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We study the two dimensional Chern insulator and spin Hall insulator on a non-orientable Rie-
mann surface, the Mobius strip, where the usual bandstructure topological invariant is not defined.
We show that while the flow pattern of edge currents can detect the twist of the Mobius strip in the
case of Chern insulator, it can not do so in spin Hall insulator.

Band insulator with interesting bandstructure topol-
ogy, the so called “topological insulator”, has attracted
considerable attention lately1. Mathematically these
free-electron insulators are characterized by topological
invariants in their bandstructure. Examples include the
Chern number2,3 and Z2 index4–7 for the Chern and Z2

insulator, respectively. Physically a hallmark of these
insulators is their protected boundary states. In two
dimensions these are the chiral edge states of the inte-
ger quantum Hall effect8,9, and the helical edge states
of the spin Hall insulator10,11. In three dimensions the
boundary states have a massless Dirac fermion dispersion
relation12,13.
In this paper we ask a simple question: in two di-

mensions can we put topological insulators on a non-
orientable Riemann surface? and if so, what are their
signatures? The first question was posed to us by Prof.
X. Sun of the Fudan University. Clearly the usual band-
structure topological invariants can not be defined in this
situation; therefore naturally one would examine the edge
state structure. In the following we study two dimen-

sional Chern and Z2 insulator on the Mobius strip. Since
the Mobius strip has only one edge, it is far from clear
how does the flow pattern of the current look like.

First we start with the Chern insulator. As pointed
out by Haldane14, the necessary ingredient of Chern in-
sulator is time-reversal symmetry breaking rather than
net magnetic flux. Specifically we consider the following
two-band model on square lattice

H (k) = d(k) · ~τ. (1)

Here ~τ are Pauli matrices which acts on the (two) orbital
degrees of freedom, and

d(k) = (sin kx, sinky, 1− cos kx − cos ky). (2)

It is straightforward to check that the Chern number (or
the TKKN index) associated with the valence band of
this model is 1. In order to implement this model on the
Mobius strip we first need to Fourier transform the above
model to real space:

H = −
1

2

∑

i,j

[

i(ψ†
i+1,jτ

xψi,j + ψ†
i,j+1τ

yψi,j) + ψ†
i+1,jτ

zψi,j + ψ†
i,j+1τ

zψi,j + h.c.
]

+
∑

i,j

ψ†
i,jτ

zψi,j . (3)

In the above (i, j) are the integer coordinates of the sites
of a square lattice, and ψ is a two-component fermion
field associated with the two orbitals in question. Be-
cause we shall study Eq. (3) on the Mobius strip it is
essential to define how do the orbitals couple to the local

orientation. A convenient definition is to let the pseu-
dospin corresponding to the orbital degrees of freedom
couple to space curvature in the same way the real spin
in Dirac theory does15. This amounts to replacing the τ
matrices in Eq. (3) by position-dependent Pauli matrices,
i.e.,

H = −
1

2

∑

i,j

[

i(ψ†
i+1,jτ

x
i,jψi,j + ψ†

i,j+1τ
y
i,jψi,j) + ψ†

i+1,jτ
z
i,jψi,j + ψ†

i,j+1τ
z
i,jψi,j + h.c.

]

+
∑

i,j

ψ†
i,jτ

z
i,jψi,j . (4)

where

~τµi,j = n̂µ
i,j · ~τ . (5)

Here µ = 1, 2, 3 and n̂µ
ij are unit vectors defining a lo-

cal frame when the relevant surface is embedded in the
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FIG. 1. (color on-line) The edge current associated with the
Chern insulator described in the text. There are 40/12 sites
in the circumferential and height directions respectively. The
direction of the current is illustrated by the red arrows. The
length of arrows is proportional to the magnitude of the cur-
rent. To make the plot easier to understand we have omitted
the weak current away from the edge.

