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We reassess the validity of Migdal-Eliashberg (ME) theory for coupled electron-phonon systems for
large couplings λ. Although model calculations have found that ME theory breaks down for λ ∼ 0.5,
it is routinely applied for λ > 1 to strong coupling superconductors. To resolve this discrepancy
it is important to distinguish between bare parameters, used as input in models, and effective
parameters, derived from experiments. We show explicitly that ME gives accurate results for the
critical temperature and the spectral gap for large effective λ. This provides quantitative theoretical
support for the applicability of ME theory to strong coupling conventional superconductors.
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I. INTRODUCTION

The theory of conventional superconductivity, where
pairing is mediated by the coupling of electrons to lattice
vibrations, is considered as one of the major achievements
of the twentieth century condensed matter physics. It
is based on the relatively simple Eliashberg equations,1

where vertex corrections are neglected. The applica-
tion of these equations is justified by Migdal’s theorem,2

which states that vertex corrections are proportional to
the effective coupling strength λ and the ratio of phonon
ωph and electronic energy scale W , which usually is of
the order 1/100 and less.3,4 The properties of the super-
conducting state in Migdal-Eliashberg (ME) theory are
then largely determined by λ, ωph and a phenomenologi-
cal parameter for the Coulomb repulsion µ∗. ME theory
is also routinely used as a standard pairing theory for
other situations where a bosonic pairing mechanism is
analyzed.5,6

A number of studies mainly based on the Holstein
model, which go beyond the ME theory, have illustrated
that vertex corrections cannot be neglected for large cou-
pling strength even if the ratio ωph/W is very small and
that the ME theory becomes inaccurate when7 λ ex-
ceeds a certain value.8–12 In the adiabatic limit, Benedetti
and Zeyher8 found a breakdown of Migdal’s theorem
due to the appearance of additional extremal paths in
the action for λ >∼ 0.4.7 Capone and Ciuchi11 found
quantitative deviations of self-consistent ME calculations
from DMFT already for intermediate coupling strengths
and qualitatively different behavior for stronger coupling.
Alexandrov9 argued that even in the adiabatic limit ME
theory breaks down due to bipolaron formation and sym-
metry breaking when λ exceeds one. For strong cou-
pling superconductors values of λ of the order 1-3 are
commonly quoted.3,4 The model calculations therefore
suggest that strong coupling superconductors do not lie
within the range of applicability of the ME theory.

The purpose of this paper is to bring the results from
the model studies in a form that they can be compared
in a meaningful way to the standard diagrammatic ap-

proach for superconductivity. Like this we clarify the
quantitative reliability of ME theory for relevant values
of λ and ωph/W . If phonon renormalization occurs it
is necessary to distinguish the bare model parameters
from the effective parameters describing the state of the
system.13–15 The latter correspond to the ones derived
from experiment or density functional calculations. We
study the Holstein model in the limit where the lattice
has infinite dimension. In this limit the dynamical mean
field theory (DMFT)16 becomes exact. These DMFT re-
sults serve as a benchmark for ME calculations.

We show in qualitative agreement with earlier work
in the normal phase11 that self-consistent ME calcula-
tions become inaccurate already at moderate bare cou-
pling both for electronic and phonon properties. How-
ever in contrast with previous interpretations, we show
that at these bare couplings the effective coupling is very
large, larger than for strong coupling superconductors.
For effective couplings relevant for strong coupling su-
perconductors the ME theory is still accurate.

In many applications of ME theory the phonons are
not calculated self-consistently, but taken as an input ei-
ther from a different calculation or experiment. Then one
is interested in how accurately electronic properties are
described by the ME equations for a given phonon spec-
trum. We can check this explicitely by taking DMFT
as a benchmark for electronic properties and providing
the full phonon spectrum as an input for the ME calcu-
lations (termed ME+ph later). We show that the elec-
tronic properties are predicted very reliably up to large
effective coupling strengths within ME+ph calculations,
i.e. with an accuracy of better than 10%. In this pa-
per we will neglect the effect of the Coulomb interaction
usually taken into account via the parameter µ∗.

