height. (g) Linear-conductance regime.
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FIG. 3. (color online) (a) Calculated g at finite bias
Vsd = 1 mV with several spin-coupling constants J0. J0 =
10, 11, 12, 12.5, 13 meV from bottom to top curves. (b) g
at several Vsd (0, 0.25, 0.5, 1 meV from bottom to top) for
J0 = 12.5 meV. Absence of conductance peak in the mean-
field approximation (red dash-dotted curve) demonstrates the
importance of spin fluctuations. (c) The conductance peak
with strong temperature and magnetic field (inset) depen-
dence within the experimental range. J0 = 12.5 meV, Vsd = 1
meV. (d) Strong enhancement of conductance peak for flatter
potential barrier (inset). Increment of α is 0.2 [defined below
Eq. (2)].
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from a different mechanism. In Fig. 1(e) we show that
a large in-plane magnetic field suppresses the resonance,
similar to the trend reported by Morimoto et al.

15. The
inset to this figure reveals an interesting behavior that is
observed by first configuring Vg to achieve maximal reso-
nance at B = 0 T, and then increasing the magnetic field
while holding Vg fixed. g reduces in a step-like manner,
from an enhanced value of more than G0 to around G0,
near 4 T, and then to a value close to zero.
To begin our discussion of the theoretical interpre-

tation of the observed phenomena, we first explain the
nonlinear conductance peak heuristically as follows. For
given Vsd, the current through a single 1D subband is

given by I = 2e
~

∫ ks

−kd

dk
2π

vg(k, Vsd) = 2e2

h
Vsd with µs,d

and ks,d the chemical potentials and Fermi wavevectors,
respectively, for the source (s) and drain (d) reservoirs.
This formula applies for Eb < min(µd, µs) [see Fig. 2(d)]
even when the potential barrier or the group velocity
vg(k, Vsd) is modified by many-body effects. When Eb

lies inside the chemical potential window [µd < Eb < µs,
see Fig. 2(e)] the relation is modified to I = 2e/h(µs −

Eb), in the limit of perfect transmission. If the bias de-
pendence of the barrier is ignored, the differential con-
ductance becomes g = dI/dV = βG0 with the parameter
β being the fractional voltage drop between the source
and the constriction. In infinitely-long QWRs, the shift
of the bottom of the band can be absorbed in the chemi-
cal potential and is often ignored. However, in QPCs the
change of potential near the constriction should be care-
fully taken into account. In the strongly interacting limit
near pinch-off, the finite electron density in the constric-
tion changes the electronic structure and Eb(Vsd) may
develop a strong bias dependence. As the bias increases
by δVsd, the electron density in the constriction increases
leading to stronger many-body effects, which in turn in-
duces a second-order downward shift of the potential bar-
rier by δEb. Under such conditions, the current should
exhibit an abrupt change near pinch-off as depicted in
Fig. 2(a). The current increase δI can be expressed as
δI = 2e

h
[βeδVsd + δEb]. δEb/δVsd is model-dependent

and there is no limit to its magnitude a priori. When
δEb/δVsd becomes large enough, the maximum differen-
tial conductance

gmax = G0

[

β +
1

e

∂Eb

∂Vsd

]

(1)

may exceed G0, just as measured in our experiment. In
the linear-transport regime, [µd = µs, see Fig. 2(g)] the
condition µd < Eb < µs is never satisfied and the single-
subband differential conductance is bounded by G0, even
though the many-body effect may be present in Eb.
Confirmation that the resonance arises from only a sin-

gle 1D subband can be obtained by examining the QPC
I −V curves. With a single subband, the current should
be bounded by Imax = G0Vsd [dashed line in Fig. 2(a)],
regardless of many-body effects. This is demonstrated
experimentally in Fig. 2(c), which shows I − V curves
obtained by numerical integration of the differential con-

ductance of Fig. 1(b). The curves are clearly bounded
by Imax, and a similar conclusion may be reached from
the data of Morimoto et al.

16. Thus, the resonance in
the differential conductance does indeed appear to arise
from many-body effects taking place in a single 1D sub-
band. Such character explains why the large 1D subband
spacing in our devices aids the observation of the reso-
nance. Hints of collective behavior of itinerant electrons
under strong lateral confinement have been given earlier
in Ref.18.
Moving beyond this heuristic description to quantita-

tively account for the experiment, we have developed a
phenomenological model that takes account of spin fluc-
tuations of itinerant electrons in a quasi-1D system19,20.
We start with an electron gas discretized on a non-
interacting chain with the Hamiltonian given by the
tight-binding model

H0 =
∞
∑

i=−∞

∑

σ

[

−t0(c
†
i+1,σciσ + c†i,σci+1σ)

+

(

V (xi)− µ−
1

2
gµBσH

)

niσ

]

, (2)

with the gate potential V (xi) = Vg[cosh(xi/Lg)
α]−2 on

the i-th point xi along the transport direction. The pa-
rameter α is introduced here to allow variation of the
potential shape from quadratic (α = 1) to flatter (α > 1)
forms, thus mimicking constrictions of different length.