three dimensional Euclidean space (n̂3 is the local surface
normal).
Let us warm up by studying the surface of a cylin-

der. We build a coordinate system as follows: x(u, v) =
cosu, y(u, v) = sinu, z(u, v) = v. where 0 ≤ u < 2π and
−1 ≤ v ≤ 1. Thus we have a cylinder of height 2 and
radius 1. The local frame is defined by

n̂1(u, v) = ∂v~r(u, v)

n̂2(u, v) = ∂u~r(u, v)

n̂3(u, v) = n̂1(u, v)× n̂2(u, v), (6)

where ~r(u, v) = (x(u, v), y(u, v), z(u, v)). Set u, v to a set
of discrete values corresponding to the square lattice we
substitute Eq. (6) into Eq. (5) then into Eq. (4). We
diagonalize the resulting Hamiltonian numerically and
compute the expectation value of the current operator

j1,2 = ψ†
i,jτ

1,2
i,j ψi,j . (7)

In Fig. (1) we plot the result. As expected counter-
propagating chiral edge currents are found on the two
opposite edges.
Now we are ready for the Mobius strip. The coordinate

system we use is

x(u, v) =
(

1 +
v

2
cos

u

2

)

cosu

y(u, v) =
(

1 +
v

2
cos

u

2

)

sinu

z(u, v) =
v

2
sin

u

2
. (8)

Using Eq. (6), Eq. (5) and Eq. (4) we construct the
Hamiltonian and numerically diagonalize it. In Fig. (2)
we first present the result when all bonds across a line seg-
ment are removed. We note that a pair of co-propagating
edge currents are localized on the cut. Their presence is

FIG. 2. (color on-line) The edge current associated with the
Chern insulator on a Mobius strip. There are 40 × 12 sites,
and all bonds across a line segment are removed. Again, to
make the plot easier to understand we have omitted the weak
current away from the edge.

FIG. 3. (color on-line) The edge current associated with the
Chern insulator on a Mobius strip. There are 40 × 12 sites.
To make the plot easier to understand we have omitted the
weak current away from the edge.

due to the orientation flip across the cut. As a result the
chirality of the Chern insulator reverses across the cut.
This is similar to the edge current produced at the loca-
tion of magnetic field reversal in the quantum Hall effect.
Because the edge currents at the cut are co-propagating,
sealing the cut has no effect on them. The current pat-
tern after the cut is sealed is shown in Fig. (3). It is
worthy to note that while geometrically there is no sin-
gularity on a Mobius strip, in defining the chirality of
the Chern insulator it is necessary to choose a cut across
which the direction reverses.

Because the above statement is a bit subtle we fur-
ther explain it as follows. The Chern insulator studied
in our paper is fundamentally equivalent to the integer



3

FIG. 4. (color on-line) The edge current associated with the
Z2 insulator on a cylinder. The blue arrows indicate the di-
rection of local Sz axis.The red arrows at the top/bottom of
the blue ones illustrate the current associated with S

z = ±1,
respectively. There are 40 × 12 sites, and to make the plot
easier to understand we have omitted the weak current away
from the edge.

quantum Hall insulator realized by two dimensional elec-
tron gas under strong magnetic field. The chirality in
the Chern insulator is analogous to the magnetic field
direction in the quantum Hall effect. The question we
posed concerning the edge state also applies if we place
an integer quantum Hall liquid on a Mobius strip. In
the following we explain the fact that while, as a geo-
metric object, the Mobius strip is perfectly smooth, it is
impossible to assign local orientation to it smoothly. In
connection to the quantum Hall liquid, the local orienta-
tion is the local normal direction with respect to which
the sign of the Hall conductivity is defined. Indeed, Hall
conduction is a local phenomenon; the sign of the Hall

conductivity can be defined as ~E = σxyn̂× ~J where ~J is

the current,n̂ is the local normal direction, and ~E is the
electric field. Clearly reversing n̂ changes the sign of σxy.
Mathematically the Mobius strip is a “non-trivial Z2 fiber
bundle with S1 as the base space”. The associated prin-
cipal bundle has Z2 as fiber space. Choosing a local ori-
entation corresponds to picking a “local section” of this
principle fiber bundle. The fact that the Mobius strip
is topologically non-trivial implies that there exists ob-
struction to gluing together the local sections smoothly.
This is why the Mobius strip is non-orientable, and it is
also why a discontinuity (cut) in the direction of local
orientation must exist. This cut is not dissimilar to the
branch cut in complex analysis. By locally reversing the
direction of the orientation we can move the cut around,

however we can never get rid of it. Choosing a particu-
lar cut corresponds to picking a specific configuration of
local orientations.
Topologically the important thing is not where the cut

is, rather it is the necessary existence of a cut. The cut
can be anywhere; in this paper we simply pick a particu-
lar coordinate system which in turn dictates a particular
configuration of local normal direction. In the case of
quantum Hall effect, the cut is fixed once the magnetic
field configuration is fixed. In other words it is the mag-