The paper is structured as follows: In Sec. II, we first
recall the usual definition of the pairing function α2F (ω)
and the coupling strength λ. Then we give explicit details
for the DMFT and ME approaches. In Sec. III, results
for the comparison of the DMFT and ME calculations
are shown, followed by the conclusions in Sec. IV.
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II. MODEL AND FORMALISM

A. Pairing function

The pairing function α2F (ω) is an essential ingredi-
ent for conventional superconductivity. It can be defined
by3,4

α2
k,k′F (ω) = ρ0|gk,k′ |2ρDk−k′(ω), (1)

where ρ0 is the electronic density of states at the Fermi
level, gk,k′ the electron-phonon coupling matrix element
and ρDq (ω) the phonon spectral function, related to the
phonon propagator as

Dq(iωm) =

∞
∫

0

dω ρDq (ω)
2ω

(iωm)2 − ω2
. (2)

These are the dressed phonon quantities of the interact-
ing system. In conventional theory these are often taken
from experiment or estimated by a different method, and
then inserted in the Eliashberg equations to solve for Tc,
the spectral gap and other properties. As the properties
of conventional superconductivity are mostly confined to
a small window around the Fermi energy, often a Fermi
surface average is used,

α2F (ω) =
1

ρ20

∑

k,k′

α2
k,k′F (ω)δ(εk − µ)δ(εk′ − µ). (3)

Then the superconducting state is largely determined
through the coupling constant4,17,18 λ,

λ = 2

∞
∫

0

dω
α2F (ω)

ω
. (4)

B. Holstein model and DMFT approach

Our quantitative test of the ME theory is based on a
model, which has been frequently used in the literature,
the Holstein model,

H = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) + ω0

∑

i

b†ibi (5)

+g
∑

i

(bi + b†i )
(

∑

σ

n̂i,σ − 1
)

.

c†i,σ creates an electron at lattice site i with spin σ, and

b†i a phonon with oscillator frequency ω0, n̂i,σ = c†i,σci,σ.
The electronic density is coupled to an optical phonon
mode with coupling constant g. We have set the ionic
mass to M = 1 in (5). The local oscillator displacement

is related to the bosonic operators by x̂i = (bi+b†i )/
√
2ω0,

where h̄ = 1.

For the DMFT at T = 0 we solve the effective impurity
problem with the numerical renormalization group19,20

(NRG) adapted to the case with symmetry breaking.21,22

For the logarithmic discretization parameter is Λ = 1.8,
and we keep about 1000 states at each iteration. The ini-
tial bosonic Hilbert space is restricted to a maximum of
50 states. We use a semi-elliptic density of states (DOS)

for the electrons ρ0(ε) =
√
4t2 − ε2/(2πt2) with band-

width W = 4t. We have for the diagonal Green’s func-
tion

G11(iωn) = AGHT[ρ0](ε+) + BGHT[ρ0](ε−), (6)

and for the off-diagonal part

G21(iωn) = AFHT[ρ0](ε+) + BFHT[ρ0](ε−). (7)

We have defined AG = (ζ2(iωn) + ε+(iωn))/(ε+(iωn) −
ε−(iωn)), BG = (ζ2(iωn)+ε−(iωn))/(ε−(iωn)−ε+(iωn))
AF = Σ21(iωn)/(ε+(iωn) − ε−(iωn)), and BF =
Σ21(iωn)/(ε−(iωn)− ε+(iωn)), where

ε± =
ζ1(iωn)− ζ2(iωn)

2
± (8)