c†iσ is the electron creation operator of spin index σ = ±1,

the electron occupation niσ = c†iσciσ, t0 is the hopping
integral, and H is the external Zeeman field. The free
electron g-factor has been used in the calculation. To
connect to experiment, the length of the gate potential
in the transport direction is chosen as Lg = 240 nm,
with the discretization spacing ∆x = Lg/32 = 7.5 nm.
This leads to the hopping integral t0 = ~

2/(2m∆x2) ≈ 10
meV with the effective mass m ≈ 0.067me in GaAs. This
discretization sets the coarse-grain length scale for our
model of long-wavelength limit.
For the inter-electron interaction, we consider the

Heisenberg spin-exchange model

Hint =
1

2

N
∑

i=−N

Ji(Ŝi − Ŝi+1)
2, (3)

where the spin of itinerant electrons at interacting
sites i = −N, . . . , N (N = 30) is given by Ŝiα =
1
2

∑

βγ c
†
iβσ

α
βγciγ with the Pauli matrix σα (α = x, y, z).

Positive spin-exchange coupling Ji induces ferromagnetic
coupling between itinerant electrons nearby. For numer-
ical calculation, we attenuate the coupling constant adi-
abatically with the same width as the gate potential,
Ji = J0[cosh(xi/Lg)]

−2. The spin coupling contributes
to a negative shift of the barrier when incoming electron
spins dynamically align with the spin fluctuation19,20

near barrier. This effect becomes sensitive in the low den-
sity limit near pinch-off when the effective kinetic energy
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competes with many-body interaction. With the barrier
between the source-drain chemical potentials under finite
bias, such abrupt change in the electronic structure leads
to the enhancement of the conductance as discussed for
Eq. (1).
The model is numerically solved by the nonequilibrium

Keldysh Green function technique21 with the self-energy
calculated to second order of interaction. Fig. 3 confirms
the picture discussed earlier. In Fig. 3(a), differential
conductance curves at finite source-drain bias Vsd = 1
meV show a peak exceeding G0. (VPO denotes the pinch-
off gate voltage by non-interacting limit.) Here the spin-
coupling parameter J0 is treated as a free parameter.
Once J0 exceeds 11 meV, the conductance peak grows
rapidly. In the linear transport regime (Vsd = 0 meV),
the conductance is bounded by G0 as shown in Fig. 3(b).
It is interesting that the calculations carried to the first
order mean-field approximation (dash-dotted line) show
only a conductance step at g = βG0 as discussed ear-
lier. This illustrates that the resonant conductance oc-
curs due to the coupling of quantum fluctuations with
itinerant electrons near a QPC constriction. In principle,
bosonic fluctuation models other than that is considered
here could also generate similar resonant conductance
physics. Quantitative comparisons to experimental tem-
perature and magnetic field dependence will determine
the applicability of the models.
At J0 = 12.5 meV, the strong temperature depen-

dence in Fig. 3(c) reproduces the experimental temper-
ature scale for suppression of the resonance. Note, the
characteristic energy scale of 2.9 K is much smaller than
any other energy parameters in the model, as is typi-
cal for emergent many-body phenomena. Calculations
performed with non-zero magnetic field also confirm the
reduction of conductance peak for H > 4 T, and the
progression of the peak position to more-negative gate
voltage at high fields15.
Increasing the constriction length via the QPC poten-

tial yields a remarkable enhancement of the conductance
peak, as we show in Fig. 3(d). In this figure, the po-
tential shape (inset) has been changed from a quadratic
[α = 1, below Eq. (2)] profile to a flatter form by incre-

ment of ∆α = 0.2. This results in a growth of the ef-
fective region over which the spin-coupling becomes pro-
nounced, hence leading to enhanced conductance peaks.
As the QPC gets even longer, the effective region does
not grow due to a voltage slope in the potential [see the
inset of Fig. 3(d)], while the resonant many-body state
becomes more extended. This leads to reduced coupling
and eventual reduction of the conductance peak. The
overall agreement of our model with experiment (both
here and in Refs.15,16) offers important insight into the
origins of the non-linear resonance. In our devices here,
the large 1D subband spacing promotes a strongly 1D
character to transport, while in the experiment of Mori-
moto et al.

15 this was achieved by studying long QPCs,
with a large length-to-width ratio.
In conclusion, we have developed a quantitative many-

body theory that captures the resonant enhancement of
the non-linear conductance in QPCs in the lowest one-
dimensional subband. Key to this phenomenon is the
ability of quantum fluctuations to induce a significant
modification of the constriction potential, over a nar-
row range of gate voltage. Due to the strong magnetic
field dependence, models with itinerant spins are likely
candidates, as confirmed by performing calculations of
spin fluctuations in the low density limit as an exam-
ple. Our experimental results confirm the ideas of our
model, showing that, in the limit of large subband spac-
ing, the conductance (I/V ) remains bounded below G0,
even though the differential conductance can significantly
exceed this. Our study therefore shows that nonequi-
librium transport can reveal new many-body energetics
that is essential to a full understanding of QPC/QWR
systems.
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