FIG. 5. (color on-line) The edge current associated with the
Z2 insulator on a Mobius strip. Bonds across a line segment
are removed. The meaning of blue and red arrows are the
same as in Fig. (4). There are 40× 12 sites, and to make the
plot easier to understand we have omitted the weak current
away from the edge. The inset zooms in at the currents near
the cut. Note for each spin component there is a pair of
counter-propagating current.

netic field that breaks the symmetry between different
locations along the Mobius strip. Similar phenomena oc-
curs when one try to construct a coordinate system for
a sphere. While a sphere is perfectly smooth, however it
is not possible to choose a coordinate system so that it
is everywhere non-singular. In this case it is because the
total Gauss curvature of the sphere is 4π which cause ob-
struction to constructing non-singular global coordinate.
Next we study the Z2 insulator on the Mobius strip.

The momentum space Hamiltonian in R
2 is given by

H (k) = d1(k)τ
1 ⊗ I + d2(k)τ

2 ⊗ I + d3(k)τ
3 ⊗ σ3,(9)

where I is the 2× 2 identity matrix. The corresponding
real space version is

H = −
1

2

∑

i,j

[

i(ψ†
i+1,jτ

x ⊗ Iψi,j + ψ†
i,j+1τ

y ⊗ Iψi,j) + ψ†
i+1,jτ

z ⊗ σzψi,j + ψ†
i,j+1τ

z ⊗ σzψi,j + h.c.
]

+
∑

i,j

ψ†
i,jτ

z ⊗ σzψi,j . (10)

In defining Eq. (10) on the Mobius strip we define the lo- cal τ and σ Pauli matrices, τµi,j and σµ
i,j in the same way
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FIG. 6. (color on-line) The edge current associated with the
Z2 insulator on a Mobius strip. The meaning of blue and red
arrows are the same as in Fig. (4). There are 40 × 12 sites,
and to make the plot easier to understand we have omitted
the weak current away from the edge.

as in Eq. (5). We also start by studying the edge current
pattern on the cylinder. As shown in Fig. (4) there are
a pair of time-reversal conjugate, counter-propagating
edge currents at each edge. Here blue arrows indicate
the direction of local Sz axis. The red arrows at the
top/bottom of the blue ones illustrate the current asso-
ciated with Sz = ±1/2, respectively.
At last we study the Z2 insulator on the Mobius strip.

Again, we begin by removing the bonds across a line
segment. The associated current pattern is shown in
Fig. (5). The meaning of blue and red arrows are the
same as in Fig. (4). The inset zooms in at the currents
near the cut.
It is important to note that for each spin component

there is a pair of counter-propagating current. As a re-
sult, when the cut is sealed they are allowed to back scat-
ter against each other and hence gaps out the associated
edge modes. The result with the cut sealed is shown in
Fig. (6). As expected the edge currents associated with
the cut are completely removed.
Topologically this is because in defining the Z2 insu-

lator we need a “director” rather than a vector at each
point of the Mobius trip. While it is impossible to assign
a smooth vector orientation across the Mobius strip, it
is possible to assign a seamless “director” to specify the
axis of spin quantization. In summary we have studied
the edge current distribution of the Chern and Z2 insu-
lators on the Mobius strip. The current pattern of the
Chern insulator clearly detects the twist, while that of
the Z2 insulator does not. This reveals an interesting in-
teraction between the topology of the electronic structure
and that of the substrate. The fact that the Z2 topolog-
ical insulator can be seamlessly put on a Z2 fiber bundle
(the Mobius strip is a Z2 fiber bundle over a circle) is
particularly interesting. The mathematical meaning of
this needs to be clarified in the future.
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