1

2

√

(ζ1(iωn) + ζ2(iωn))2 − 4Σ21(iωn)Σ12(iωn),

with ζ1(z) = z + µ−Σ11(z) and ζ2(z) = z − µ−Σ22(z).
For the Nambu Green’s functions we have G12(iωn) =
G21(iωn) and G22(iωn) = −G11(−iωn). This implies
Σ12(iωn) = Σ21(iωn) and Σ22(iωn) = −Σ11(−iωn) for
the self-energies. At half filling G11(iωn) and Σ11(iωn)
are imaginary functions, whereas G21(iωn) and Σ21(iωn)
and D(iωm) and Σph(iωm) are real functions. For the
semi-elliptic DOS the Hilbert transform is given by

HT[ρ0](z) =

D
∫

−D

dε
ρ0(ε)

z − ε
=

1

2t2

(

z−sgn(Im(z))
√

z2 − 4t2
)

,

(9)
where the square root of a complex number w is given
by

√
reiϕ/2, where ϕ = [0, 2π), such that the imaginary

part of
√
w is positive.

At finite temperature, we use the continuous-time
quantum Monte Carlo (QMC) method developed for
electron-phonon systems.23 To calculate Tc we study the
susceptibility in the pairing channel χ(q, iωn) in the limit
q → 0 and iωn → 0. It can be expressed in terms of the
irreducible vertex in the particle-particle channel Γ(pp),
which is calculated in the QMC procedure.16 It is then
sufficient to analyze when the largest eigenvalue of the
symmetric matrix,

Mn1,n2
=

1

β

√

χ̃0(iωn1
)[Γ(pp)(iωn1

, iωn2
; 0)]

√

χ̃0(iωn2
),

(10)
exceeds one. We have defined the pair propagator,16

χ̃0(iωn1
) =

G(iωn1
)−G(−iωn1

)

ζ(−iωn1
)− ζ(iωn1

)
, (11)

ζ(iωn) = iωn + µ − Σ(iωn), where G(iωn1
) is the local

lattice Green’s function in the normal state.
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FIG. 1: Diagrams for diagonal and offdiagonal self-energy in
ME theory involving the full electronic Green’s function G
and anomalous part F and the full phonon propagator D.

C. ME approach

The matrix equation for the electronic self-energies in
ME theory (see Fig. 1) reads

Σ(iωn) = − 1

β

∑

m

g2τ3G(iωm + iωn)τ3D(iωm), (12)

where

Gk(iωn)
−1 = G0

k(iωn)
−1 − Σ(iωn) (13)

with Gij(iωn) =
∑

k Gij,k(iωn) and G0
k(iωn)

−1 = iωn −
τ3(εk − µ). Notice that we use the form valid for large
coordination number, such that only local lattice Green’s
functions enter. These are calculated with the same semi-
elliptic DOS as in Eqs. (6) and (7) for the DMFT calcu-
lation. Thus by ME theory we mean the diagrammatic
theory, which neglects all vertex corrections to (12), and
as such it is compared to the full DMFT results. No
further approximation such as assuming a constant den-
sity of states or large bandwidth are made. The lat-
ter are common approximations in the literature on ME
theory,3,4 whose accuracy can be analyzed in an expan-
sion in ωph/W . This is, however, not the subject of the
present paper, where we focus entirely on the accuracy
of the theory when vertex corrections are neglected.

The pairing function reads α2F (ω) = ρ0g
2ρD(ω) for

the Holstein model. In the non-interacting limit we have
ρD0 (ω) = δ(ω − ω0) − δ(ω + ω0), which in Eq. (4) gives
λ0 = ρ02g

2/ω0 purely in terms of bare parameters. This
quantity was used in model studies and denoted by λ.7

However, λ as defined in Eq. (4) is given for the inter-

acting system.13–15 Then the phonons are renormalized
via the self-energy Σph(iωm),

D(iωm)−1 = D0(iωm)−1 − Σph(iωm), (14)

where D0(iωm) = 2ω0/[(iωm)2 − ω2
0 ]. The lowest order

contribution to the phonon self-energy is

Σph(iωm) =
2g2

β

∑

n

G(iωn)G(iωm + iωn). (15)

As in Ref. 11 we will call Eqs. (15) and (12) self-

consistent ME approximation. In the superconducting
state an additional contribution from the off-diagonal
Green’s function could be taken into account, which is
however small and it will be neglected in the following.

We define the peak of the interacting phonon spectral
function ρD(ω) as the effective phonon scale ωph = ωr

0.
There is then a mapping of the bare dimensionless pa-
rameters λ0, ω0/t to the effective parameters λ, ωr

0/t. λ
exceeds the bare λ0 due to the phonon renormalization,
ω0 → ωr

0, and due to the increased lattice fluctuations as
shown in the identity valid at T = 0,

wD =

∞
∫

0

dω ρD(ω) = 2ω0〈x̂2〉, (16)

which is generally larger than one. For a sharply peaked
phonon spectrum the first moment sum rule,

∞
∫

−∞

dω ωρD(ω) = 2ω0, (17)

implies wD ≃ ω0/ω
r
0. From an estimate for the phonon

softening due to the lowest order diagram, ωr
0/ω0 =√

1− aλ0, and Eq. (4) one can then obtain the result
λ = λ0/(1 − aλ0).

2,13,15 In three dimensions a = 2, and
for a semi-elliptic DOS in the limit of large dimensions
we have a = 8/3.

In order to calculate the gap at T = 0 we solve equa-
tion (12) both by introducing spectral functions and an-
alytic continuation to the real axis and for comparison
directly on the imaginary axis. D(iωm) can be calcu-
lated self-consistently via Eq. (15) or taken as an input
from DMFT calculations. The latter type of calculation
is termed ME+ph. In the ME theory Tc is calculated by
first finding the local lattice Green’s function G(iωn) in
the normal phase using

Σ(iωn) = −g2

β

∑

m

G(iωm + iωn)D(iωm), (18)

and then employing Eq. (10) with

Γ(pp)(iωn1
, iωn2

; 0) = −g2D(iωn1
− iωn2

). (19)

III. RESULTS

Let us first of all establish how the bare and effective
quantities are related at T = 0. At half filling for fixed
ω0 = 0.1t, we plot λ in Fig. 2 (a) and ωr

0/ω0 in Fig. 2
(b) both as function of λ0. We show the results from self-
consistent ME theory on the real axis (RA) and on the
imaginary axis (IA) in comparison with the full DMFT-
NRG result.
λ increases slowly for λ0 ≤ 0.3 up to values around one.
Then it rises more rapidly close to values of λ0 where in
the normal state a metal to bipolaronic (BP) insulator
transition had been found at λc

0 ≃ 0.464 (shown as a ver-
tical line).8,10 The behavior is qualitatively similar to the
analytic estimate above, however, as λc

0>1/a the latter is
a substantial overestimate and diverges too quickly. The
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FIG. 2: (Color online) Comparison of the selfconsistent ME
and DMFT result for renormalized quantities as a function
of the bare λ0: (a) The effective coupling λ as defined by
Eq. (4), inset wD as given by Eq. (16). (b) The ratio of
renormalized and bare phonon frequency ωr

0/ω0.

region of most interest for our purpose is λ ∼ 1−3, typical
values for strong coupling superconductors. This corre-
sponds to λ0 ∼ 0.3 − 0.37 in terms of bare parameters.
The values for λ obtained in the self-consistent ME the-
ory compare well to the DMFT results for smaller values
of λ0 ≤ 0.3, and then start to overestimate this quan-
tity slightly. For values of λ0 closer to the BP transition
self-consistent ME underestimates λ. We also compare
the effective phonon frequency which decreases with λ0

towards zero when λ0 approaches λc
0. This quantity com-

pares well to the DMFT result for a considerable range
of λ0, but starts to deviate for λ0 > 0.38 or λ >∼ 4.

We can also calculate electronic properties like the
quasiparticle weight z or the offdiagonal self-energy
Σoff(0) which roughly determines the spectral gap at zero
temperature, ∆sp ≃ zΣoff(0). Then one finds good agree-
ment for small coupling and moderate deviations between
DMFT and self-consistent ME theory in the intermediate
coupling regime, and close to the bipolaronic transition,
similar to the results for z and ωr

0 which have been ob-
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FIG. 3: (Color online) Comparison of quantities for the super-
conducting state as a function of λ obtained from DMFT and
ME with phonon input from DMFT (ME+ph): (a) The spec-
tral gap ∆sp; the inset shows the relative deviation d. (b) The
critical temperature for the onset of superconductivity Tc.

tained by Ciuchi and Capone11 in the normal state.

Our main objective is to test the validity of the ME
theory at strong coupling. Hence, we compare the results
for the superconducting properties ∆sp and Tc obtained
from the ME+ph calculations with the full DMFT re-
sults. In Fig. 3 (a) we show ∆sp as extracted from the
spectral function computed from ME+ph calculations on
the real axis and the corresponding DMFT result. Notice
that the results are plotted as a function of λ now.

We find very good agreement for small values of λ < 1,
then a regime where ME+ph slightly underestimates the
value for the gap, before it exceeds the DMFT result for
larger values of λ. By inspecting the relative deviation
d = (∆ME

sp − ∆DMFT
sp )/∆ME

sp plotted as an inset we see
that there is an agreement in the regime λ ∼ 1−3 better
than 10%. At very large values of λ, ∆sp from ME+ph
increases stronger than the DMFT result. For similar
parameters we have also calculated the critical tempera-
ture Tc as deduced from the Bethe-Salpeter equation of
the uniform pair susceptibility.24 The comparison of ME
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FIG. 4: (Color online) Guideline for the quantitative reliabil-
ity of ME theory. The diagram shows points (diamonds) in
the ωr

0/W -λ-plane where the deviation d between the DMFT
and ME+ph theory is d ≃ 0.1. The dashed line is given by the
functional form ωr

0/W = c/λ, which follows from an analyt-
ical estimate where vertex correction exceed a certain value.
c = 0.05 was used.

theory and DMFT-QMC result is shown in Fig. 3 (b).
Good agreement is found in the relevant range for λ.
DMFT-QMC systematically slightly underestimates the
phonon renormalization, which accounts partly for the
too small values of Tc from the ME+ph calculations. In
a related approach Marsiglio found for a 4×4 cluster that
the self-consistent ME theory agrees well with QMC cal-
culations for the pairing susceptibility.14

By doing similar comparisons for different bare param-
eters we mapped out for which values of the effective pa-
rameters λ and ωr

0/W DMFT and ME+ph show good
agreement, i.e. d <∼ 0.1. The results are shown in Fig. 4
and can be well understood in terms of the effective ex-
pansion parameter of ME theory λωr

0/W , which should

not exceed 0.05 for good accuracy. The results can serve
as a guideline for the application of ME theory with re-
liable phonon input.

IV. CONCLUSIONS

We have assessed the validity of the ME theory. We
calculated accurately the effective coupling strength λ in
terms of the bare coupling strength λ0. For intermediate
λ0 the system is close to a bipolaronic metal-insulator
transition and λ is very strongly enhanced. Close to this
point ME theory breaks down. However, for λ ∼ 1 − 3,
typical for strong coupling superconductors, the ME the-
ory is very accurate for small values of ωph/W . This
result is demonstrated explicitly for the Holstein model
in the limit of large dimensions, where most of the spec-
tral weight of the pairing function is located at ωph. We
expect that this result is also applicable for more general
forms of pairing functions α2F (ω) in three dimensions
with an appropriate cut-off scale ωph. In many applica-
tions of ME theory a momentum average over the Fermi
surface is taken, such that the situation is similar to the
one studied here. However, the momentum dependence
can be important in certain cases especially for lower di-
mensional materials. For instance in Ref. 25, the momen-
tum dependence of vertex corrections and their effect on
Tc was analyzed.
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